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Hyers–Ulam–Rassias stability of impulsive Fredholm integral
equations on finite intervals
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Abstract. The main aim of this paper is to establish the Hyers–Ulam–Rassias and Hyers–Ulam stability
of certain homogeneous and non–homogeneous impulsive Fredholm integral equations by using a fixed–
point method. Both Hyers–Ulam–Rassias stability and Hyers–Ulam stability are obtained for such a class
of Fredholm integral equations when considered on a finite interval. Finally four examples are presented
to support the usability of our results.

1. Introduction

A functional equation is said to be stable if there is an exact solution close to each approximative
solution. A problem regarding the stability of homomorphisms was mentioned by Ulam [35] in 1940.
The first answer was then found by Hyers in [5], which motivated the study of the stability problems of
functional equations.

Thereafter, this type of stability is called the Hyers–Ulam stability. In 1978, Rassias [42] proved the
existence of unique linear mappings near approximate additive mappings that provide a generalization of
the Hyers result. By using the notion of Cǎdariu and Radu [15], Jung [36] applied the fixed–point method
to the investigation of the Volterra integral equation. They verified that if a continuous function y : I → C
satisfies the Volterra integral equation of the second kind such that∣∣∣∣y(x) −

∫ x

c
f (t, y(t)) dt

∣∣∣∣ ≤ ϕ(x)

for all x ∈ I, then there exists a unique continuous function y0 : I→ C and a constant M such that

y0(x) =
∫ x

c
f (t, y0(t)) dt and

∣∣∣y(x) − y0(x)
∣∣∣ ≤Mϕ(x) for all x ∈ I.
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Jung’s work [36] has made a valuable contribution to the literature, laying the groundwork for further
research on Ulam stabilities of integral equations.

In a subsequent paper, Jung [37] investigated an integral equation in which the unknown function
depends on two independent variables. Through this work, Jung established a strong connection between
the studied integral equation and the wave equation, thus confirming the generalized Hyers–Ulam stability
of the equation, primarily using the fixed–point method.

Jung’s book [38] aimed to provide a thorough overview of the stability theory of functional equations.
In this text, Jung [38] examined and discussed the stability of various types of functional equations.

In 2009, Castro and Ramos [17] addressed the nonlinear Volterra integral equation given below:

y(x) =
∫ x

a
f (x, t, y(t)) dt.

In [17], they established the Hyers–Ulam and Hyers–Ulam–Rassias stabilities of this integral equation
for both finite and infinite interval cases.

In 2011, Akkouchi [26] analyzed the Volterra integral equation represented by

y(x) = h(x) + λ
∫ x

a
G(x, t, y(t)) dt.

Utilizing the fixed–point method, Akkouchi derived new results on the Hyers–Ulam and Hyers–Ulam–
Rassias stabilities of this Volterra integral equation within Banach spaces.

In 2010, Castro and Ramos [18] examined the Hyers–Ulam and Hyers–Ulam–Rassias stabilities of delay
Volterra integral equations using the fixed–point method:

y(x) =
∫ x

a
f (x, t, y(t), y(α(t))) dt.

In 2013, Castro and Guerra [19] studied a nonlinear Volterra integral equation incorporating a variable
delay:

y(x) = 1(x) +Ψ
( ∫ x

a
k(x, t, y(t), y(α(t))) dt

)
.

In [19], they addressed the Hyers–Ulam–Rassias stability of this Volterra integral equation, establishing
stability conditions via the Banach fixed–point theorem within a suitable complete metric space, employing
the Bielecki metric. Additionally, [19] includes several examples to illustrate their findings.

Janfada and Sadeghi [27], along with Öğrekçi et al. [39], explored the Hyers–Ulam and Hyers–Ulam–
Rassias stabilities of the Volterra integral equation given by

y(x) = 1(x, y(x)) +
∫ x

0
K(x, t, y(t)) dt

utilizing the fixed–point method.
Nonlinear impulsive differential theory, integral equations, and inclusions have gained significance in

some mathematical models of real processes and phenomena examined in the fields of economics, pop-
ulation dynamics, physics, chemical technology, and biotechnology (see [6, 7, 11, 12, 21–23, 41, 45]). In
1993, Guo [4] established some existence theorems of external solutions for nonlinear impulsive Volterra
equations on a finite interval with a finite number of moments of impulse effect in Banach spaces, and
offered some applications to initial value problems for the first–order impulsive differential equations in
Banach spaces. Seeing that many problems in applied mathematics lead to the study of systems of differ-
ential or integral equations, the existence of solutions for system of nonlinear impulsive Volterra integral
equations on the infinite intervalR+ with an infinite number of moments of impulse effect in Banach spaces
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is studied.
In recent years, the study of Hyers–Ulam stability of integral equations has gained attention. This

concept is particularly valuable in applications such as optimization, numerical analysis, biology, and eco-
nomics, where finding exact solutions can be challenging. Notably, in 2015, L. Hua et al. [16] explored
the Hyers–Ulam stability of specific types of Fredholm integral equations, while Z. Gu and J. Huang [44]
investigated the Hyers–Ulam stability of Fredholm integral equations in the same year. The concept of
Hyers–Ulam stability has also been applied in various contexts involving differential and integral equa-
tions. For further recent studies, see [2, 17, 20, 24, 25, 28, 29, 31–33, 40] (and references therein). The main
purpose of this paper is to examine the Hyers–Ulam–Rassias stability and the Hyers–Ulam stability of
certain impulsive Fredholm integral equations.

Volterra and Fredholm integral equations play a significant role in various fields including physics,
engineering, biology, and economics due to their ability to model complex dynamic systems (see, e.g.,
earlier studies [1, 3, 8, 9, 13, 14, 30, 34]). Volterra integral equations are often employed to describe systems
with memory, allowing them to capture the influence of past states on present behavior. On the other hand,
Fredholm integral equations are particularly useful in scenarios with fixed limits of integration, providing
solutions for problems involving boundary conditions or interactions over a specified interval. The incor-
poration of impulsive effects into these frameworks leads to impulsive Fredholm integral equations, which
address systems subject to sudden changes or discontinuities at specific moments in time. This extension
is particularly relevant in applications such as control theory, where instantaneous alterations in inputs
can drastically impact system dynamics, making the study of impulsive Fredholm equations crucial for
developing accurate models that reflect both continuous and discrete changes in real–world phenomena.

Motivated by the above ideas, our foremost aim is to study the Hyers–Ulam–Rassias and the Hyers–
Ulam stability of the homogeneous impulsive Fredholm integral equation

y(x) = λ
∫ b

a
K(x, t)y(t) dt +

∑
a<xk<b

Ik

(
y(x−k )

)
, (1)

and the non–homogeneous impulsive Fredholm integral equation

y(x) = x + λ
∫ b

a
K(x, t)y(t) dt +

∑
a<xk<b

Ik

(
y(x−k )

)
, (2)

for all x, t ∈ I = [a, b], where, for starting, a and b are fixed real numbers, K : I × I → C be a continuous
function, Ik : C→ C, k = 1, 2, . . . ,m, y(x−k ) represents the left limit of y(x) at x = xk and λ be positive constant.

2. Basic concepts and some preliminary results

This section contains the notations, definitions, and some basic concepts from the literature that will be
used in the sequel.

For a nonempty set X, we introduce the definition of a generalized metric on X as follows:

Definition 2.1 ([43]). A mapping d : X×X→ [0,∞] is called a generalized metric on a set X if and only if d satisfies
the following conditions:
(C1) d(x, y) = 0 if and only if x = y;
(C2) d(x, y) = d(y, x) for all x, y ∈ X;
(C3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Next, we recall the main result of Diaz and Margolis [10], which will help us prove our main results.

Theorem 2.2 ([10]). Let (X, d) be a generalized complete metric space. Assume that T : X → X is a strictly
contractive operator with L < 1, where L is a Lipschitz constant. If there exists a nonnegative integer k such that
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d(Tk+1x,Tkx) < ∞ for some x ∈ X, then the following are true:
(a) The sequence {Tnx} converges to a fixed point x∗ of T;
(b) x∗ is the unique fixed point of T in

X∗ =
{
y ∈ X | d(Tkx, y) < ∞

}
;

(c) If y ∈ X∗, then

d(y, x∗) ≤
1

1 − L
d(Ty, y).

Now, we give the definitions of Hyers–Ulam–Rassias and Hyers–Ulam stability of certain impulsive
Fredholm integral equations (1) and (2).

Definition 2.3. If for each function y(x) satisfying∣∣∣∣∣∣y(x) − λ
∫ b

a
K(x, t)y(t) dt −

∑
a<xk<b

Ik(y(x−k ))

∣∣∣∣∣∣ ≤ ϕ(x),

where ϕ(x) ≥ 0 for all x ∈ I, there exists a solution y0(x) of the homogeneous impulsive Fredholm integral equation
(1) and a constant M > 0 with∣∣∣y(x) − y0(x)

∣∣∣ ≤Mϕ(x),

for all x ∈ I, where M is independent of y(x) and y0(x), then we say that the homogeneous impulsive Fredholm integral
equation (1) has the Hyers–Ulam–Rassias stability. If ϕ(x) is a constant function in the above inequalities, we say
that the homogeneous impulsive Fredholm integral equation (1) has the Hyers–Ulam stability.

Definition 2.4. If for each function y(x) satisfying∣∣∣∣∣∣y(x) − x − λ
∫ b

a
K(x, t)y(t) dt −

∑
a<xk<b

Ik(y(x−k ))

∣∣∣∣∣∣ ≤ ϕ(x),

where ϕ(x) ≥ 0 for all x ∈ I, there exists a solution y0(x) of the non–homogeneous impulsive Fredholm integral
equation (2) and a constant M > 0 with∣∣∣y(x) − y0(x)

∣∣∣ ≤Mϕ(x),

for all x ∈ I, where M is independent of y(x) and y0(x), then we say that the non–homogeneous impulsive Fredholm
integral equation (2) has the Hyers–Ulam–Rassias stability. If ϕ(x) is a constant function in the above inequalities,
we say that the non–homogeneous impulsive Fredholm integral equation (2) has the Hyers–Ulam stability.

In this paper, by using the idea of Cǎdariu and Radu [15], we shall study the Hyers–Ulam–Rassias and the
Hyers–Ulam stability of the homogeneous impulsive Fredholm integral equation (1) and non–homogeneous
impulsive Fredholm integral equation (2).

3. Stability results of homogeneous impulsive Fredholm integral equation

In this section, by using the idea of Cǎdariu and Radu [15], we will prove the Hyers–Ulam and Hyers–
Ulam–Rassias stability of homogeneous impulsive Fredholm integral equation (1).
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3.1. Hyers–Ulam–Rassias stability
In this subsection, we will prove the Hyers–Ulam–Rassias stability of homogeneous impulsive Fredholm

integral equation (1).

Theorem 3.1. Suppose I = [a, b] is given for fixed real numbers a, b with a < b and let M,L1,L2 and λ be positive
constants with 0 <ML1λ+L2 < 1. Let K : I× I→ C be a continuous function which satisfies the Lipschitz condition∣∣∣K(x, t)y1 − K(x, t)y2

∣∣∣ ≤ L1

∣∣∣y1 − y2

∣∣∣ (3)

for any x, t ∈ I and y1, y2 ∈ C.
Moreover, Ik : C→ C and there exists a constant L2 such that∣∣∣Ik(y1) − Ik(y2)

∣∣∣ ≤ L2

∣∣∣y1 − y2

∣∣∣ (4)

for all y1, y2 ∈ C.
Let y : I→ C be a continuous function such that∣∣∣∣∣∣y(x) − λ

∫ b

a
K(x, t)y(t)dt −

∑
a<xk<b

Ik(y(x−k ))

∣∣∣∣∣∣ ≤ ϕ(x) (5)

for all x ∈ I, where Ik : C→ C, k = 1, 2, ...,m, y(x−k ) represents the left limit of y(x) at x = xk, and ϕ : I→ (0,∞) is a
continuous function with,∣∣∣∣∣∣

∫ b

a
ϕ(t)dt

∣∣∣∣∣∣ ≤ Nϕ(x) (6)

for all x ∈ I, then there exists a unique continuous function y0 : I→ C such that

y0(x) = λ
∫ b

a
K(x, t)y0(t)dt +

∑
a<xk<b

Ik(y0(x−k )) (7)

and ∣∣∣y(x) − y0(x)
∣∣∣ ≤ 1

1 − (ML1λ + L2)
ϕ(x) (8)

for all x ∈ I.

Proof. First, we define a set

X = {h : I→ C|h is continuous} (9)

and introduce a generalized metric on X as follows:

d(1, h) = inf{C ∈ [0,∞] : |1(x) − h(x)| ≤ Cϕ(x), for all x ∈ I}. (10)

Here, we give a proof for the triangle inequality. Assume d(1, h) > d(1, k) + d(k, h) holds for some 1, h, k ∈ X.
Then, there should exist an x0 ∈ I with

|1(x0) − h(x0)| > {d(1, k) + d(k, h)}ϕ(x0) = d(1, k)ϕ(x0) + d(k, h)ϕ(x0). (11)

In view of (10), this inequality would yield∣∣∣1(x0) − h(x0)
∣∣∣ > ∣∣∣1(x0) − k(x0)

∣∣∣ + ∣∣∣k(x0) − h(x0)
∣∣∣, (12)
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which is a contradiction. Our task is to show that (X, d) is a complete metric space. Let {hn} be a Cauchy
sequence in (X, d). Then for any ϵ > 0, there exists an integer Nϵ > 0 such that d(hm, hn) ≤ ϵ for all m,n ≥ Nϵ.

In view of (10), we have:

∀ϵ > 0, ∃Nϵ ∈N ∀m,n ≥ Nϵ ∀x ∈ I : |hm(x) − hn(x)| ≤ ϵϕ(x). (13)

If x is fixed, equation (13) implies that {hn(x)} is a Cauchy sequence in C. Since C is complete, {hn(x)}
converges for each x ∈ I. Thus, we can define a function h : I→ C by:

h(x) = lim
n→∞

hn(x). (14)

Since ϕ is continuous on the compact interval I, ϕ is bounded. Thus, equation (13) implies that {hn}

converges uniformly to h in the usual topology of C. Hence, h is continuous, i.e., h ∈ X. We need to show
that {hn} converges to h in (X, d).

Let m increase to infinity; it follows from equation (13) that:

∀ϵ > 0, ∃Nϵ ∈N ∀n ≥ Nϵ ∀x ∈ I : |h(x) − hn(x)| ≤ ϵϕ(x). (15)

By considering (10), we obtain:

∀ϵ > 0, ∃Nϵ ∈N, ∀n ≥ Nϵ : d(h, hn) ≤ ϵ. (16)

This means that the Cauchy sequence {hn} converges to h in (X, d). Hence, (X, d) is a generalized complete
metric space.

Next, we define an operator T : X→ X by

(Th)(x) = λ
∫ b

a
K(x, t)h(t)dt +

∑
a<xk<b

Ik(h(x−k )) (17)

for all h ∈ X and x ∈ I. Next, we will show that the operator T is strictly contractive on the set X. Suppose
1, h ∈ X and let C1h ∈ [0,∞] be a constant with d(1, h) ≤ C1h for any 1, h ∈ X.

From (10), we can write:

∣∣∣1(x) − h(x)
∣∣∣ ≤ C1hϕ(x). (18)
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Then, it follows from (3), (4), (6), (17) and (18) that:

|(T1)(x) − (Th)(x)| =

∣∣∣∣∣∣λ
∫ b

a
K(x, t)1(t)dt +

∑
a<xk<b

Ik(1(x−k ))

−λ

∫ b

a
K(x, t)h(t)dt −

∑
a<xk<b

Ik(h(x−k ))

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ
∫ b

a
{K(x, t)1(t) − K(x, t)h(t)}dt

+
∑

a<xk<b

{Ik(1(x−k )) − Ik(h(x−k ))}

∣∣∣∣∣∣
≤

∣∣∣∣∣∣λ
∫ b

a
{K(x, t)1(t) − K(x, t)h(t)}dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
a<xk<b

{Ik(1(x−k )) − Ik(h(x−k ))}

∣∣∣∣∣∣
≤ λL1

∫ b

a

∣∣∣1(t) − h(t)
∣∣∣dt + L2

∑
a<xk<b

|1(x−k ) − h(x−k )|

≤ λL1C1h

∫ b

a
ϕ(t)dt + L2

∑
a<xk<b

|1(x−k ) − h(x−k )|

≤ λL1MC1hϕ(x) + L2C1hϕ(x)
= C1hϕ(x)(λL1M + L2).

This implies that ∣∣∣(T1)(x) − (Th)(x)
∣∣∣ ≤ C1hϕ(x)(λL1M + L2),

for all x ∈ I, that is,
d(T1,Th) ≤ C1h(ML1λ + L2).

Hence, we conclude that d(T1,Th) ≤ (ML1λ + L2)d(1, h) for any 1, h ∈ X, where 0 <ML1λ + L2 < 1.
Let h0 ∈ X (arbitrary) be given. By equations (9) and (17), there exists a constant C ∈ [0,∞] such that

|Th0(x) − h0(x)| =

∣∣∣∣∣∣λ
∫ b

a
K(x, t)h0(t)dt +

∑
a<xk<b

Ik(h0(x−k )) − h0(x)

∣∣∣∣∣∣
≤ Cϕ(x), ∀x ∈ I.

Since K and h0 are bounded on I and minx∈I ϕ(x) > 0, equation (10) implies that

d(Th0, h0) < ∞. (19)

According to Theorem (2.2) (a), there exists a continuous function y0 : I → C such that Tnh0 → y0 in
(X, d) and Ty0 = y0, meaning y0 satisfies (7) for all x ∈ I.

Next, we show that {1 ∈ X | d(h0, 1) < ∞} = X, where h0 was chosen with the property (19). Let 1 ∈ X,
since 1 and h0 are bounded on the closed interval I and minx∈I ϕ(x) > 0, a constant 0 < C1 < ∞ exists such
that ∣∣∣h0(x) − 1(x)

∣∣∣ ≤ C1ϕ(x), ∀x ∈ I.

Thus, we can write that d(h0, 1) < ∞ for any 1 ∈ X. Therefore, we get that {1 ∈ X | d(h0, 1) < ∞} = X.
From Theorem (2.2) (b), we conclude that y0, given by equation (7), is the unique continuous function.
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Finally, Theorem (2.2) (c) implies that:

d(y, y0) ≤
1

1 − (ML1λ + L2)
d(Ty, y) ≤

1
1 − (ML1λ + L2)

, (20)

since inequality (5) means that d(Ty, y) ≤ 1. In view of (10), we can conclude that inequality (8) holds for
all x ∈ I.

3.2. Hyers–Ulam stability

In this subsection, by using the idea of Cǎdariu and Radu [15], we will prove the Hyers–Ulam stability
of homogeneous impulsive Fredholm integral equation (1).

Theorem 3.2. Given a ∈ R and q > 0, suppose that I(a; q) denotes a closed interval {b ∈ R | a − q ≤ b ≤ a + q} and
let K : I(a; q) × I(a; q)→ C be a continuous function that satisfies the Lipschitz condition (3) for all x ∈ I, y1, y2 ∈ C,
where L1, L2, and λ are constants with 0 < L1qλ + L2 < 1, and Ik : C → C with constant L2 satisfies the Lipschitz
condition (4). If σ ≥ 0 and a continuous function y : I(a; q)→ C satisfies∣∣∣∣∣∣y(x) − c − λ

∫ b

a
K(x, t)y(t) dt −

∑
a<xk<b

Ik(y(x−k ))

∣∣∣∣∣∣ ≤ σ,
for all x ∈ I(a; q), where c is a complex number, then there exists a unique continuous function y0 : I(a; q)→ C such
that

y0(x) = c + λ
∫ b

a
K(x, t)y0(t) dt +

∑
a<xk<b

Ik(y0(x−k )), (21)

and ∣∣∣y(x) − y0(x)
∣∣∣ ≤ σ

1 − (λL1q + L2)
(22)

for all x ∈ I(a; q).

Proof. Let

X = {h1 : I(a; q)→ C | h1 is continuous}

be a set, and we introduce a generalized metric on set X as follows:

d(11, h1) = inf{C ∈ [0,∞] | |11(x) − h1(x)| ≤ C, for all x ∈ I(a; q)}. (23)

We can easily see that (X, d) is a complete generalized metric space (see [36]). Consider the operator
T : X→ X defined by

(Th1)(x) = c + λ
∫ b

a
K(x, t)h1(t) dt +

∑
a<xk<b

Ik(h1(x−k )), (24)

for all h1 ∈ X and x ∈ I(a; q).
Next, we will check that the operator T is strictly contractive on the set X. Suppose that C11h1 ∈ [0,∞] is

a constant with d(11, h1) ≤ C11h1 for any 11, h1 ∈ X. We have∣∣∣11(x) − h1(x)
∣∣∣ ≤ C11h1 , for allx ∈ I(a; q). (25)
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By making use of (3), (4), (23), (24) and (25), we deduce∣∣∣(T11)(x) − (Th1)(x)
∣∣∣ = ∣∣∣∣∣∣c + λ

∫ b

a
K(x, t)11(t) dt +

∑
a<xk<b

Ik(11(x−k ))

− c − λ
∫ b

a
K(x, t)h1(t) dt −

∑
a<xk<b

Ik(h1(x−k ))

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ
∫ b

a
K(x, t)11(t) dt − λ

∫ b

a
K(x, t)h1(t) dt

+
∑

a<xk<b

Ik(11(x−k )) −
∑

a<xk<b

Ik(h1(x−k ))

∣∣∣∣∣∣
≤ λ

∣∣∣∣∣∣
∫ b

a
{K(x, t)11(t) − K(x, t)h1(t)} dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
a<xk<b

{Ik(11(x−k )) − Ik(h1(x−k ))}

∣∣∣∣∣∣
≤ λL1

∫ b

a

∣∣∣11(t) − h1(t)
∣∣∣ dt + L2

∑
a<xk<b

∣∣∣11(x−k ) − h1(x−k )
∣∣∣

≤ λL1

∫ b

a
C11h1 dt + L2C11h1

≤ λL1C11h1 |b − a| + L2C11h1

≤ (λL1q + L2)C11h1

for all x ∈ I(a; q), i.e., d(T11,Th1) ≤ (λL1q + L2)C11h1 . Hence, we may conclude that d(T11,Th1) ≤ (λL1q +
L2)d(11, h1) for any 11, h1 ∈ X, where 0 < λL1q + L2 < 1.

By applying the same procedure as in Theorem 3.1, we can choose h0 ∈ X with d(Th0, h0) < ∞. Hence,
from Theorem 2.2 (a), it follows that there exists a continuous function y0 : I(a; q)→ C such that Tnh0 → y0
in (X, d) as n → ∞, and such that y0 satisfies the homogeneous impulsive Fredholm integral equation (21)
for any x ∈ I(a; q).

Next, we will show that X = {11 ∈ X | d(h0, 11) < ∞}. By applying a similar argument to the proof of
Theorem 3.1 to this case. Therefore, Theorem 2.2 (b) implies that y0 is a unique continuous function with
the property (21).

Furthermore, Theorem 2.2 (c) implies that∣∣∣y(x) − y0(x)
∣∣∣ ≤ σ

1 − (λL1q + L2)
,

for all x ∈ X.

3.3. Examples
Now, we present two examples which indicate how our results can be applied to concrete problems.

Example 3.3. Suppose I = [0, 1] be given and let M,L1,L2, λ be positive constants with 0 < ML1λ + L2 < 1 for
λ < 4

3ML1
. Let ϕ : [0, 1] → (0,∞) be a continuous function and the kernel K : [0, 1] × [0, 1] → C defined by

K(x, t) = 1 + x + t.
Consider the homogeneous impulsive Fredholm integral equation,

y(x) = λ
∫ 1

0
(1 + x + t)y(t) dt +

∑
0< 1

5<1

|y( 1
5
−

)|

3 + |y( 1
5
−

)|
, (26)
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for any x ∈ I.
Clearly,∣∣∣(1 + x + t)y1 − (1 + x + t)y2

∣∣∣ ≤ L1

∣∣∣y1 − y2

∣∣∣.
Moreover,

Ik(y(x−k )) = △y|x=xk .

So that,

△y|x= 1
5
= Ik

(
y
(

1−

5

))
=
|y( 1−

5 )|

3 + |y( 1−
5 )|
.

Clearly,

∣∣∣Ik(y1) − Ik(y2)
∣∣∣ = ∣∣∣∣∣∣ y1

3 + y1
−

y2

3 + y2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ y1(3 + y2) − y2(3 + y1)
(3 + y1)(3 + y2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣3y1 + y1y2 − 3y2 − y1y2

(3 + y1)(3 + y2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 3(y1 − y2)
(3 + y1)(3 + y2)

∣∣∣∣∣∣
≤

1
3

∣∣∣y1 − y2

∣∣∣.
Here, we see that L2 =

1
3 .

Let y : I→ C be such that:∣∣∣∣∣∣y(x) − λ
∫ 1

0
(1 + x + t)y(t) dt −

∑
0< 1

5<1

|y( 1−
5 )|

3 + |y( 1−
5 )|

∣∣∣∣∣∣ ≤ ϕ(x) = ex,

for all x ∈ [0, 1].
Clearly, 0 ≤ x ≤ 1 and 0 ≤ t ≤ x so that,∣∣∣∣∣∫ x

0
ϕ(t) dt

∣∣∣∣∣ = ∣∣∣∣∣∫ x

0
et dt

∣∣∣∣∣ = (ex
− 1) ≤ ex = ϕ(x).

It means that,∣∣∣∣∣∫ x

0
ϕ(t) dt

∣∣∣∣∣ ≤ ϕ(x)

for all x ∈ [0, 1] and t ∈ [0, x]. From here, we can see that M = 1.
Then, Theorem 3.1 assures that there exists a unique continuous function y0 : I→ C such that∣∣∣y(x) − y0(x)

∣∣∣ ≤ 3
4 − 3MλL1

ex, ∀x ∈ [0, 1].

Thus, the homogeneous impulsive Fredholm integral equation (26) is Hyers–Ulam–Rassias stable.
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Example 3.4. Consider the above homogeneous impulsive Fredholm integral equation (26) for λ < 1
2qL1
= L2

qL1
and

let L2 =
1
2 .

Further assume that for some q > 0, σ > 0 and let y : I→ C, we have:∣∣∣∣∣∣y(x) − λ
∫ 1

0
(1 + x + t)y(t)dt −

∑
0< 1

5<1

|y( 1−
5 )|

3 + |y( 1−
5 )|

∣∣∣∣∣∣ ≤ σ.
In the light of Theorem 3.2, there exists a unique continuous function y0 : I→ C that solves (26) for λ < 1

2qL1
and

∣∣∣y(x) − y0(x)
∣∣∣ ≤ 2

1 − 2qL1λ
σ,

for all x ∈ [0, 1]. Hence, equation (26) is Hyers–Ulam stable.

4. Stability results of non–homogeneous impulsive Fredholm integral equation

In this section, we will prove the Hyers–Ulam and Hyers–Ulam–Rassias stability of non–homogeneous
impulsive Fredholm integral equation (2).

4.1. Hyers–Ulam–Rassias stability

In this subsection, we will prove the Hyers–Ulam–Rassias stability of non–homogeneous impulsive
Fredholm integral equation (2).

Theorem 4.1. Suppose I = [a, b] be given for fixed real numbers a, b with a < b and let M,L1,L2 and λ be positive
constants with 0 <ML1λ+L2 < 1. Let K : I× I→ C be a continuous function which satisfies the Lipschitz condition
(3) for any x, t ∈ I, and y1, y2 ∈ C.
Moreover, Ik : C→ C and there exists a constant L2 which satisfies the condition (4) for all y1, y2 ∈ C.

Let y : I→ C be a continuous function such that∣∣∣∣∣∣y(x) − x − λ
∫ b

a
K(x, t)y(t)dt −

∑
a<xk<b

Ik(y(x−k ))

∣∣∣∣∣∣ ≤ ϕ(x) (27)

for all x ∈ I. Also Ik : C→ C, k = 1, 2, . . . ,m and y(x−k ) represents the left limit of y(x) at x = xk, whereϕ : I→ (0,∞)
is a continuous function with∣∣∣∣∣∣

∫ b

a
ϕ(t)dt

∣∣∣∣∣∣ ≤ Nϕ(x) (28)

for all x ∈ I. Then there exists a unique continuous function y0 : I → C which is a solution of non–homogeneous
impulsive Fredholm integral equation (2) such that

y0(x) = x + λ
∫ b

a
K(x, t)y0(t)dt +

∑
a<xk<b

Ik(y0(x−k )) (29)

and ∣∣∣y(x) − y0(x)
∣∣∣ ≤ 1

1 − (ML1λ + L2)
ϕ(x) (30)

for all x ∈ I.
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Proof. First, we define

X = {h0 : I→ C | h0 is continuous} (31)

to be a set and introduce a generalized metric on X as follows:

d(1, h0) = inf{C ∈ [0,∞] | |1(x) − h0(x)| ≤ Cϕ(x), for all x ∈ I}. (32)

We can easily see that (X, d) is a generalized complete metric space (see [36]).
Next, we define an operator T : X→ X by

(Th1)(x) = x + λ
∫ b

a
K(x, t)h1(t)dt +

∑
a<xk<b

Ik(h1(x−k )) (33)

for all h1 ∈ X and x ∈ I. Next, we will show that the operator is strictly contractive on the set X. Suppose
11, h1 ∈ X and let C11h1 ∈ [0,∞] be a constant with d(11, h1) ≤ C11h1 for any 11, h1 ∈ X.

By equation (32), we can write:∣∣∣11(x) − h1(x)
∣∣∣ ≤ C11h1ϕ(x) (34)

for all x ∈ I.
Then, it follows from (3), (4), (28), (33), and (34)∣∣∣(T11)(x) − (Th1)(x)

∣∣∣ = ∣∣∣∣∣∣x + λ
∫ b

a
K(x, t)11(t)dt +

∑
a<xk<b

Ik(11(x−k ))

− x − λ
∫ b

a
K(x, t)h1(t)dt −

∑
a<xk<b

Ik(h1(x−k ))

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ
∫ b

a
{K(x, t)11(t) − K(x, t)h1(t)}dt

+
∑

a<xk<b

{Ik(11(x−k )) − Ik(h1(x−k ))}

∣∣∣∣∣∣
≤

∣∣∣∣∣∣λ
∫ b

a
{K(x, t)11(t) − K(x, t)h1(t)}dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
a<xk<b

{Ik(11(x−k )) − Ik(h1(x−k ))}

∣∣∣∣∣∣
≤ λL1

∫ b

a

∣∣∣11(t) − h1(t)
∣∣∣dt + L2

∑
a<xk<b

∣∣∣11(x−k ) − h1(x−k )
∣∣∣

≤ λL1

∫ b

a
C11h1ϕ(t)dt + L2

∑
a<xk<b

∣∣∣11(x−k ) − h1(x−k )
∣∣∣

≤ λL1MC11h1ϕ(x) + L2C11h1ϕ(x)
= C11h1ϕ(x)(λL1M + L2).

This implies that∣∣∣(T11)(x) − (Th1)(x)
∣∣∣ ≤ C11h1ϕ(x)(λML1 + L2),

for all x ∈ I, that is,

d(T11,Th1) ≤ C11h1 (ML1λ + L2).
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Hence, we may conclude that d(T11,Th1) ≤ (ML1λ+L2)d(11, h1) for any 11, h1 ∈ X, where 0 <ML1λ+L2 < 1.
Let h0 ∈ X (be arbitrary) be given. There exists a constant 0 < C < ∞, such that∣∣∣Th0(x) − h0(x)

∣∣∣ = ∣∣∣∣∣∣x + λ
∫ b

a
K(x, t)h0(t)dt +

∑
a<xk<b

Ik(h0(x−k )) − h0(x)

∣∣∣∣∣∣
≤ Cϕ(x),∀x ∈ I.

Since K and h0 are bounded on I and minx∈I ϕ(x) > 0.
Thus, we have

d(Th0, h0) < ∞. (35)

So, according to Theorem 2.2 (a), there exists a continuous function y0 : I→ C such that Tnh0 → y0 in (X, d)
and Ty0 = y0, i.e., y0 satisfies (29) for all x ∈ I.

Next, we show that {11 ∈ X | d(h0, 11) < ∞} = X, where h0 was chosen with the property (35). Let 11 ∈ X,
since we know that 11 and h0 are bounded on the closed interval I and minx∈I ϕ(x) > 0, then there exists a
constant 0 < C1 < ∞ such that∣∣∣h0(x) − 11(x)

∣∣∣ ≤ C1ϕ(x),

for all x ∈ I. Thus, we can write that d(h0, 11) < ∞ for any 11 ∈ X. Therefore, we get that {11 ∈ X | d(h0, 11) <
∞} = X. From Theorem 2.2 (b), we conclude that y0, given by equation (29), is the unique continuous
function.

Finally, Theorem 2.2 (c) implies that:

d(y, y0) ≤
1

1 − (ML1λ + L2)
d(Ty, y) ≤

1
1 − (ML1λ + L2)

. (36)

Since inequality (27) means that d(Ty, y) ≤ 1. In view of (32), we can conclude that the inequality (30) holds
for all x ∈ I.

4.2. Hyers–Ulam stability

In this subsection, by using the idea of Cǎdariu and Radu [15], we will prove the Hyers–Ulam stability
of non–homogeneous impulsive Fredholm integral equation (2).

Theorem 4.2. Given a ∈ R and q > 0, let I(a; q) denote the closed interval {b ∈ R | a − q ≤ b ≤ a + q}. Suppose that
K : I(a; q) × I(a; q)→ C is a continuous function which satisfies the Lipschitz condition

∣∣∣K(x, t)y1 − K(x, t)y2

∣∣∣ ≤ L1|y1 − y2|, (37)

for all x, t ∈ I(a; q) and y1, y2 ∈ C, where L1, L2, and λ are constants with 0 < L1qλ + L2 < 1. Additionally, let
Ik : C→ C be a function with a constant L2 that satisfies the Lipschitz condition

|Ik(y1) − Ik(y2)| ≤ L2|y1 − y2|, (38)

for all y1, y2 ∈ C.
If σ ≥ 0 and a continuous function y : I(a; q)→ C satisfies∣∣∣∣∣∣y(x) − c − x − λ

∫ b

a
K(x, t)y(t)dt −

∑
a<xk<b

Ik(y(x−k ))

∣∣∣∣∣∣ ≤ σ, (39)
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for all x ∈ I(a; q), where c is a complex number, then there exists a unique continuous function y0 : I(a; q)→ C such
that

y0(x) = c + x + λ
∫ b

a
K(x, t)y0(t)dt +

∑
a<xk<b

Ik(y0(x−k )), (40)

and

|y(x) − y0(x)| ≤
σ

1 − (L1qλ + L2)
(41)

for all x ∈ I(a; q).

Proof. Let

X = {h2 : I(a; q)→ C | h2 is continuous} (42)

be a set, and we introduce a generalized metric on the set X as follows:

d(12, h2) = inf{C ∈ [0,∞] | |12(x) − h2(x)| ≤ C, for all x ∈ I(a; q)}. (43)

We can easily see that (X, d) is a complete generalized metric space, as noted in [36].
Consider the operator T : X→ X defined by

(Th2)(x) = c + x + λ
∫ b

a
K(x, t)h2(t)dt +

∑
a<xk<b

Ik(h2(x−k )) (44)

for all h2 ∈ X and x ∈ I(a; q).
Next, we will check that the operator T is strictly contractive on the set X. Suppose that C12h2 ∈ [0,∞] is

a constant such that d(12, h2) ≤ C12h2 for any 12, h2 ∈ X. We have

|12(x) − h2(x)| ≤ C12h2 , for all x ∈ I(a; q). (45)

By utilizing the conditions stated in (37), (38), (43), (44) and (45), we deduce

|(T12)(x) − (Th2)(x)| =

∣∣∣∣∣∣c + x + λ
∫ b

a
K(x, t)12(t)dt +

∑
a<xk<b

Ik(12(x−k ))

− c − x − λ
∫ b

a
K(x, t)h2(t)dt −

∑
a<xk<b

Ik(h2(x−k ))

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ
∫ b

a
K(x, t)12(t) − λ

∫ b

a
K(x, t)h2(t)dt

+
∑

a<xk<b

Ik(12(x−k )) −
∑

a<xk<b

Ik(h2(x−k ))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣λ
∫ b

a
{K(x, t)12(t) − (1 + x + t)h2(t)}dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
a<xk<b

{Ik(12(x−k )) − Ik(h2(x−k ))}

∣∣∣∣∣∣
≤ λL1

∫ b

a

∣∣∣12(t) − h2(t)
∣∣∣dt + L2

∑
a<xk<b

∣∣∣12(x−k ) − h2(x−k )
∣∣∣

≤ λL1

∫ b

a
C12h2 dt + L2C12h2
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≤ λL1C12h2 |b − a| + L2C12h2

≤ (λL1q + L2)C12h2

for all x ∈ I(a; q), i.e., d(T12,Th2) ≤ (λL1q + L2)C12h2 . Hence, we may conclude that d(T12,Th2) ≤ (λL1q +
L2)d(12, h2) for any 12, h2 ∈ X, where 0 < λL1q + L2 < 1.

By applying the same procedure as in Theorem 4.1, we can choose h0 ∈ X with d(Th0, h0) < ∞. Hence,
from Theorem 2.2 (a), it follows that there exists a continuous function, say y0 : I(a; q) → C, such that
Tnh0 → y0 in (X, d) as n→∞, and such that y0 satisfies the non–homogeneous impulsive Fredholm integral
equation (40) for any x ∈ I(a; q).

Next, we will show that X = {12 ∈ X | d(h0, 12) < ∞}. By applying a similar argument to the proof of
Theorem 4.1 to this case, we conclude that Theorem 2.2 (b) implies that y0 is a unique continuous function
with property (40).

Furthermore, Theorem 2.2 (c) implies that∣∣∣y(x) − y0(x)
∣∣∣ ≤ σ

1 − (λL1q + L2)
(46)

for all x ∈ X.

4.3. Examples
Now, we provide illustrative examples that support the above theorems.

Example 4.3. Suppose I = [0, 1] be given and let M,L1,L2, λ be positive constants with 0 < ML1λ + L2 < 1 for
λ < 8

5L1
. Let ϕ : [0, 1] → (0,∞) be a continuous function and the kernel K : [0, 1] × [0, 1] → C defined by

K(x, t) = 1 + x + t.
Consider the non–homogeneous impulsive Fredholm integral equation,

y(x) = x + λ
∫ 1

0
K(x, t)y(t)dt +

∑
0< 1

10<1

|y( 1
10
−

)|

5 + |y( 1
10
−

)|
, (47)

for any x ∈ I.
Clearly,∣∣∣(1 + x + t)y1 − (1 + x + t)y2

∣∣∣ ≤ L1

∣∣∣y1 − y2

∣∣∣.
Moreover,

Ik(y(x−k )) = △y|x=xk .

So that,

△y|x= 1
10
= Ik

(
y
(

1−

10

))
=
|y( 1−

10 )|

5 + |y( 1−
10 )|
.

Clearly,∣∣∣Ik(y1) − Ik(y2)
∣∣∣ = ∣∣∣∣∣∣ y1

5 + y1
−

y2

5 + y2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ y1(5 + y2) − y2(5 + y1)
(5 + y1)(5 + y2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣5y1 + y1y2 − 5y2 − y1y2

(5 + y1)(5 + y2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 5(y1 − y2)
(5 + y1)(5 + y2)

∣∣∣∣∣∣
≤

1
5

∣∣∣y1 − y2

∣∣∣.
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Here, we see that L2 =
1
5 .

Let y : I→ C be such that:∣∣∣∣∣∣y(x) − x − λ
∫ 1

0
K(x, t)y(t)dt −

∑
0< 1

10<1

|y( 1−
10 )|

5 + |y( 1−
10 )|

∣∣∣∣∣∣ ≤ ϕ(x) = e2x,

for all x ∈ [0, 1].
Clearly, 0 ≤ x ≤ 1 and 0 ≤ t ≤ x so that,∣∣∣∣∣∫ x

0
ϕ(t)dt

∣∣∣∣∣ = ∣∣∣∣∣∫ x

0
e2tdt

∣∣∣∣∣ = 1
2

(e2x
− 1) ≤

1
2

(e2x) =
1
2
ϕ(x).

It means that,∣∣∣∣∣∫ x

0
ϕ(t)dt

∣∣∣∣∣ ≤ 1
2
ϕ(x)

for all x ∈ [0, 1] and t ∈ [0, x]. From here, we can see that M = 1
2 .

Then, Theorem 4.1 assures that there exists a unique continuous function y0 : I→ C such that∣∣∣y(x) − y0(x)
∣∣∣ ≤ 10

8 − 5L1λ
e2x, ∀x ∈ [0, 1].

Thus, the non–homogeneous impulsive Fredholm integral equation (47) is Hyers–Ulam–Rassias stable.

Example 4.4. Consider the above non–homogeneous impulsive Fredholm integral equation (47) for λ < 2
3qL1

and let
L2 =

1
3 .

Further assume that for some q > 0, σ > 0, and let y : I→ C, we have:∣∣∣∣∣∣y(x) − x − λ
∫ 1

0
K(x, t)y(t)dt −

∑
0< 1

10<1

|y( 1−
10 )|

5 + |y( 1−
10 )|

∣∣∣∣∣∣ ≤ σ.
In the light of Theorem 4.2, there exists a unique continuous function y0 : I→ C that solves (47) for λ < 2

3qL1
and

∣∣∣y(x) − y0(x)
∣∣∣ ≤ 3

2 − 3qL1λ
σ,

for all x ∈ [0, 1]. Hence, equation (47) is Hyers–Ulam stable.

5. Conclusion

Two kind of novel stability concepts, the Hyers–Ulam–Rassias stability and the Hyers–Ulam stability,
of a homogeneous impulsive Fredholm integral equation and a non–homogeneous impulsive Fredholm
integral equation are offered. Using Banach’s fixed point theorem in a generalized complete metric space,
we have proved the Hyers–Ulam–Rassias stability and the Hyers–Ulam stability results on a finite interval.
Four examples are offered to show the useability of our obtained results.
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