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Abstract. Soft sets and statistical convergence are both mathematical tools with which some generalizations
can be made. In this study, we defined the weighted statistical convergence of soft point sequences in
soft topological spaces and examined it from some aspects. Furthermore, statistical convergence was
attained using 1-density, a more versatile density function than asymptotic density. Regarding weighted
soft statistical convergence concept, we also establish some relationships between soft topology and the
classical topology induced by it within the framework of the statistical convergence concept and some
clusters associated with statistical convergence were defined.

1. Introduction

There are two important concepts that will form the basis of this study. These are soft topology and
statistical convergence. Both of these concepts are mathematical tools defined to make some generalizations.
In order to overcome various types of uncertainties seen in various fields, Molodtsov [24] defined soft sets
and also established the fundamental results of the new theory, which can be seen as a new mathematical
tool. As a generalization of the classic convergence of real sequences, statistical convergence was first
introduced independently by Steinhaus [34] and Fast [15].

Uncertain data are involved in a lot of real-world issues in disciplines like economics, engineering,
environmental science, medicine, and social sciences. Because these problems contain a variety of uncer-
tainties, we are unable to solve them using traditional methods. Although there are many theories in the
literature that address uncertainties, each has its own drawbacks. The notion of soft sets was developed to
represent ambiguity and uncertainty. Since its definition, soft set theory has also been studied in a variety
of contexts. Maji et al. [22] defined and examined a number of the fundamental concepts of soft set theory.
Soft groups were defined and their fundamental characteristics were deduced by Aktaş and Çağman [1].
Soft topological spaces and their fundamental characteristics were characterized by Shabir and Naz [32] and
Çağman et al. [9] and that paper also defines some soft separation axioms. The convergence of sequence in
soft topological spaces was examined by Varol and Aygün [35]. The neighborhood characteristics of a soft
element were examined by Nazmul and Samanta [28].
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Likewise, convergence plays a crucial role in various fields such as physics, economics, and engineer-
ing, particularly in analyzing trends and predicting future behaviors. Many convergence concepts have
emerged after the concept of topologically convergence in classical analysis. One of the most intensively
studied types of convergence, which is a generalization of topological convergence, is statistical conver-
gence. This concept has been examined for many mathematical structures and by making generalizations.
Hence it has wide applications in many fields such as summability theory, number theory, measure the-
ory, trigonometric series. Among the dense literature, foundational works on statistical convergence are
considered Schoenberg [33], Maddox [23], Connor [12], Fridy [16, 17] and Šalát [31].

Firstly, while the convergence of soft point sequences according to soft topology is given by Demir and
Ozbakır [14] and Di Maio and Kočinac [21] extended the topological convergence to statistical convergence
in topological spaces as usual convergence is extended to statistical convergence with the help of natural
density. In the following years, many studies were carried out on soft sets and statistical convergence.
However, although the concepts of both soft topology and statistical convergence have been shown to be
useful in a wide variety of fields, to the best of our knowledge, no study has yet been conducted on statistical
convergence in soft topological spaces. For this reason, the aim of this paper is to introduce the concept of
statistical convergence of the sequences of soft points in soft topological spaces in order to partially fill this
gap in the literature and to provide direction for future studies.

The paper is organized into three sections. In the second part, which is divided into two subsections,
an overview of soft topology and statistical convergence is given, respectively. In the third section, which
is given in three parts, firstly, the statistical convergence of soft point sequences is defined and some of its
properties are examined. In the second part, the relations between soft topology and reduced topology are
discussed in terms of statistical convergence. In the last part, some point sets related to weighted statistical
convergence are given.

2. Preliminaries

As a preliminary, for the convenience of the reader, we first provide some definitions and well-known
results in soft set theory and statistical convergence, including properties and set-theoretic operations.

2.1. Soft topology
In the rest of this study, we use the capital letters X, E, and P (X) to denote the universe, the set of

parameters and power set of X, respectively.

Definition 2.1. ([24]) A pair of (F,A) is called a soft set over X where F is a mapping given by F : A ⊆ E→
P (X).

In other words, the soft set is a parametrized family of subsets of the set X. The set of all soft sets over
X is denoted by SS (X,E). For e ∈ E, every set F (e) may be considered the set of e-approximate elements of
the soft set (F,E). Considering F (e) = ∅ for every e ∈ E \ A, (F,E) can be written instead of (F,A).

According to the definition given by [24], some fundamental operations in soft set theory used in this
study are defined below.

Definition 2.2. ([22]) Let (F,E),(G,E) ∈ SS (X,E).

(1) If for every e ∈ E, F (e) = ∅, then (F,E) is said to be a null soft set, denoted by ∅s (see [22]).

(2) If for every e ∈ E, F (e) = X, then (F,E) is said to be an absolute soft set, denoted by Xs (see [22]).

(3) (F,E) is a soft subset of (G,E) (denoted by (F,E) ⊂ (G,E)) if F (e) ⊂ G (e) for e ∈ E. Hence, (F,E) is equal
to (G,E) (denoted by (F,E) = (G,E)) if F (e) = G (e) for e ∈ E (see [29]).

(4) The soft complement of (F,E) is the soft set (F,E)c = (Fc,E), where Fc : E→ P (X) , Fc (e) = X \ F (e) for
every e ∈ E (see [32]).
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(5) The union (F,E) ∪ (G,E) is a soft set (H,E) ∈ SS (X,E) such that H : E → P (X) , H (e) = F (e) ∪ G (e) for
every e ∈ E (see [22]).

(6) The intersection (F,E) ∩ (G,E) is a soft set (I,E) ∈ SS (X,E) such that I : E → P (X) , I (e) = F (e) ∩ G (e)
for every e ∈ E (see [22]).

While the concept of topology is defined for the same parameter set in [32], it is defined using different
parameter sets in [9].

Definition 2.3. ([32]) For the parameter set E, τs ⊆ SS (X,E) is said to be soft topology on Xs and the triple
(Xs, τs,E) is called soft topological space provided that the following assertions hold:

(1) ∅s, Xs ∈ τs.

(2) τs is closed under the union of any collection of soft sets in τs.

(3) τs is closed under the intersection of a finite number of soft sets in τs.

The members of τs are called soft open sets, and a soft set (F,E) ∈ SS (X,E) is called a soft closed set
if (F,E)c

∈ τs. Unless otherwise stated, since E will always be taken as the parameter set, we will use the
notation (X, τ) instead of (Xs, τs,E) for the sake of brevity.

Definition 2.4. ([9, 32])
Let (X, τ) be a soft topological space.

(1) A subcollectionB of τ is called a soft base for τ if every member of τ can be expressed as the union of
some members of B.

(2) The soft closure of (F,E) ∈ SS (X,E) is the soft set (F,E) =
⋂{

(G,E) : (F,E) ⊆ (G,E) and (G,E)c
∈ τ
}
.

Then, (F,E) is the smallest soft closed set over X which contains (F,E) and (F,E) is closed if and only if
(F,E) = (F,E).

(3) For Px
e ∈ SP (X), Px

e ∈ (F,E) if and only if (F,E) ∩ (U,E) , ∅s for every (U,E) ∈ Nτ
(
Px

e
)
.

In the literature, the concept of soft points was given in [5], [36], [28], and [13]. However, there are
differences between these definitions. In this study, the soft set definition will be as follows.

Definition 2.5. ([13, 28]) A soft set (F,E) over X is said to be a soft point, if there is e ∈ E such that F (e) = {x}
for some x ∈ X and F (e′) = ∅ for all e′ ∈ E \ {e}. The soft point defined in this way is denoted by Px

e .
Throughout this study, SP (X,E) denotes the set of all soft points over X.

Definition 2.6. ([13, 28]) Let (F,E) , (G,E) , (H,E) ∈ SS (X,E) and Px
e ∈ SP (X,E).

(1) Px1
e1

, Px2
e2
∈ SP (X,E) are said to be equal if e1 = e2 and x1 = x2. Thus, these points are said to be not

equal if e1 , e2 or x1 , x2.

(2) The soft point Px
e is said to belong to the soft set (F,E), denoted by Px

e ∈ (F,E), if x ∈ F (e). Then,
Px

e < (F,E) if and only if x < F (e).

(3) (F,E) is called soft neighborhood of the soft point Px
e if there exists a soft open set (G,E) such that

Px
e ∈ (G,E) ⊆ (F,E). The set of all soft neighborhoods of Px

e is denoted byNτ
(
Px

e
)
.

Proposition 2.7. ([13, 28]) Let (F,E) , (G,E) ∈ SS (X,E) and Px
e ∈ SP (X,E). Then we have:

(1) Px
e ∈ (F,E) ⇐⇒ Px

e < (F,E)c.

(2) Px
e ∈ [(F,E) ∪ (G,E)] ⇐⇒ Px

e ∈ (F,E) or Px
e ∈ (G,E).
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(3) Px
e ∈ [(F,E) ∩ (G,E)] ⇐⇒ Px

e ∈ (F,E) and Px
e ∈ (G,E).

(4) (F,E) ⊆ (G,E) ⇐⇒ Px
e ∈ (F,E) implies Px

e ∈ (G,E).

Definition 2.8. ([14]) A soft topological space (X, τ) is called soft Hausdorff space if for every distinct two
soft points Px1

e1
,Px2

e2
∈ SP (X,E) there exist soft open sets (F,E) and (G,E) such that Px1

e1
∈ (F,E) , Px2

e2
∈ (G,E)

and (F,E) ∩ (G,E) = ∅s.

Definition 2.9. ([7, 30]) Let (X, τ) be a soft topological space and Px
e ∈ SP (X,E).

(1) The subfamily Bτ
(
Px

e
)

of Nτ
(
Px

e
)

is called a soft neighborhoods base of Px
e if, for each (F,E) ∈ Nτ

(
Px

e
)
,

there exists (U,E) ∈ Bτ
(
Px

e
)

such that Px
e ∈ (U,E) ⊆ (F,E).

(2) (X, τ) is called a soft first-countable space if there exists a countable soft neighborhood base for each
soft point Px

e .

Proposition 2.10. ([7]) Let (X, τ) be a soft topological space and Px
e ∈ SP (X,E). If (X, τ) is soft first countable space

then there exists a countable soft neighborhood base Bτ
(
Px

e
)
= {(Un,E) : n ∈N} such that (Un+1,E) ⊂ (Un,E) for

each n ∈N.

2.2. Density and statistical convergence

The statistical convergence depends on density of subsets ofN. The natural density of K ⊂N, which is
the main tool for this convergence is defined by

δ (K) = lim
n→∞

1
n
|{k ≤ n : k ∈ K}|

where |{k ≤ n : k ∈ K}| denotes the number of elements of K that do not exceed n (see [16]).

Remark 2.11. A sequence x=(xk) of complex numbers is said to be statistically convergent to some number
L if δ ({k ≤ n : |xk − L| ≥ ε}) = 0 for every positive number ε (see [15]). In the event that a sequence is
statistically convergent, an infinite number of its terms may continue to exist outside the statistical limit for
each ε > 0, as long as the set made up of these indices of terms has zero natural density. This is the essential
feature that distinguishes statistical convergence from topological convergence. All topological convergent
sequences are statistically convergent because a finite set has zero natural density.

Di Maio and Kočinac [21] extended the topological convergence to statistical convergence in topological
spaces, just as usual convergence is extended to statistical convergence with the help of natural density.

Definition 2.12. ([21]) A sequence (xn)n∈N in a topological space X is said to converge statistically (or shortly,
s-converge) to x ∈ X, if for every neighborhood U of x, δ({n ∈ N : xn < U}) = 0.

Different generalizations of natural density have been defined in the literature, such as α-density,
weighted density, f -density, where f is an unlimited modular function. Thus, some generalizations of
statistical convergence have been obtained with these density definitions. For example, further studies on
statistical convergence in the context of these different density functions can be found in [8, 25–27], [2, 3, 19].

A modified notion of natural density, given by Balcerzak et al. [6], is defined by considering a weight
function. The function 1 : N → [0,∞) is said to be a weight function whenever it satisfies the following
properties:

lim
n→∞
1(n) = ∞ and lim

n→∞

n
1(n)

, 0.

Henceforth, the set of all weight functions that satisfy properties given above is denoted by G.
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Definition 2.13. ([6]) The density of a set A ⊆N+ with respect to a weight function 1 ∈ G is defined by the
following limit

δ1(A) := lim
n→∞

1
1(n)

|{k ∈ A : k ≤ n}|

whenever it exists. This type of density is abbreviated as 1-weight density.

Clearly, the 1-weight density coincides with the natural density when 1 (n) = n. Similarly, if we consider
the weight function 1 as 1 (n) = nα for α ∈ [0, 1] then the 1-weight density reduces to the α-density which
is defined in [11]. In [4], weighted statistical rough convergence in normed spaces was introduced and
investigated from different perspectives by using the 1-weight density.

Therefore, it is evident that 1-weight density is a generalized form of the natural density and satisfies
similar properties.For sets A,B ⊂ N, the following properties hold: δ1(A) = 0 whenever A is a finite set,
δ1(N \ A) = δ1(N) − δ1(A), and A ⊆ B implies δ1(A) ≤ δ1(B).

Using 1-density, the following definition generalize the concept of statistical convergence in topological
spaces, as presented by Di Maio and Kočinac [21].

Definition 2.14. A sequence (xn) in a topological space X is said to weighted statistically 1-convergent (or
shortly, 1s-converge) to x ∈ X, if for every neighborhood U of x, δ1({n ∈ N : xn < U}) = 0.

The convergence of soft point sequences according to soft topology was given in [14] as follows:

Definition 2.15. ([14]) Let (X, τ) be a soft topological space and
(
Pxn

en

)
⊂ SP (X,E). The sequence

(
Pxn

en

)
convergent to Px

e ∈ SP (X,E) (denoted by Pxn
en

τ
→ Px

e ) if for every (F,A) ∈ Nτ
(
Px

e
)

there exist an n0 ∈ N such
that Pxn

en
∈ (F,A) for all n ≥ n0.

Remark 2.16. Accordingly, many results in [21] and [14] can be reproduced using 1-density. However our
goal is the statistical soft convergence of the sequence of soft points via 1-density.

3. Main results

The results obtained in this section will be presented in three parts.

3.1. Properties of weighted 1-statistical soft convergence

In this section, we introduce the concept of weighted 1-statistical convergence of sequence of soft points
in soft topological spaces. Our primary goal is to investigate the fundamental properties of this type of
convergence.

Definition 3.1. Let (X, τ) be a soft topological space. The sequence
(
Pxn

en

)
⊂ SP (X,E) is said to be weighted

1-statistical soft convergent (briefly 1ss-convergent) to Px
e ∈ SP (X,E) provided that for every (F,A) ∈ N

(
Px

e
)

δ1
({

n ∈N | Pxn
en
< (F,A)

})
= 0.

In this case, we write Pxn
en

1ss
→ Px

e .

The following simple proposition states that statistical convergence is a generalization of topological
convergence.

Proposition 3.2. If the soft point sequence
(
Pxn

en

)
is τ-convergence to Px

e ∈ SP (X,E) then it is 1ss-convergent to Px
e

for any 1 ∈ G.
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Proof. Suppose that Pxn
en

τ
→ Px

e holds. Then, for every (F,A) ∈ Nτ
(
Px

e
)

there exists an n0 ∈ N such that
Pxn

en
∈ (F,A) for all n > n0. Hence, we have the following inclusion{

n ∈N | Pxn
en
< (F,A)

}
⊆ {1, 2, 3, ...,n0} .

Therefore, the monotonicity property of 1-density gives that the following inequality

δ1
({

n ∈N | Pxn
en
< (F,A)

})
= δ1 ({1, 2, 3, ...,n0}) = 0.

This implies that Pxn
en

1ss
→ Px

e .

However, the converse of the above proposition may not generally be true.

Example 3.3. Consider the set E = {e}, the family B = {(Fλ,E) = {e = {λ}} | λ ∈N} is a base of the soft

topology τ =
{⋃
λ∈J

(FλE)
}

it generates over N. If the sequence of soft points
(
Pxn

e
)

is convergence to

Px
e ∈ SP (X,E) then there exists an n0 ∈N and the sequence should be of the form(

Px1
e ,P

x2
e , ...,P

xn0
e ,P

x
e ,P

x
e ,P

x
e , ...
)

(see Example 3.25 in [14]). Define the sequence
(
Pxn

en

)
⊂ SP (X,E) as follows:

Pxn
e =

{
P0

e , n = k2, k ∈N
P1

e , n , k2, k ∈N .

Obviously, this sequence is not τ-convergent. Choose the weight function 1 (n) = 2n. Hence, since∣∣∣∣{1, 4, 9, 16, ...,n2, ...
}∣∣∣∣ ≤ √n holds, for all (F,A) ∈ Nτ

(
P1

e

)
we have

δ1
({

n ∈N | Pxn
en
< (F,A)

})
= lim

n→∞

∣∣∣∣{1, 4, 9, 16, ..,n2, ...
}∣∣∣∣

1 (n)
≤ lim

n→∞

√
n

1 (n)
= 0

which means Pxn
en

1ss
→ P1

e .
On the other hand, statistical soft limit points do not need to be unique.

Example 3.4. For the parameter set E = {e}, τ = {(Fa, {e}) : Fa (e) = [a,∞) , a ∈ R} is a soft topology on R.
Considering the sequence

(
Pxn

en

)
=
{
P1

e ,P2
e , ...,Pn

e ,Pn+1
e , ...

}
, the statement Pxn

en

1ss
→ Px

e holds for each x ∈ Rwhere
1 (n) = n.

Theorem 3.5. In soft Hausdorff spaces (X, τ), the limit of a 1ss-convergent sequence is uniquely determined.

Proof. Let (X, τ) be a soft Hausdorff topological space,
(
Pxn

en

)
⊂ SP (X,E). Suppose that Pxn

en

1ss
→ Px

e and Pxn
en

1ss
→ Py

f .

Since (X, τ) is a soft Hausdorff topological space, there exist a (F,E) ∈ Nτ
(
Px

e
)

and a (G,E) ∈ Nτ
(
Py

f

)
provided

that (F,E) ∩ (G,E) = ∅s. Then, δ1
({

n ∈N | Pxn
en
< (F,E)

})
= 0 and δ1

({
n ∈N | Pxn

en
< (G,E)

})
= 0 hold. On the

other hand,{
n ∈N | Pxn

en
< (F,E) ∩ (G,E)

}
=
{
n ∈N | Pxn

en
< (F,E)

}
∪

{
n ∈N | Pxn

en
< (G,E)

}
implies

1 = δ1 (N) = δ1
({

n ∈N | Pxn
en
< (F,E)

}
∪

{
n ∈N | Pxn

en
< (G,E)

})
≤ δ1

({
n ∈N | Pxn

en
< (F,E)

})
+ δ1
({

n ∈N | Pxn
en
< (G,E)

})
= 0

which leads to a contradiction.
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Choose an arbitrary sequence
(
Pxn

en

)
⊂ SP (X,E). For the natural number sequence (nk)k∈N such that

nk ≤ nk+1 for each k ∈ N,
(
P

xnk
enk

)
k∈N

is called a subsequence of
(
Pxn

en

)
. Unlike the case in classical topological

convergence, a subsequence of a statistically convergent sequence of soft points does not need to be
statistically convergent.

Example 3.6. For the parameter set E = {e}, the collection B =
{(

F(a,b),E
)
= {e = (a, b)} | a, b ∈ R

}
is a base

of the soft topology τ =
{⋃ (

F(a,b),E
)}

on R. The sequence
(
Pxn

en

)
where Pxn

e =

{
Pn

e , i f n = k2, k ∈N

P
1
n
e , otherwise

is

1ss-converge to P0
e . However, the subsequence P

xnk
e =

{
P

xnk
e | nk = k2, k ∈N

}
of
(
P

xnk
e

)
does not statistically

convergent.

However, a type of subsequence in which statistical convergence is preserved can be given as follows.
Remind that a subset A ofN such that δ (A) = δ1 (N) is called 1-statistically dense.

Definition 3.7. A subsequence
(
P

xnk
enk

)
nk∈A

of the sequence
(
Pxn

en

)
⊂ SP (X,E) is 1-statistical dense if there exist

a dense set A ⊂N of indices nk such that {n1 < n2 < n3 < ...} and δ1 (A) = δ1 (N).

Theorem 3.8. A sequence
(
Pxn

en

)
is 1ss-convergent to Px

e if and only if each 1-statistical dense subsequence is 1ss-
convergent to Px

e .

Proof. Suppose that Pxn
en

1ss
→ Px

e and
(
P

xnk
enk

)
nk∈A

is a statistical dense subsequence of
(
Pxn

en

)
which is not 1ss-

convergent to Px
e . In that case there is a neighborhood (F,A) of Px

e such that δ1
({

k ∈N | P
xnk
enk
< (F,A)

})
> 0.

As δ1 (A) = δ1 (N) we have

0 < δ1
({

k ∈N | P
xnk
enk
< (F,A)

})
≤ δ1

({
n ∈N | Pxn

en
< (F,A)

})
.

However this is a contradiction to Pxn
en

1ss
→ Px

e . Conversely, since every sequence is a dense subsequence of

itself it clearly is that Pxn
en

1ss
→ Px

e .

Remark 3.9. It should be noted that in the last theorem, it is possible for a sequence to be statistically
convergent if all dense sequences are statistically convergent to the same point. However, if there are dense
sequences that statistically converge to different points, the sequence may not be statistically convergent.
Also, the existence of a 1ss-convergent dense subsequence is not sufficient for the sequence to be statistical
convergent.

Its well known, the statistical convergence of real sequences is equivalent to the existence of a topo-
logically convergent dense subsequence (see [31]). However, in topological spaces, topological (statistical)
convergence of any subsequence do not imply topological (statistical) convergence of the sequence. For
this reason, Di Maio and Kočinac [21] gave a new definition called s∗-convergence. Also, we give a parallel
definition for soft spaces in terms 1-density as follows.

Definition 3.10. The sequence
(
Pxn

en

)
⊂ SP (X,E) is said to be 1ss∗-convergent to Px

e ∈ X if there is A ⊆Nwith

δ1 (A) = δ1 (N) such that
{
Pxm

em

}
m∈A

τ
→ Px

e . In this case we write Pxn
en

1ss∗
→ Px

e .

Theorem 3.11. The convergence Pxn
en

1ss∗
→ Px

e implies Pxn
en

1ss
→ Px

e .

Proof. Let (F,E) ∈ N
(
Px

e
)
. Since Pxn

en

1ss∗
→ Px

e , there are A ⊆ N with δ1 (A) = δ1 (N) and n0 ∈ N such that
Pxn

en
∈ (F,E) for n ≥ n0 and n ∈ A. Then, we have{

n ∈N | Pxn
en
< (F,E)

}
⊆ {1, 2, ..,n0} ∪ (N \ A)
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and thus

δ1 ({1, 2, ..,n0} ∪ (N \ A)) = δ1 ({1, 2, ..,n0}) + δ1 ((N \ A))

= 0 +
(
δ1 (N) − δ1 (A)

)
= 0

it follows Pxn
en

1ss
→ Px

e .

The following example indicates that the converse of the theorem above does not hold in general.

Example 3.12. If X =M∪{0, 1}where M is an uncountable set and E = {e} thenτ =
{
(F,E) ⊂ X | (F,E)c is finite

}
∪

{∅s} defines a soft topology on X. It is easy to see that the sequence Pxn
e =

{
P1

e , for infinitely many n
P0

e , otherwise is

1ss-convergent to P0
e , but the sequence is not 1ss∗-convergent.

Theorem 3.13. Let (X, τ) be a first countable soft topological space and
(
Pxn

en

)
⊂ SP (X,E). If

(
Pxn

en

)
is 1ss-convergent

to Px
e ∈ SP (X,E) then Pxn

en

1ss∗
→ Px

e .

Proof. Suppose that
(
Pxn

en

)
is 1ss-convergent to Px

e ∈ SP (X,E). Since (X, τ) is a first countable soft topological
space, there exists a countable decreasing soft open neighborhood base (Un,E) at Px

e . Let us define the
following sets for each j ∈N:

K j = {n ∈N : xn ∈ (Un,E)} and K j (n) =
{
k ∈ K j : k ≤ n

}
.

Since the convergence Pxn
en

1ss
→ Px

e holds, we have δ1
(
K j

)
= δ1 (N) and K1 ⊃ K2 ⊃ · · · ⊃ K j ⊃ K j+1 ⊃ · · ·

for every j ∈ N. Choose a strictly increasing sequence (t j) consisting of positive real numbers such that
lim
j→∞

t j = δ1(N). By the definition of K1, we can pick any element k1 ∈ K1 such that |K1(n)|
1(n) > t1 holds for all

n > k1. Also, we can pick an element k2 ∈ K2 such that k2 > k1 and |K2(n)|
1(n) > t2 holds for all n ≥ k2. Continuing

this iterative procedure leads us to a sequence (k j) of natural numbers such that k j ∈ K j for all j = 1, 2, · · · ,

and also we have |
K j(n)|
1(n) > t j for all n ≥ k j.

Let us construct the set K ⊆ N as follows: every natural number within [1, k1] is included in K, and
every natural number within

[
k j, k j+1

]
∩ K j for each j = 1, 2, · · · is in the set K. Let K = {n1 < n2 < ...}.

Consequently, |K(n)|
1(n) ≥

|K j(n)|
1(n) > t j holds for all k j ≤ n < k j+1. When we take the limit as n approaches infinity

in the last inequality, we attain the result that δ1(K) = δ1(N). Let (U,E) be a neighborhood of Px
e . Then,

there exists a natural number j0 ∈ N such that
(
U j0 ,E

)
⊂ (U,E). For each n ∈ K ∩

[
k j,∞

)
, Then, there exists

a unique j ≥ j0 such that b j ≤ n < b j+1 and so, by the definition of K, we obtain n ∈ K j. Thus, we have
Pxn

en
∈

(
U j,E

)
⊂

(
U j0 ,E

)
⊂ (U,E) for each n ∈ K ∩

[
k j,∞

)
. This gives that

(
Pxn

en

)
is τ-convergent to Px

e on the

1-dense set K, i.e.
(
Pxn

en

)
is 1ss∗-convergent to Px

e .

Theorem 3.14. Let (X, τ) be a soft topological space,
(
Pxn

en

)
⊂ SP (X,E), and 1, h ∈ G. Then, the following assertions

hold.

(1) Suppose that there exists M > 0 and k0 ∈N such that 1(n)
h(n) ≤M holds for all n ≥ k0. In that case,

Pxn
en

1ss
→ Px

e =⇒ Pxn
en

hss
→ Px

e .

(2) Suppose that there exists m > 0 and k0 ∈N such that m ≤ 1(n)
h(n) holds for all n ≥ k0. In that case,

Pxn
en

hss
→ Px

e =⇒ Pxn
en

1ss
→ Px

e .
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(3) Suppose that there exists m,M > 0 and k0 ∈N such that m ≤ 1(n)
h(n) ≤M holds for all n ≥ k0. In that case,

Pxn
en

1ss
→ Px

e ⇐⇒ Pxn
en

hss
→ Px

e .

Proof. If
(
Pxn

en

)
is 1ss-convergent to Px

e , then for every (F,A) ∈ N
(
Px

e
)

δ1
({

n ∈N | Pxn
en
< (F,A)

})
= 0 (1)

holds. On the other hand, from the existence of a number M > 0 and k0 ∈N such that 1(n)
h(n) ≤M holds for all

n ≥ k0, we have

1
h (n)

∣∣∣∣{n ∈N | Pxn
en
< (F,A)

}∣∣∣∣ ≤M
1
1 (n)

({
n ∈N | Pxn

en
< (F,A)

})
.

Thus, by taking the limit as n→ ∞, the equality (1) implies that
(
Pxn

en

)
is hss-convergent to Px

e . The proof of
(2) is similar and (3) is a consequence of (1) and (2).

It is natural to ask whether the concept of statistical convergence is preserved under continuous func-
tions. Kharal and Ahmed introduced the concept of soft mapping using a subset of the parameter set [20].
The continuity of soft mappings defined on the parameter set E was provided by Hazra et al. [18]. Initially,
let us recall the continuous functions that are defined between soft topological spaces.

Definition 3.15. ([18, 20]) Let (X, τ1,E1) and (Y, τ2,E2) be two soft topological spaces, and let f : X→ Y and
p : E1 → E2 be two mappings. Then, the mapping is defined as

φ( f ,p) : SS (X,E1)→ SS (Y,E2) , φ( f ,p) (F,E1) = (Fφ,E2)

where for each e′ ∈ E2,

Fφ (e′) =

 f

 ⋃
e∈p−1(e′)

F (e)

 , p−1
{e′} , ∅

∅, p−1
{e′} = ∅

is called a soft mapping. In that case, the inverse of φ( f ,p) is also a soft mapping defined by

φ−1
( f ,p) : SS (Y,E2)→ SS (X,E1) , φ−1

( f ,p) (F,E2) =
(
Fφ

−1
,E1

)
where for each e ∈ E1,

Fφ
−1

(e) = f−1 {F (p (e)
)}
.

Moreover, φ( f ,p) is injective (or surjective) if f and p are both injective (or surjective) and φ( f ,p) :

SS (X,E1)→ SS (Y,E2) is said to be soft continuous if φ−1
( f ,p)

(F,E2) ∈ τ1 for every (F,E2) ∈ τ2.

Lemma 3.16. Let (X, τ1,E1) and (Y, τ2,E2) be two soft topological spaces, f : X → Y and p : E1 → E2 be two
mappings and let Px

e ∈ SP (X,E1). If p injective then φ( f ,p)
(
Px

e
)
= P f (x)

p(e) ∈ SP (Y,E2).

Proof. If p is injective then there exists only an element e′ ∈ E2 such that p (e) = e′. Then, from the definition
of soft mapping, we have

Fφ (e′) =
{

f (F (e)) , p−1
{e′} = e

∅, p−1
{e′} , e =

{ {
f (x)
}

, p−1
{e′} = e

∅, p−1
{e′} , e .

This implies that (Fφ,E2) = P f (x)
p(e) ∈ SP (Y,E2).
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Next theorem states that 1ss-convergence is preserved under an injective soft continuous mapping.

Theorem 3.17. Let (X, τ1,E1) and (Y, τ2,E2) be two soft topological spaces, φ( f ,p) : (X, τ1)→ (Y, τ2) an injective soft

continuous mapping. If a sequence
(
Pxn

en

)
∈ SP (X,E1) is 1ss-convergent to Px

e , thus
(
φ( f ,p)

(
Pxn

en

))
is 1ss-convergent

to φ( f ,p)
(
Px

e
)
∈ SP (Y,E2).

Proof. Consider (F,E2) ∈ Nτ2

(
φ( f ,p)

(
Px

e
))

. Soft continuity of φ( f ,p) implies φ−1
( f ,p) {

(F,E2)} ∈ τ1. Hence, since

Px
e ∈ φ

−1
( f ,p) {

(F,E2)} ∈ Nτ1

(
Px

e
)
, we have

δ1

({
n ∈N | Pxn

en
< φ−1

( f ,p) {(F,E2)}
})
= 0.

Recall that the inclusion (F,E2) ⊆ φ−1
( f ,p)

(
φ( f ,p) {(F,E2)}

)
holds for every (F,E2) (see [18]). Then, from the

equality{
n ∈N | φ( f ,p)

(
Pxn

en

)
< (F,E2)

}
⊆

{
n ∈N | Pxn

en
< φ−1

( f ,p) {(F,E2)}
}

and the monotonicity of 1-density, we obtain

δ1

({
n ∈N | φ( f ,p)

(
Pxn

en

)
< (F,E2)

})
= 0.

Consequently, since (F,E2) is choosen arbitrarily, it follows that φ( f ,p)
(
Pxn

en

) 1ss
→ φ( f ,p)

(
Px

e
)

in (Y, τ2,E2).

3.2. On the topologies induced from soft topology
As shown in [32], each soft topology defines a topology in the classical sense over the universe set for

each parameter. To be more clear, if (X, τ) is a soft topological space then, the collection

τe = {F (e) : (F,E) ∈ τ}

for every e ∈ E, defines a topology on X (see proposition 5 in [32]). However, the converse of this fact does
not hold in general (see Example 2 in [32]).

In this section, the connection between τ-convergence and τe-convergence is initially covered. Subse-
quently, a similar analysis of this relationship is provided within the framework of statistical convergence.

Theorem 3.18. Let Px
e be arbitrary element in SP (X,E) and the condition F (en) ⊆ F (e) holds for every (F,E) ∈

Nτ
(
Px

e
)

and every n ∈N. In that case Pxn
en

τ
→ Px

e implies xn
τe
→ x.

Proof. Choose a F (e) ∈ Nτe (x). Suppose that Pxn
en

τ
→ Px

e holds. Then, for every (F,E) ∈ Nτ
(
Px

e
)

there is
n0 ∈ N such that Pxn

en
∈ (F,E) for every n ≥ n0. It means xn ∈ F (en) for every n ≥ n0. From the assumption

F (en) ⊆ F (e), we have xn ∈ F (e) for every n ≥ n0. That is xn
τe
→ x.

The following example illustrates that the theorem’s assumption must be satisfied.

Example 3.19. For X = {x1, x2, x3} and E = {e1, e2, e3}, τ = {Xs,∅s, (F1,E) , (F2,E)} is a soft topology where

(F1,E) = {F1 (e1) = ∅,F1 (e2) = {x2} ,F1 (e3) = {x3}}

and

(F2,E) = {F2 (e1) = {x1} ,F2 (e2) = {x2, x3} ,F2 (e3) = X} .
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Define the sequences (xn) = {x1, x2, x3, x2, x3, ...} and
(
Pxn

en

)
=
{
Px1

e1
,Px2

e2
,Px3

e3
,Px2

e2
,Px3

e3
, ...
}

where

Pxn
en
=


Px1

e1
, n = 1

Px2
e2
, n = 2k

Px3
e3
, n = 2k + 1

and xn =


x1, n = 1
x2, n = 2k
x3, n = 2k + 1

.

However, the sequence (xn) is not convergent to x for the topology τe3 whereas the sequence
(
Pxn

en

)
n∈N

converges to Px
e3

.

Theorem 3.20. Let Px
e be an arbitrary element in SP (X,E) and the condition F (e) ⊆ F (en) holds for every (F,E) ∈

Nτ
(
Px

e
)

and for every n ∈N. In that case xn
τe
→ x implies Pxn

en

τ
→ Px

e .

Proof. Choose a (F,E) ∈ Nτ
(
Px

e
)
. Suppose that xn

τe
→ x. Then for every neighborhood F (e) of x there is n0 ∈N

such that xn ∈ F (e) for every n ≥ n0. Based on the assumption F (e) ⊆ F (en), it follows that Pxn
en
∈ (F,E) for

every n ≥ n0, indicating that Pxn
en

τ
→ Px

e .

Similarly, the following example illustrates that the theorem’s assumption must be satisfied.

Example 3.21. For X = {x1, x2, x3} and E = {e1, e2, e3}, τ = {Xs,∅s, (F1,E) , (F2,E) , (F3,E) , (F4,E)} is a soft
topological space on X where

(F1,E) = {F1 (e1) = X,F1 (e2) = {x3} ,F1 (e3) = X} ,
(F2,E) = {F2 (e1) = ∅,F2 (e2) = {x2, x3} ,F2 (e3) = X} ,
(F3,E) = {F3 (e1) = ∅,F3 (e2) = {x3} ,F3 (e3) = X},
(F4,E) = {F4 (e1) = X,F4 (e2) = {x2, x3} ,F4 (e3) = X} .

Consider the sequences (xn) = {x1, x2, x3, x2, x3, ...} and
(
Pxn

en

)
=
{
Px1

e1
,Px2

e2
,Px3

e3
,Px2

e2
,Px3

e3
, ...
}

as described in the
previous example. In that case, although the sequence (xn) converges to x1 for the topology τe1 , the sequence(
Pxn

en

)
n∈N

is not convergent to Px1
e1

.

As a consequence, the following result is clear.

Corollary 3.22. For any element Px
e ∈ SP (X,E), if the condition F (en) = F (e) holds for every (F,E) ∈ Nτ

(
Px

e
)

and
for every n ∈N then

xn
τe
→ x ⇐⇒ Pxn

en

τ
→ Px

e .

Proof. Suppose that for at least one n ∈N,F (en) , F (e). It is a contradiction from Example 3.19 or Example
3.21. Converse direction is clear from Theorem 3.18 and Theorem 3.20.

Theorem 3.23. Let (X, τ) be first countable soft space. If for every (F,E) ∈ Nτ
(
Px

e
)
, the condition F (e) ⊆ F (en) holds

for every n ∈N then xn
1s−τe
→ x implies Pxn

en

1ss−τ
→ Px

e .

Proof. Suppose that xn
1s−τe
→ x holds. From Theorem 3.13, (xn) is 1s∗ − conver1es to x on τe, i.e. there is

A ⊆ N with δ1 (A) = 1 such that
(
xnk

)
nk∈A

τe
→ x. Thus, by using Theorem 3.20, we obtain that

(
P

xnk
enk

)
is

τ-convergent to Px
e which means that

(
Pxn

en

)
is 1ss∗-convergent to Px

e . Thus, by Theorem 3.11, we obtain that(
Pxn

en

)
is 1ss-convergent to Px

e .

Theorem 3.24. Let (X, τ) be first countable soft space. If for every (F,E) ∈ Nτ
(
Px

e
)
, the condition F (en) ⊆ F (e) holds

for every n ∈N then Pxn
en

1ss−τ
→ Px

e implies xn
1s−τe
→ x.

Proof. Suppose that Pxn
en

1ss−τ
→ Px

e holds. From Theorem 3.13,
(
Pxn

en

)
is 1ss∗ − conver1es to Px

e on τ, i.e. there is

A ⊆ N with δ1 (A) = 1 such that
(
P

xnk
enk

)
nk∈A

τe
→ Px

e . Thus, by using Theorem 3.18, we obtain that
(
xnk

)
nk∈A is

τe-convergent to x which means that (xn) is 1s∗-convergent to x. Again, by Theorem 3.11, we obtain that (xn)
is 1s-convergent to x.
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3.3. Some point sets related weighted statistical convergence

This section provides definitions for the 1-statistical limit point and 1-statistical cluster point of the
sequence of soft points related to statistical convergence together with some of the most fundamental results.
We will begin by defining the term upper weighted 1-density which will be used in these definitions.

The upper weighted 1-density of the set A ⊆N is defined by

δ1 (A) = lim
n→∞

|{k ∈ A | k ≤ n}|
1 (n)

whenever the limit exists.

Definition 3.25. A subsequence
(
P

xnk
enk

)
nk∈A

of the sequence
(
Pxn

en

)
⊂ SP (X,E) is 1-thin if there exists a dense

set A ⊂N of indices nk such that {n1 < n2 < n3 < . . . } and δ1 (A) = 0.

Similarly, a subsequence
(
P

xnk
enk

)
nk∈A

of the sequence
(
Pxn

en

)
⊂ SP (X,E) is 1-nonthin if there exists a set

A ⊂ N of indices nk such that {n1 < n2 < n3 < ...} and δ1 (A) , 0 which means that δ1 (A) > 0 or δ1 (A) does
not exist. Also, δ1 (A) , 0 is equivalent to upper weighted 1-density δ1 (A) is positive.

Definition 3.26. Let
(
Pxn

en

)
be a sequence of soft points in the soft topological space (X, τ) and Px

e ∈ SP (X,E).

(1) Px
e ∈ SP (X,E) is said to be a 1-statistical limit point of

(
Pxn

en

)
if there is a nonthin subsequence

(
P

xnk
enk

)
nk∈A

such that P
xnk
enk

τ
→ Px

e , i.e. The set of all 1-statistical limit points of
(
Pxn

en

)
is denoted by Λ1

(
Pxn

en

)
.

(2) Px
e ∈ SP (X,E) is said to be a1-statistical cluster point of

(
Pxn

en

)
if, for each (F,E) ∈ Nτ

(
Px

e
)
, δ1
({

n ∈N | Pxn
en
∈ (F,E)

})
,

0 or equivalently the assertion

δ1
({

n ∈N | Pxn
en
∈ (F,E)

})
> 0

holds. The set of all 1-statistical cluster points of
(
Pxn

en

)
is denoted by Θ1

(
Pxn

en

)
.

Theorem 3.27. For any sequence
(
Pxn

en

)
⊂ SP (X,E), the inclusion Λ1

(
Pxn

en

)
⊂ Θ1

(
Pxn

en

)
holds.

Proof. Suppose that Px
e ∈ Λ1

(
Pxn

en

)
and

(
P

xnk
enk

)
is a nonthin subsequence of

(
Pxn

en

)
such that P

xnk
enk

τ
→ Px

e and

δ1 ({nk | k ∈N}) = α > 0. Then, for (F,E) ∈ Nτ
(
Px

e
)
, there exists ki0 ∈N such that P

xnk
enk
∈ (F,E) for every k > ki0 .

Thus, we have

{nk | k ∈N} \
{
nk1 ,nk2 , ...,nki0

}
⊆

{
n ∈| Pxn

en
∈ (F,E)

}
.

Accordingly, the inequalities

δ1
({

n ∈N | Pxn
en
∈ (F,E)

})
≥ δ1 ({nk | k ∈N}) − δ1

({
k1, k2, ..., ki0

})
≥ α − 0
> 0

hold. This indicates Px
e ∈ Θ

(
Pxn

en

)
.

The union of any collection of soft points can be considered a soft set and every soft set can be expressed
as the union of all soft points belonging to it (see Proposition 3.5 in [13]). Therefore, Θ

(
Pxn

en

)
is a soft set if

considered the form Θ
(
Pxn

en

)
=
⋃{

Px
e | Px

e ∈ Θ
(
Pxn

en

)}
.
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Theorem 3.28. For any sequence
(
Pxn

en

)
⊂ SP (X,E), the set Θ1

(
Pxn

en

)
is τ-closed.

Proof. Choose an arbitrary element Px
e ∈ Θ1

(
Pxn

en

)
and (F,E) ∈ Nτ

(
Px

e
)
. Then, there is an element Py

a ∈ SP (X,E)

in (F,E)∩Θ1
(
Pxn

en

)
. Considering (G,E) ∈ Nτ

(
Py

a

)
such that (G,E) ⊂ (F,E), since Py

a ∈ (G,E)∩Θ1
(
Pxn

en

)
we have

δ1
({

n ∈N | Pxn
en
∈ (G,E)

})
> 0. Hence, from the inclusion{

n ∈N | Pxn
en
∈ (G,E)

}
⊆

{
n ∈N | Pxn

en
∈ (F,E)

}
and the monotonicity of upper 1-density we obtain

0 < δ1
({

n ∈N | Pxn
en
∈ (G,E)

})
≤ δ1

({
n ∈N | Pxn

en
∈ (F,E)

})
.

It follows that Px
e ∈ Θ1

(
Pxn

en

)
.

Theorem 3.29. Let
(
Pxn

en

)
,
(
Pyn

en

)
⊂ SP (X,E) be two sequences such that δ1

({
n ∈N | Pxn

en
, Pyn

en

})
= 0. In that case,

the equalities

Θ1
(
Pxn

en

)
= Θ1

(
Pyn

en

)
and Λ1

(
Pxn

en

)
= Λ1

(
Pyn

en

)
hold.

Proof. Assume that Pz
e ∈ Θ1

(
Pxn

en

)
and (F,E) ∈ Nτ

(
Pz

e
)
. Then, δ1

({
n ∈N | Pxn

en
∈ (F,E)

})
> 0 holds. On the

other hand, the inclusion{
n ∈N | Pxn

en
∈ (F,E)

}
\

{
n ∈N | Pxn

en
, Pyn

en

}
⊆

{
n ∈N | Pyn

en
∈ (F,E)

}
holds and so

0 < δ1
({

n ∈N | Pxn
en
∈ (F,E)

})
− δ1
({

n ∈N | Pxn
en
, Pyn

en

})
≤ δ1

({
n ∈N | Pyn

en
∈ (F,E)

})
.

Consequently, we obtain δ1
({

n ∈N | Pyn
en
∈ (F,E)

})
> 0 which means Pz

e ∈ Θ1
(
Pyn

en

)
. By symmetry, we can

also prove Θ1
(
Pyn

en

)
⊆ Θ1

(
Pxn

en

)
.

Now, choose Pz
e ∈ Λ1

(
Pxn

en

)
. Then, there exists a set A = {n1 < n2 < ... < nk < ...} ⊆ N such that δ1 (A) > 0

and P
xnk
enk
→ Pz

e . Hence, for each (F,E) ∈ N
(
Pz

e
)

there exists ki0 ∈ N such that P
xnk
enk
∈ (F,E) for every k > k0.

Similarly, from the inclusion{
nk ∈N | P

xnk
enk
∈ (F,E)

}
\

{
nk ∈N | P

xnk
enk
, P

ynk
enk

}
⊆

{
nk ∈N | P

ynk
enk
∈ (F,E)

}
and properties of the upper 1-density, we have

0 , δ1
({

k ∈N | P
xnk
enk
∈ (F,E)

})
− δ1
({

k ∈N | P
xnk
enk
, P

ynk
enk

})
≤ δ1

({
k ∈N | P

ynk
enk
∈ (F,E)

})
.

It follows that Pz
e ∈ Λ1

(
Pyn

en

)
. Again, by symmetry, we can also prove Λ1

(
Pyn

en

)
⊆ Λ1

(
Pxn

en

)
.

4. Conclusion

This study establishes a connection between the concepts of soft sets and statistical convergence, and
defines the statistical convergence of soft point sequences, that correspond to classical point sequences.
In this definition, a more general concept of weighted density is used instead of the natural density. The
relationship with topological convergence is demonstrated, and some fundamental results concerning



E. Bayram, M. Dervişoğlu / Filomat 39:2 (2025), 501–514 514

convergence have been presented. As is well known, soft topology induces a classical topology. In this
regard, the relationships between soft topology and the classical topology derived from it are examined in
the context of statistical convergence. Additionally, some point sets related to convergence are defined, and
their essential characteristics are outlined.

This work contributes to the literature by introducing a new form of convergence in soft topological
spaces, that have not been previously considered, and lays the foundation for further investigation into the
application of statistical convergence in various disciplines, such as economics, engineering, and environ-
mental science, where soft sets are already used. Future research may extend the current framework using
alternative density functions and evaluate the applicability of these newly defined convergence concepts
to practical problems characterized by uncertainty.
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[12] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8(1-2) (1988), 47–63.
[13] S. Das, S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform. 6(1) (2013), 77–94.
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