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aDepartment of Mathematics, Recep Tayyip Erdoğan University 53100 Rize, Türkiye
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Abstract. This research employs the q-Schröder matrix S̃q to create the sequence spaces c0(S̃q), c(S̃q),
ℓ∞(S̃q) and ℓp(S̃q) where (1 ⩽ p < ∞). We demonstrate certain topological features, derive Schauder bases,
calculate the alpha, beta and gamma duals of new sequence spaces, build some matrix classes, and finally
show some topological properties. In addition, we give Schröder’s core of complex valued sequences and
define various inclusion theorems for the new core type.

1. Introduction and Preliminaries

The q-calculus is a branch of mathematics that has a wide range of applications in many domains, in-
cluding approximation theory, combinatorics, hypergeometric functions, operator theory, special functions,
quantum algebras, and more.

The q-number [b]q is defined as follows for 0 < q < 1,

[b]q =


b−1∑
s=0

qs, b = 1, 2, 3, ...,

0, b = 0.

It is reasonable to assume that [b]q → b as q→ 1−. Briefly, we represent [b]q by [b]. The q-binomial coefficient
is defined by[

b
d

]
=

 [b]!
[d]![b − d]!

, 0 ⩽ d ⩽ b,

0, otherwise,
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where q-factorial [b]! of b is given by

[b]! =


b∏

s=1

[s], b = 1, 2, 3, ...,

1, b = 0.

Using the definition of the q-binomial coefficient, we obtain

(b + d)r
q =

r∑
s=0

[
r
s

]
q(s

2)xr−srs.

The final equation is known as the Gauss q-binomial formula. We strictly cited [30, 48] for information on
the q-calculus.

1.1. Sequence Spaces

We can now give some fundamental details about sequence spaces and summability theory. Each Γ
subset of ω is referred to as a sequence space, and ω denotes the space of all real or complex sequences.
To symbolize the spaces of all bounded, convergent, and null sequences, we shall use the symbols ℓ∞, c,
and c0. We designate the spaces of all convergent, bounded, absolutely, and p-absolutely convergent series,
respectively, by cs, bs, ℓ1, and ℓp, where 1 < p < ∞.

A sequence space with a linear topology is known as a K-space, where each of the mappings pi : λ→ C
defined by pi(x) = xi is continuous for all i in N. A K-space that is also a complete linear metric space is
known as an FK-space. A BK-space is an FK-space with a normable topology.

When there are real entries in an infinite matrix A = (ars), Ar represents the rth row for each r ∈N. If the
series is convergent for each r ∈N, the A-transform of u = (us) ∈ ω is given by the equation:

(Au)r =

∞∑
s=0

arsus

If Au ∈ Ψ, it is stated that A is a matrix transformation from Υ to Ψ for all u ∈ Υ. (Υ,Ψ) denotes the
class of all matrices that transform Υ to Ψ. The matrix domain of A in Υ is the set of all vectors u = (us) in
ω such that Au ∈ Υ. If Υ andΨ are two sequence spaces, then the multiplier set D(Υ : Ψ) is described as

D(Υ : Ψ) = {x = (xs) ∈ ω : xu = (xsus) ∈ Ψ for all (us) ∈ Υ} .

In that case, α-, β-, and γ-duals of Υ are described as

Υα = D(Υ : ℓ1),Υβ = D(Υ : cs) and Υγ = D(Υ : bs).

The sequence spaces (ℓp)Nq , (ℓp)C1 = Xp, (ℓ∞)Rt = rt
∞, cRt = rt

c, and (c0)Rt = rt
0 were introduced by Wang

[54], Ng and Lee [42], Malkowsky [40], and Altay and Başar [3], respectively. These sequence spaces can be
defined using the Nörlund, arithmetic, Riesz, and Euler means, respectively, for 1 ⩽ p ⩽ ∞.

Şengönül and Başar [50] conducted research on the sequence spaces c̃0 = (c0)C1 and c̃ = cC1 , where C1
stands for the matrix C1 = (crs) that is defined by

crs =

 1
r + 1

, 0 ⩽ s ⩽ r,
0, s > r,

for every r, s ∈N. We cite the following publications for relevant literature [2, 6, 10–12, 22, 23, 26, 27, 43, 44, 51]
as well as the books [5, 8, 41].
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1.2. Core Theorems
Any sequence f = ( fs) with complex entries has a Knopp Core (or K − core), which is defined as

the intersection of all Rs, which are the least convex closed regions of the complex plane containing
fs, fs+1, fs+2, . . . [15]. Additionally, it is understood from [45] that

K − core( f ) =
⋂
t∈C

M f (t)

for any bounded sequence f , whereM f (t) =
{
ε ∈ C : |ε − t| ⩽ lim sups | fs − t|

}
.

A subset N of the setN of all natural numbers has a natural density defined by

δ(N) = lim
r

1
r
|{s ⩽ r : s ∈N}|.

If δ({s : | fs − f0| ≥ ε}) = 0, in that case we say that f = ( fs) is statistically convergent and this situation is
denoted by S − lim f = f0 [47]. We refer to the space of all statistically convergent sequences as S.

The concept of the statistical core (S − core) of f = ( fs) is acquainted as

S − core( f ) =
⋂
t∈C

Ω f (t),

whereΩ f (t) = {ε ∈ C : |ε− t| ⩽ S− lim sups | fs− t|} and f is statistically bounded [24]. Researchers interested
in the aforementioned subject can benefit from the studies [1, 14, 16–18].

1.3. Schröder matrix and related sequence spaces
In recent years, special integer sequences such as the Fibonacci sequence, the Lucas sequence, and the

Pell sequence have become widely used in the study of sequence spaces. In this context, the first work done
is the study with a tag [31] made by Başar and Kara. After this work, some special integer sequences such
as Lucas, Padovan, Pell, Leanardo, Catalan, Bell and Schröder were used to define new sequence spaces in
summability theory. For relevant literature, we refer the papers [28, 29, 32–36, 52, 53, 56].

The large Schröder numbers Sr and the little Schröder numbers sr are two different types of Schröder
numbers in mathematics. They bear the name Ernst Schröder in honor of the German mathematician. For
0 ⩽ r ⩽ 10, the first eleven large Schröder numbers are

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718.

The large Schröder numbers Sr were shown to have the generating function

G(t) =
1 − t −

√

t2 − 6t + 1
2t

as demonstrated in [9, Theorem 8.5.7]. For 1 ⩽ r ⩽ 11, the first eleven little Schröder numbers sr are

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859.

The existence of the generating function

1(t) =
1 + t −

√

t2 − 6t + 1
4

for the little Schröder numbers sr was demonstrated in [9, Theorem 8.5.6].
In this article, we will look at large Schröder numbers. Let us move on to the large Schröder numbers.

These numbers satisfy the following recursive formula

Sr+1 = Sr +

r∑
s=0

SsSr−s, for r ≥ 0, (1)
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with the initial condition S0 = 1. The Schröder matrix S̃ = (S̃rs) [20] is defined by

S̃rs =

 SsSr−s

Sr+1 − Sr
, 0 ⩽ s ⩽ r,

0, s > r.

Recently, the domains c0(S̃), c(S̃), ℓp(S̃) and ℓ∞(S̃) of the matrix S̃ in the spaces c0, c, ℓp and ℓ∞, respectively
are studied by Dağlı [19, 20].

In the literature, Schröder numbers have a number of q-analogs. Let 0 < q < 1. In order to define the
Schröder number q-analogs, we use the formula[4]

Sr+1(q) = Sr(q) +
r∑

s=0

qr−s+1Ss(q)Sr−s(q) (2)

where S0(q) = 1. By setting q = 1, Schröder’s numbers are obtained. For more interesting studies in the
q-Schröder number, we strictly refer to [7, 9, 13, 39].

In this paper, we define new q-Schröder sequence spaces. We derive Schauder bases, calculate the alpha,
beta, and gamma duals of the new sequence spaces, build some matrices classes, and finally show some
topological properties. In addition, we give Schröder’s core of complexly valued sequences and define
various inclusion theorems for this new core type.

2. q-Schröder Sequence Spaces

In this section, we will talk about q-Schröder sequence spaces’ definition and characteristics. The
q-Schröder matrix S̃q = (S̃rs(q)) is defined by the following equation

S̃rs(q) =

 qr−s+1 Ss(q)Sr−s(q)
Sr+1(q) − Sr(q)

, 0 ⩽ s ⩽ r,

0, s > r.

It is clear that the q-Schröder matrix S̃q reduces to the Schröder matrix S̃, when q tends to 1−. The inverse
of S̃q is given by

S̃−1
rs (q) =

 (−1)r−s Sk+1(q) − Ss(q)
qr−s+1Sr(q)

Pr−s(q), 0 ⩽ s ⩽ r,

0, s > r,

where Pr(q) is a determinant given by

Pr(q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S1(q) 1 0 · · · 0
S2(q) S1(q) S0(q) · · · 0
S3(q) S2(q) S1(q) · · · 0
...

...
...

. . .
...

Sr(q) Sr−1(q) Sr−2(q) · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
subject to initial condition P0(q) = 1.
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Now, we give the definitions of the q-Schröder sequence spaces c0(S̃q), c(S̃q), ℓp(S̃q) and ℓ∞(S̃q):

c0(S̃q) =
{
x = (xs) ∈ ω : lim

r→∞

r∑
s=0

qr−s+1 Ss(q)Sr−s(q)
Sr+1(q) − Sr(q)

xs = 0
}

c(S̃q) =
{
x = (xs) ∈ ω : lim

r→∞

r∑
s=0

qr−s+1 Ss(q)Sr−s(q)
Sr+1(q) − Sr(q)

xs exists
}

ℓp(S̃q) =
{
x = (xs) ∈ ω :

∑
r

∣∣∣∣∣ r∑
s=0

qr−s+1 Ss(q)Sr−s(q)
Sr+1(q) − Sr(q)

xs

∣∣∣∣∣p < ∞}
ℓ∞(S̃q) =

{
x = (xs) ∈ ω : sup

r∈N

∣∣∣∣∣ r∑
s=0

qr−s+1 Ss(q)Sr−s(q)
Sr+1(q) − Sr(q)

xs

∣∣∣∣∣ < ∞}.
We note that when q → 1−, the spaces c0(S̃q), c(S̃q), ℓp(S̃q) and ℓ∞(S̃q) decrease to the Schröder sequence

spaces c0(S̃), c(S̃), ℓp(S̃) and ℓ∞(S̃), respectively, as investigated by Dağlı [19, 20]. The previously mentioned
sequence spaces can be redefined by

c0(S̃q) = (c0)S̃q
, c(S̃q) = (c)S̃q

(3)

ℓp(S̃q) = (ℓp)S̃q
and ℓ∞(S̃q) = (ℓ∞)S̃q

(4)

using the notation of matrix domain.
The S̃q-transform of a sequence x = (xr) is defined as y = (yr), where

yr = (S̃qx)r =

r∑
s=0

qr−s+1 Ss(q)Sr−s(q)
Sr+1(q) − Sr(q)

xs, (5)

for each r ∈ N0. The sequences x and y relate to the equation in (5) throughout the rest of the article.
Therefore,

xs =

s∑
i=0

(−1)s−i Si+1(q) − Si(q)
qs−i+1Ss(q)

Ps−i(q)yi, (6)

for each s ∈N0.

Theorem 2.1. The space ℓp(S̃q) is a BK-space with the norm

∥(S̃qx)r∥p = ∥x∥ℓp(S̃q) =

∑
r

∣∣∣∣(S̃qx)r

∣∣∣∣p1/p , (1 ⩽ p < ∞)

and the spaces ℓ∞(S̃q), c0(S̃q) and c(S̃q) are BK-spaces with the norm

∥(S̃qx)r∥ℓ∞ = ∥x∥ℓ∞(S̃q) = ∥x∥c0(S̃q) = ∥x∥c(S̃q) = sup
r∈N

∣∣∣∣(S̃qx)r

∣∣∣∣ .
Proof. The matrix S̃q is triangular. Then, according to Wilansky’s Theorem 4.3.12 of [55, p.63], the spaces
ℓp(S̃q) are BK-spaces with the given norms, where (1 ⩽ p ⩽ ∞).

Also, the spaces c0(S̃q) and c(S̃q) are BK-spaces with the given norms, according to Wilansky’s Theorem
4.3.2 of [55, p.61].

Theorem 2.2. The sequence spaces ℓp(S̃q) are isomorphic to the space ℓp, where (1 ⩽ p ⩽ ∞).
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Proof. For all x in ℓp(S̃q), define the mapping τ : ℓp(S̃q) → ℓp by τx = y = S̃qx. It is obvious that τ is linear
and one to one. Assume that x = (xs) is defined as in (6) for any sequence y = (yn) in ℓp. Then we have

∥x∥ℓp(S̃q) =

∑
r

∣∣∣∣(S̃qx)r

∣∣∣∣p1/p

=

∑
r

∣∣∣∣∣∣∣
r∑

s=0

qr−s+1 Ss(q)Sr−s(q)
Sr+1(q) − Sr(q)

xs

∣∣∣∣∣∣∣
p

1/p

=

∑
r

∣∣∣yr

∣∣∣p1/p = ∥y∥p < ∞,
and

∥x∥ℓ∞(S̃q) = sup
r∈N

∣∣∣∣(S̃qx)r

∣∣∣∣ = ∥y∥∞ < ∞.
Consequently, we understand that x is a sequence in ℓp(S̃q) and the mapping τ is onto, and norm preserv-
ing.

Theorem 2.3. The sequence spaces c0(S̃q) and c(S̃q) are isomorphic to the spaces c0 and c, respectively.

Proof. Similar to Theorem 2.2, this theorem may be shown.

Theorem 2.4. Define the sequence b(s) = {b(s)
}s∈N of the elements of the space ℓp(S̃q) by

b(s)
n =

 (−1)r−s Ss+1(q) − Ss(q)
qr−s+1Sr(q)

Pr−s(q) , 0 ⩽ s ⩽ r

0 , s > r

for every fixed s ∈N and 1 ⩽ p < ∞. The following claims are accurate:

(a) The sequence {b(s)
}s∈N0 is a basis for the spaces c0(S̃q) and ℓp(S̃q), and any x ∈ c0(S̃q) and x ∈ ℓp(S̃q) has a unique

representation of the form

x =
∑

s

ysb(s).

(b) The sequence {e, b(s)
}s∈N is a basis for the space c(S̃q), and any x ∈ c(S̃q) has a unique representation of the form

x = le +
∑

s

[ys − l]b(s),

where ys = (S̃q(x))s → l, as s→∞.

(c) The space ℓ∞(S̃q) does not have a basis.
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3. Dual Spaces

In this section, we will determine the alpha, beta and gamma duals of the new sequence spaces. From
now on, we will denote the collection of all finite subsets ofN byN and we assume that p∗ is the conjugate
of p, i.e., p−1 + p∗−1 = 1. Firstly, we give the lemmas used in the proofs in this section.

Lemma 3.1. [49] The following claims are accurate:

(i) A = (ars) ∈ (c0 : ℓ1) = (c : ℓ1) = (ℓ∞ : ℓ1) iff

sup
K∈N

∞∑
r=0

∣∣∣∣∣∣∣∑s∈K

ars

∣∣∣∣∣∣∣ < ∞. (7)

(ii) A = (ars) ∈ (c0 : c) = (c : c) iff

∃αs ∈ C ∋ lim
r→∞

ars = αs for each s ∈N0, (8)

sup
r∈N

∞∑
s=0

|ars| < ∞. (9)

(iii) A = (ars) ∈ (ℓ∞ : c) iff (8) holds, and

lim
r→∞

∞∑
s=0

|ars| =

∞∑
s=0

| lim
r→∞

ars|. (10)

(iv) A = (ars) ∈ (c0 : ℓ∞) = (c : ℓ∞) = (ℓ∞ : ℓ∞) iff (9) holds.

Lemma 3.2. (i) [49] Let 1 < p < ∞. Then, A = (ars) ∈ (ℓp : ℓ∞) iff

sup
r∈N

∞∑
s=0

|ars|
p∗ < ∞. (11)

(ii) [49] Let 1 < p < ∞. Then, A = (ars) ∈ (ℓp : c) iff (8) and (11) hold.

(iii) [25] A = (ars) ∈ (ℓp : ℓ1) iff

sup
N∈N

sup
s∈N

∣∣∣∣∣∑
r∈N

ars

∣∣∣∣∣p < ∞, (0 < p ≤ 1), (12)

sup
N∈N

∞∑
s=0

∣∣∣∣∣∑
r∈N

ars

∣∣∣∣∣p∗ < ∞, (1 < p < ∞). (13)

(iv) [38]Let 0 < p ≤ 1. A = (ars) ∈ (ℓp : ℓ∞) iff

sup
r,s∈N

∣∣∣∣∣ars

∣∣∣∣∣p < ∞. (14)

(v) [38] Let 0 < p ≤ 1. Then, A = (ars) ∈ (ℓp : c) iff (8) and (14) hold.
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Theorem 3.3. Define the matrix T = (trs) by

trs =

 (−1)r−s Ss+1(q) − Ss(q)
qr−s+1Sr(q)

Pr−s(q)tr , (0 ⩽ s ⩽ r)

0 , (s > r)

for all s, r ∈N. Then,
{
c0(S̃q)

}α
=
{
c(S̃q)

}α
=
{
ℓ∞(S̃q)

}α
= c1, where c1 defined by

c1 =

t = (ts) ∈ w : sup
K∈N

∞∑
r=0

∣∣∣∣∣∣∣∑s∈K

trs

∣∣∣∣∣∣∣ < ∞.
 .

Proof. We give the proof only for the sequence c0(S̃q). Let t = (tr) ∈ ω. Thus,

trxr =

r∑
s=0

(−1)r−s Ss+1(q) − Ss(q)
qr−s+1Sr(q)

Pr−s(q)trys = (Tx)r, (r ∈N). (15)

It follows from (15), tx = (trxr) ∈ ℓ1 for x ∈ c0(S̃q) iff Ty ∈
{
c0(S̃q)

}
for y ∈ c0. Hence, by Lemma 3.1 from (7),

it is concluded that
{
c0(S̃q)

}α
= c1.

Theorem 3.4. Let the sets c2 and c3 be as follows:

c2 =

t = (ts) ∈ ω : sup
N∈N

sup
s∈N

∣∣∣∣∣∑
r∈N

trs

∣∣∣∣∣p < ∞
 ,

c3 =

t = (ts) ∈ ω : sup
N∈N

∞∑
s=0

∣∣∣∣∣∑
r∈N

trs

∣∣∣∣∣p∗ < ∞
 .

Then,
{
ℓp(S̃q)

}α
=

{
c2, 0 < p ≤ 1
c3, 1 < p < ∞.

Proof. This is accomplished by using the same procedure as in the proof of Theorem 3.3, but substituting
the conditions (12) and (13) of Part (iii) of Lemma 3.2 for (7) of Part (i) of Lemma 3.1 with trs rather than
ars.

Theorem 3.5. Consider the definition of D = (drj) using the sequence a = (a j) by

drs =


r∑

i=s

(−1)s−i Si+1(q) − Si(q)
qs−i+1Ss(q)

Ps−i(q)ai , (0 ⩽ s ⩽ r),

0 , (s > r).
(16)

and define the folloing sets

b1 =

a = (as) ∈ ω : sup
r∈N

∞∑
s=0

|drs| < ∞

 ,
b2 =

{
a = (as) ∈ ω : lim

r→∞
drs = αs

}
,

b3 =

a = (as) ∈ ω : lim
r→∞

∞∑
s=0

|drs| =

∞∑
s=0

∣∣∣∣lim
r→∞

drs

∣∣∣∣ ,
b4 =

a = (as) ∈ ω : lim
r→∞

sup
s∈N

∞∑
s=0

|drs| < ∞

 ,
b5 =

{
a = (as) ∈ ω : sup

r,s∈N
|drs|

p < ∞

}
.
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Then,

(i)
{
c0(S̃q)

}β
= b1 ∩ b2 and

{
c0(S̃q)

}γ
= b1,

(ii)
{
c(S̃q)

}β
= b1 ∩ b2 and

{
c(S̃q)

}γ
= b1,

(iii)
{
ℓ∞(S̃q)

}β
= b2 ∩ b3 and

{
ℓ∞(S̃q)

}γ
= b1,

(iv)
{
ℓp(S̃q)

}β
=

{
b2 ∩ b4, 0 ⩽ p < 1,
b2 ∩ b5, 1 ⩽ p < ∞,

and
{
ℓp(S̃q)

}γ
=

{
b4, 0 ⩽ p < 1,
b5, 1 ⩽ p < ∞.

Proof. We give the proof only for the β−dual of the sequence ℓp(S̃q). Consider the equation

r∑
s=0

asxs =

r∑
s=0

 s∑
i=0

(−1)s−i Si+1(q) − Si(q)
qs−i+1Ss(q)

Ps−i(q)yi

 as

=

r∑
s=0

 r∑
i=s

(−1)s−i Si+1(q) − Si(q)
qs−i+1Ss(q)

Ps−i(q)ai

 ys = (Dy)r

for any r ∈ N0. This equation states that if x is an element of ℓp(S̃q), then ax is an element of cs iff Dy is an
element of c for x in ℓp. This means that D is an element of (ℓp : c). As a consequence, by Lemma 3.2 from
(8) and (11), it is deduced that {

ℓp(S̃q)
}β
=

{
b2 ∩ b4, 0 ⩽ p < 1,
b2 ∩ b5, 1 ⩽ p < ∞.

4. Matrix transformations

In this section, let λ ∈ {c0(S̃q), c(S̃q), ℓp(S̃q), ℓ∞(S̃q)} and µ ∈ {c0, c, ℓ∞, ℓ1}. We provide necessary and
sufficient conditions for matrix mappings from the spaces λ to any one of the spaces µ and from the spaces
µ to the space λ.

Theorem 4.1. Define, for all s, r ∈N0,Z(r) = (z(r)
ms) andZ = (zrs) by

z(r)
ms =


m∑

i=s

(−1)s−i Si+1(q) − Si(q)
qs−i+1Ss(q)

Ps−i(q)ari, 0 ⩽ s ⩽ m,

0, s > m,

and

zrs =

∞∑
i=s

(−1)s−i Si+1(q) − Si(q)
qs−i+1Ss(q)

Ps−i(q)ari.

In this caseA = (ars) ∈ (ℓp(S̃q) : µ) iffZ(r)
∈ (ℓp : c) for all r ∈N0 andZ ∈ (ℓp : µ).

Proof. LetA ∈ (ℓp(S̃q) : µ) and x = (xs) ∈ ℓp(S̃q). Next, we obtain the equality shown below

m∑
s=0

arsxs =

m∑
s=0

 m∑
i=s

(−1)s−i Si+1(q) − Si(q)
qs−i+1Ss(q)

Ps−i(q)ari

 ys. (17)
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SinceAx exists, therefore Z(r)
∈ (ℓp, c). Also, we getAx = Zy by using m→ ∞ again as in (17). Given that

Ax ∈ µ,Zy ∈ µ follows, with the result thatZ ∈ (ℓp, µ).
On the other hand, suppose that Z(r)

∈ (ℓp, c) for all r ∈ N and that Z ∈ (ℓp, µ). Let x = (xs) ∈ ℓp(S̃q).
Consequently, for each r ∈ N, {zrs}

∞

s=0 ∈ ℓ
β
p , which means that {ars}

∞

s=0 ∈ (ℓp(S̃q)β for each r ∈ N. Again from

(17),Ax = Zy by as m→∞. This suggests thatA ∈ (ℓp(S̃q) : µ).

Theorem 4.2. LetA = (ars) be an infinite matrix and define the matrix B = (brs) by

brs =

r∑
i=0

qr−i+1 Si(q)Sr−i(q)
Sr+1(q) − Sr(q)

ais (18)

for all s, r ∈N and µ be a sequence space. Then, A ∈ (µ : ℓp(S̃q)) iff B ∈ (µ : ℓp).

Proof. Let z = (zs) ∈ µ. Then, we have

∞∑
s=0

brszs =

∞∑
s=0

 r∑
i=0

qr−i+1 Si(q)Sr−i(q)
Sr+1(q) − Sr(q)

ais

 zs

=

r∑
i=0

qr−i+1 Si(q)Sr−i(q)
Sr+1(q) − Sr(q)

 ∞∑
s=0

aiszs

 .
This yields (Bz)r =

(
S̃q(Az)

)
r

for all r ∈N. Hence,Az ∈ ℓp(S̃q) iff Bz ∈ ℓp.

Now, combining Theorem 4.1 and the matrix mapping characterization findings presented in Stieglitz and
Tietz [49], we arrive at the following conclusions.

Corollary 4.3. The following claims are accurate:

(i) A ∈ (ℓp(S̃q) : c0) iff

sup
m∈N0

∞∑
s=0

∣∣∣z(r)
ms

∣∣∣p∗ < ∞, (19)

lim
m→∞

z(r)
ms exists for all s ∈N0 (20)

hold, and

lim
r→∞

zrs = 0 for all s ∈N0

also holds.

(ii) A ∈ (ℓp(S̃q) : c) iff (19) and (20) hold, and

sup
r∈N0

∞∑
s=0

|zrs|
p∗ < ∞, (21)

lim
r→∞

zrs exists for all s ∈N0

also hold.

(iii) A ∈ (ℓp(S̃q) : ℓ∞) iff (19), (20) and (21) hold.
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(iv) A ∈ (ℓp(S̃q) : ℓ1) iff (19) and (20) hold, and

sup
N

∞∑
s=0

∣∣∣∣∣∣∣∑r∈N

zrs

∣∣∣∣∣∣∣
p∗

< ∞

Then, combining Theorem 4.2 and the matrix mapping characterization findings presented in Stieglitz and
Tietz [49], we arrive at the following conclusions:

Corollary 4.4. The following claims are accurate:

(i) A ∈ (c0 : ℓp(S̃q)) = (c : ℓp(S̃q)) = (ℓ∞ : ℓp(S̃q)) iff

sup
K

∞∑
r=0

∣∣∣∣∣∣∣∑s∈K

brs

∣∣∣∣∣∣∣
p

< ∞

hold.

(ii) A ∈ (ℓ1 : ℓp(S̃q)) iff

sup
s

∞∑
r=0

|brs|
p < ∞

holds.

5. Schröder Core

Knopp was the first one to develop the idea of the core of a sequence [15, p. 137]. So, this initial form of
core was known as theK − core or Knopp core.
M = (mrs) ∈ (c : c)re1 is a non-negative matrix. In this part, the Schröder core (or S̃− core) will be defined,

and the matrix satisfying S̃ − core(M f ) ⊆ K − core( f ) and S̃ − core(M f ) ⊆ S − core( f ) for any bounded
sequences f will be described.

Definition 5.1. [15] The S̃−core of f is the intersection of allHs, whereHs be the least closed convex hull containing
S̃s( f ), S̃s+1( f ), . . .. This can be expressed as

S̃ − core( f ) =
∞⋂

s=1

Hs.

It should be noted that we define S̃ − core of the function f byK − core of the sequence (Sr( f )).
The following theorem, which is an analogue ofK − core, may be created as a result [45]:

Theorem 5.2. Take into account

G f (t) =
{
ε ∈ C : |ε − t| ⩽ lim sup

s
|S̃s( f ) − t|

}
,

for any t ∈ C. Then, for any f ∈ ℓ∞,
S̃ − core( f ) =

⋂
t∈C

G f (t).
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Here are several lemmas that will help the key findings of this section. Consequently, we must describe
the classes (c : c(S̃))re1 and (S ∩ ℓ∞ : c(S̃))re1. Now, let us take a matrixM′ = (m′rs) in terms ofM = (mrs) as

m′rs =

r∑
s=0

SsSr−s

Sr+1 − Sr
mrs for all r, s ∈N.

Lemma 5.3. M ∈ (ℓ∞ : c(S̃)) iff

∥M
′
∥ = sup

r

∑
s

|m′rs| < ∞, (22)

lim
r

m′rs = αs for each s, (23)

lim
r

∑
s

|m′rs − αs| = 0. (24)

Lemma 5.4. M ∈ (c : c(S̃))re1 iff the conditions (22) and (23) of the Lemma 5.3 hold with αs = 0 for all s ∈N and

lim
r

∑
s

|m′rs| = 1. (25)

Lemma 5.5. M ∈ (S ∩ ℓ∞ : c(S̃))re1 iffM ∈ (c : c(S̃))re1 and

lim
r

∑
s∈B

|m′rs| = 0 (26)

for every B ⊂N with δ(B) = 0.

Proof. Because of the fact that c ⊂ S ∩ ℓ∞,M ∈ (c : c(S̃))re1 holds. Now, for any f ∈ ℓ∞ and a set B ⊂N with
δ(B) = 0, let us define the sequence f ′ = ( f ′s ) by

f ′s =
{

fs, s ∈ B
0, s < B.

Then, since f ′ ∈ S0,M f ′ ∈ c0(S̃) and ∑
s

m′rsts =
∑
s∈B

m′rs fs,

the matrix D = (drs) defined by

drs =

{
m′rs, s ∈ B
0, s < B

is in the class (ℓ∞ : c(S̃)). The need of (26) therefore derives from Lemma 5.3.
Let the opposite be true, f ∈ S∩ℓ∞withS−lim f = l. The set B formed by the equation B = {s : | fs−l| ≥ ε}

has density zero and | fs − l| ⩽ ε if s is not in the set B. We can now write∑
s

m′rs fs =
∑

s

m′rs( fs − l) + l
∑

s

m′rs. (27)

Since ∣∣∣∣∣∣∣∑s

m′rs( fs − l)

∣∣∣∣∣∣∣ ⩽ ∥ f ∥
∑
s∈M

|m′rs| + ε · ∥M
′
∥,

letting r→∞ in (27) and using (25) with (26), we have

lim
r

∑
s

m′rs fs = l.

This implies thatM ∈ (S ∩ ℓ∞ : c(S̃))re1.
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Lemma 5.6. [[46], Corollary 12] LetM = (mrs) be a matrix satisfying
∑

s |mrs| < ∞ and limr mrs = 0. Then, there
exists an f ∈ ℓ∞ with ∥ f ∥ ⩽ 1 such that

lim sup
r

∑
s

mrs fs = lim sup
r

∑
s

|mrs|.

Theorem 5.7. LetM ∈ (c : c(S̃))re1. Then, S̃ − core(M f ) ⊆ K − core( f ) for all f ∈ ℓ∞ iff

lim
r

∑
s

|m′rs| = 1. (28)

Proof. The matrixM = (m′rs) satisfies the conditions of Lemma 5.6. So, there exists an f ∈ ℓ∞ with ∥ f ∥ ⩽ 1
such that ε ∈ C : |ε| ≤ lim sup

r

∑
s

m′rs fs

 =
ε ∈ C : |ε| ⩽ lim sup

r

∑
s

|m′rs|

 .
On the other hand, sinceK − core( f ) ⊆ M1(0), by the hypothesisε ∈ C : |ε| ≤ lim sup

r

∑
s

|m′rs|

 ⊆ M1(0) = {ε ∈ C : |ε| ⩽ 1}

which implies (28).

Conversely, let ε ∈ S̃ − core(M f ). Then, for any given t ∈ C, we can write

|ε − t| ≤ lim sup
r
| fr(M f ) − t| (29)

= lim sup
r

∣∣∣∣∣∣∣t −∑s

m′rs fs

∣∣∣∣∣∣∣
≤ lim sup

r

∣∣∣∣∣∣∣∑s

m′rs(t − fs)

∣∣∣∣∣∣∣ + lim sup
r
|t|

∣∣∣∣∣∣∣1 −∑s

m′rs

∣∣∣∣∣∣∣
= lim sup

r

∣∣∣∣∣∣∣∑s

m′rs(t − fs)

∣∣∣∣∣∣∣ .
Now, let lim sups | fs − t| = l. Then, for any ε > 0, | fs − t| ⩽ l + εwhenever s ≥ s0. Hence, one can write that∣∣∣∣∣∑

s

m′rs(t − fs)
∣∣∣∣∣ =

∣∣∣∣∣∣∣∑s<s0

m′rs(t − fs) +
∑
s≥s0

m′rs(t − fs)

∣∣∣∣∣∣∣ (30)

≤ sup
s
|t − fs|

∑
s<s0

|m′rs| + (l + ε)
∑
s≥s0

|m′rs|

≤ sup
s
|t − fs|

∑
s<s0

|m′rs| + (l + ε)
∑

s

|m′rs|.

As a result, by using lim supr in accordance with the hypothesis and adding (29) to (30), we get

|ε − t| ⩽ lim sup
r

∣∣∣∣∣∣∣∑s

m′rs(t − fs)

∣∣∣∣∣∣∣ ⩽ l + ε,

which denotes that ε ∈ K − core( f ).

Theorem 5.8. LetM ∈ (S∩ ℓ∞ : c(S̃))re1. Then, S̃− core(M f ) ⊆ S− core( f ) for all f ∈ ℓ∞ if and only if (28) holds.
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Proof. Given that for each sequence f , S − core( f ) ⊆ K − core( f ), the conclusion that the condition (28) is
necessary derives from Theorem 5.7.

On the other hand, consider ε ∈ S̃ − core(M f ). Then, we may write (29) once more. Now, if S −
lim sup | fs − t| = s, then the set B defined by B = {s : | fs − t| > s + ε} hasM-density zero [21]. We can now
write ∣∣∣∣∣∑

s

m′rs(t − fs)
∣∣∣∣∣ =

∣∣∣∣∣∣∣∑s∈Mm′rs(t − fs) +
∑
s<M

m′rs(t − fs)

∣∣∣∣∣∣∣
≤ sup

s
|t − fs|

∑
s∈M

|m′rs| + (s + ε)
∑
s<M

|m′rs|

≤ sup
s
|t − fs|

∑
s∈M

|m′rs| + (s + ε)
∑

s

|m′rs|.

As a result, by utilizing the operator lim supr and the condition (28) with (27), we may deduce that

lim sup
r

∣∣∣∣∣∣∣∑s

m′rs(t − fs)

∣∣∣∣∣∣∣ ≤ s + ε. (31)

Finally, combining (29) with (31), we have

|ε − t| ⩽ S − lim sup
s
| fs − t|

which means that ε ∈ S − core( f ).
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[35] M. Karakaş, M. C.Dağlı, Some topological and geometrical properties of new Catalan sequence spaces, Advances in Operator

Theory, (2023)8:14
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[39] J. C. Liu, Some congruences for Schröder type polynomials, Colloq. Math., 146 (2017), 187-195.
[40] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(1997), 187-196.
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[44] M. A. Sarıgöl, Spaces of series summable by absolute Cesàro and matrix operators, Commun. Math. Appl., 7(1) (2016), 11-22.
[45] A. A. Shcherbakov, Kernels of sequences of complex numbers and their regular transformations, Math. Notes 22(1977), 948-953.
[46] S. Simons, Banach limits, infinite matrices and sublinear functionals, J. Math. Anal. Appl., 26 (1969), 640–655.
[47] H. Steinhaus, Quality control by sampling, Collog. Math. 2(1951), 98-108.
[48] H. M. Srivastava, Operators of basic q-calculus and fractional q-calculus and their applications in geometric function theory of

complex analysis, Iran J. Sci. Technol. Sci., 44 (2020), 327-344.
[49] M.Stieglitz, H.Tietz, Matrix transformationen von folgenräumen eine ergebnisübersicht, Math. Z. 154 (1977), 1-16.
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