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Mehmet Barana

aDepartment of Mathematics, Faculty of Science, Erciyes University, 38280, Kayseri, Turkey

Abstract. In previous papers, several extensions of the notions of closedness, separation properties, and
compactness in a set-based topological category were introduced. In this paper, we develop further these
extensions in a much larger non set-based topological categories. Moreover, we show that the categories
KT2ConFCO (the category of KT2 constant filter convergence spaces and continuous functions) and Chy
(the category of Cauchy spaces and Cauchy maps) are isomorphic. Also, we characterize strongly compact
constant filter convergence spaces and investigate some invariance properties of them. Finally, we compare
our results and give some applications.

1. Introduction

The fundamental objects of a topological space are its open (closed) sets. The notion of closedness is
used to define, for example, the Ti, i = 1, 2, 3, 4 separation axioms and compactness. Compact Hausdorff
spaces are one of the most important classes of topological spaces to deal with can be formulated in terms
of closed sets. This formulation is used by several authors to study these spaces in categorical setting.
For example, the notions of compactness and Hausdorffness with respect to a factorization structure were
defined in [12, p.167] and [16, p.350] for a general category, with respect to closure operators were done in
[10, p.14] for abstract categories, and with respect to initial lifts, final lifts, products, pushouts, discreteness
were defined in [6, p.225] for set-based topological categories.

In view of this, it will be useful to be able to not only extend these notions to an arbitrary topological
category but also to have the characterization of each of them and present important theorems in general
topology such as the Tietze Extension Theorem, the Tychonoff Theorem, the Baire Theorem, the Urysohn
Lemma among others in certain topological categories of interest.

In this paper, we develop the extensions of each of the notions of strong closedness, compactness,
the T0 and T2 separation axioms in non set-based topological categories in order to open the way to the
investigation of these concepts.

In Section 3, we show that the categories KT2ConFCO and Chy are isomorphic and prove that if a
constant filter convergence space (A,K) is finite, then there is a bijection from the set KT2(A) of all KT2
constant filter convergence stuctures on A onto the set Eq(A) of all equivalence relations on A.

In Section 4, we characterize strongly compact constant filter convergence spaces and investigate some
invariance properties of them.

Finally, in Section 5, we compare our results and mention some applications.
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2. Premilinaries

Let B be a category with finite products and cokernel pairs (i.e., given any morphism f : A → B in B,
the pushout of f with itself), 1 be a terminal object, x be the constant object, i.e., subterminal, and B be an
object in B. We denote by Bn, n = 1, 2, ...,n, the product of B with itself n times and by π j : Bn

→ B the j th
projection morphism, j = 1, 2, ...,n. If A ∈ B and fi : A→ B are morphisms in B, then there exists a unique
morphism f = ( f1, f2, ..., fn) : A→ Bn such that πi ◦ f = fi for each i = 1, 2, ...,n.

The diagonal ∆ : B → B2 is given by ∆ = (1B, 1B), where 1B : B → B is the identity morphism. Define
π jk : B2

∨△ B2
→ B to be π j + πk for j, k = 1, 2, where B2

∨△ B2 denotes the cokernel of ∆ along itself. More
precisely, if i1 and i2 : B2

→ B2
∨△ B2 denote the inclusions of B2 as the first and second factor, respectively,

then i1 ◦ ∆ = i2 ◦ ∆ is a pushout diagram.

B ∆ //

∆

��

B2

i2
��

B2
i1
// B2
∨△ B2

Note that for morphisms (π1, π1, π2) : B2
→ B3 and (π1, π2, π1) : B2

→ B3, (π1, π1, π2) ◦ ∆ = (1B, 1B, 1B) =
(π1, π2, π1) ◦ ∆, and consequently, A = (π11, π21, π12) : B2

∨△ B2
→ B3 is the unique morphism called the

principal axis morphism for which A ◦ i2 = (π1, π1, π2) and A ◦ i1 = (π1, π2, π1), i.e.,

B

∆
��

∆ // B2

i2
�� (π1,π1,π2)

��

B2
i1
//

(π1,π2,π1) ,,

B2
∨△ B2

∃!A=(π11,π21,π12)

##
B2

Similarly, (π1, π1, π2) ◦∆ = (1B, 1B, 1B) = (π1, π2, π2) ◦∆ (resp. 1B2 ◦∆ = ∆) and consequently, there exists
a unique morphism S = (π11, π12, π22) : B2

∨△ B2
→ B3 (resp. ∇ = (π11, π22) : B2

∨△ B2
→ B2), called the

skewed axis (resp. the fold) morphism.
Note that

π1 ◦ S = π11 = π1 ◦ A, π2 ◦ S = π21 = π2 ◦ A, π3 ◦ S = π22, π3 ◦ A = π12,

S ◦ i1 = (π1, π2, π2),S ◦ i2 = (π1, π1, π2) = A ◦ i2,A ◦ i1 = (π1, π2, π1),

and ∇ ◦ ik = 1B2 for k = 1, 2.

Let f : B → B be the constant morphism, i.e., there exists a morphism x : 1 → B such that x ◦ h = f ,
where h : B→ 1 is the unique morphism from B to the terminal object 1.

Define p1,∇x : B
∨

x B → B to be f + 1B and 1B + 1B respectively, where B
∨

x B denotes the cokernel of
x : 1→ B along itself, i.e., if i1 and i2 : B→ B

∨
x B denote the inclusions of B as the first and second factor,

respectively, then i1 ◦ x = i2 ◦ x is a pushout diagram.

1 x //

x

��

B

i2
��

B
i1
// B
∨

x B
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Note that for morphisms ( f , 1B) : B→ B2 and (1B, 1B) :→ B2, one has ( f , 1B) ◦ x = (x, x) = (1B, 1B) ◦ x, and
consequently, Sx = (p1,∇x) : B

∨
x B → B2 is the unique morphism called the skewed x-axis morphism for

which Sx ◦ i2 = ( f , 1B) and Sx ◦ i1 = (1B, 1B), i.e.,

1

x
��

x // B

i2
�� (1B,1B)

��

B
i1
//

( f ,1B) ,,

B
∨

x B

∃!Sx=(p1,∇x)

""
B2

Note that π1 ◦ Sx = p1 and π2 ◦ Sx = ∇x.
Similarly, 1B ◦ x = x and consequently, there exists a unique morphism ∇x : B

∨
x B→ B), called the fold

morphism at x and ∇xik = 1B for k = 1, 2.
If B = Set, then a point (a, b) in B2

∨△ B2 will be denoted by (a, b)1 (resp. (a, b)2) if (a, b) is in the first
(resp. second) component of B2

∨△ B2, and S(a, b)1 = (a, b, b), A(a, b)2 = S(a, b)2 = (a, a, b), A(a, b)1 = (a, b, a),
and ▽((a, b)i) = (a, b) for i = 1, 2 [2].

A point a in B
∨

x B will be denoted by a1 (resp. a2) if a is in the first (resp. second) component of B
∨

x B
and Sx(a1) = (a, a), Sx(a2) = (x, a), and ∇x(ai) = a for i = 1, 2 [2, p.334].

A functor U : E → B is said to be topological or E is a topological category over B if and only if the
following conditions hold:

(1) U is concrete, i.e., faithful (U is mono on hom sets) and amnestic (if U( f ) = id and f is an isomorphism,
then f = id) [17, p.278].

(2) U has small fibers, i.e., U−1(b) is a set for all b in B.

(3) For every U-source, i.e., family 1i : b → U(Xi) of maps in Set, there exists a family fi : X → Xi in E
such that U( fi) = 1i and if U(hi : Y → Xi) = 1ik : UY → b → U(Xi), then there exists a lift k : Y → X
of k : UY → UX, i.e., U(k) = k. This latter condition means that every U-source has an initial lift
[1, p.333]. It is well known that the existence of initial lifts of arbitrary U-source is equivalent to the
existence of final lifts (the dual of the initial lifts) for arbitrary U-sink [1, p.335].

A topological functor U : E → B is said to be normalized if the constant objects have a unique structure
[7, p.592]. Z is called a subspace of X if there exists monomorphism i : Z → X that is an initial lift (i.e., an
embedding) and we denote it by Z ⊂ X.

Note that a topological functor U : E → B has a left adjoint D : B → E, where D(e) is obtained as the
final lift of the empty sink on e. An object of the form e = DUe is called a discrete object in E. An object e in
E is discrete if and only if every morphism U(e) → U(c) lifts to a morphism e → c for each object c in E [1,
p.336].

LetB be a category with finite products, a terminal object, and pushouts. Let U : E →B be a normalized
topological functor, x be the subterminal, X ∈ Ob(E) with U(X) = B, and Z ⊂ X.

Definition 2.1. (1) If the initial lift of the U-source Sx : B
∨

x B → U(X2) and ∇x : B
∨

x B → UD(B) is
discrete, then X is called T1 at x.

(2) If X/Z is T1 at 1, then Z is called a strongly closed subobject of X, where X/Z is the pushout of i : Z→ X
with 1 : Z→ 1.

For B = Set, Definition 2.1 is given in [2, p.336].
For E = Top andB = Set, a topological space is T1 at x if and only if for any distinct point y from x, there

is a neighborhood of each missing the other. If a topological space is T1, then strong closedness coincide with
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the usual closedness [2, p.337]. Note that X/Z is the final lift of the epi U-sink Q : U(X) = B→ B/Z = (B\Z)∪1
identifying Z with 1 for Z , ∅, the initial object in Set. If Z = ∅, then B/Z = B

∐
1.

Let B , ∅ and F(B) be the set of filters on B. A filter α is said to be proper (resp., improper) if and only if
∅ < α (resp. ∅ ∈ α). If α = [U] = {V ⊂ B : U ⊂ V}, then α is said to be a principal filter. If α = [x] for x ∈ B,
then α is called a point filter. An ultrafilter that is not a point filter is called a free filter.

If a function K : B→ P(F(B)) satisfies the following axioms:

(i) for each x ∈ B, [x] ∈ K(x).

(ii) if α ∈ K(x) and β ⊃ α, then β ∈ K(x),

then (B,K) is called a filter convergence space; filter convergence spaces are referred to as convergence
functions in [13, p.128] and generalized convergence spaces in [18, p.31]. If K is a constant function, then
(B,K) is called a constant filter convergence space [19].

A function f : (B,K) → (C,L) between constant filter convergence spaces is said to be continuous if
α ∈ K, then f (α) ∈ L, where f (α) = [{ f (V) : V ∈ α}].

The category of constant filter convergence spaces and continuous functions is denoted by ConFCO
which is a bireflective subcategory of FCO filter convergence spaces [19, p.353]. For a filter convergence
space (A,K), by Theorem 4 of [19, p.353], 1A : (A,K)→ (A,L) is the bireflection, where L(a) = {K(x) : x ∈ A}.

Proposition 2.2. Let B , ∅, {(Bi,Ki), i ∈ I} be a class of constant filter convergemce spaces, and { fi : B → Bi, i ∈ I}
be a source in the category Set. A source { fi : (B,K)→ (Bi,Ki), i ∈ I} in ConFCO is an initial lift if and only if α ∈ K
precisely when fi(α) ∈ Ki for all i ∈ I.

An epi sink { fi : (Bi,Ki)→ (B,K), i ∈ I} in ConFCO is a final lift if and only if α ∈ K precisely when there exist
i ∈ I and αi ∈ Ki with fi(αi) ⊂ α.

These are special cases of Theorem 4 of [19, p.353]

The category Chy, which is a cartesian closed topological category [11, p.12], of Cauchy spaces has as
objects (A,S), where A is a set and S ⊂ F(A) is subject to the following axioms:

(1) [x] ∈ S for each x ∈ A.

(2) α ∈ S and α ⊂ β implies β ∈ S for any filter β on A.

(3) For β, α ∈ S if β ∪ α is proper, then β ∩ α ∈ S.

Let f : (A,S) and (B,T) be Cauchy spaces. A morphism f : (A,S)→ (B,T) is a function such that f (α) ∈ T if
α ∈ S, i.e., f is a Cauchy map.

If S satisfies axioms (1) and (2), then (A,S) is called a filter space and the category of filter spaces and
Cauchy maps is denoted by Fil [18], p. 32.

Theorem 2.3. ([4], p.391), ([14], p.18) Let (B,K) ∈ ConFCO (resp. (B,S) ∈ Chy) and ∅ , Z ⊂ B. Then, Z is
strongly closed if and only if α 1 [a] or α∪ [Z] is improper for every a ∈ B with a < Z and every α ∈ K (resp. α ∈ S).

Example 2.4. (1) By Theorem 2.3, all subsets of the discrete constant filter convergence space (B,K =
{[x], [∅] : x ∈ B}) are strongly closed.

(2) Let (B,F(B)) be the indiscrete constant filter convergence space with cardB ≥ 2. By Theorem 2.3, the
only strongly closed subsets of B are ∅ and B.

(3) Let B = {x, y, z,w} and define constant filter convergence structures K and L on B as follow:

K = {[x], [y], [z], [w], [x] ∩ [y], [y] ∩ [z], [z] ∩ [w], [x] ∩ [z], [x] ∩ [y] ∩ [z], [∅]}.
L = {[x], [y], [z], [w], [x] ∩ [y], [∅]}.

By Theorem 2.3, the only strongly closed subsets of (B,K) (resp. (B,L)) are B and ∅ (resp. {z}, {w}, {x, y},
{z,w}, {x, y, z}, {x, y,w}, B, and ∅).
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Let (B,K) ∈ ConFCO and Z ⊂ B. The strong closure SclB(Z) of Z is the intersection of all strongly closed
subsets of B containing Z.

Theorem 2.5. (1) The categories ConFCO and Fil are isomorphic.

(2) Let (B,K) ∈ ConFCO. If Zi ⊂ B is strongly closed for each i ∈ I, then
⋂

i∈I Zi is strongly closed.

(3) SclB(Z) is strongly closed.

Proof. (1) For (B,K) ∈ ConFCO, define SK={α ∈ F(B) : α ∈ K}. Then (B,SK) ∈ Fil. For (B,S) ∈ Fil, define
KS(x) = KS(y) = {α ∈ F(B) : α ∈ S} for every x, y ∈ B, i.e., KS : B → P(F(B)) is a constant function. Then
(B,KS) ∈ ConFCO. Note that SKS = S for each filter structure S and KSK = K for each constant filter
convergence structure K. Finally, if f : (B,K) → (C,L) is continuous between constant filter convergence
spaces, then clearly, f : (B,SK) → (C,SL) is a Cauchy map. If f : (A,S)→ (B,T) is a Cauchy map between
filter spaces, then f : (B,KS)→ (C,LT) is continuous. Hence, ConFCO and Fil are isomorphic.

(2) Suppose a ∈ B, a <
⋂

i∈I Zi and α ∈ K. There exists k ∈ I such that a < Zk. Since Zk is strongly closed,
by Theorem 2.3, α ∪ [Zk] is improper or α 1 [a]. If α ∪ [Zk] is improper, then α ∪ [

⋂
i∈I Zi] is improper since

α ∪ [Zk] ⊂ α ∪ [
⋂

i∈I Zi]. Consequently, by Theorem 2.3,
⋂

i∈I Zi is strongly closed.
(3) By Part(2), SclB(Z) is strongly closed.

In Cauchy spaces, the concept of completeness is meaningful, whereas in (constant) filter convergence
spaces, this concept is unavailable. By Theorem 2.5, the category ConFCO is a link between the categories
Fil and FCO. Cauchy spaces proved to be extremely useful in the completion theory of convergence vector
spaces. The reader is referred to [11, 18] for more details concerning Cauchy spaces and convergence spaces.

Theorem 2.6. ([3], p.100)

(i) Let σ be a filter on B2
∨∆ B2. If σ0 =

⋃
π−1

i j πi jσ, j, i = 1, 2, then σ0 ⊂ σ and πi jσ = πi jσ0 for all j, i = 1, 2,
where πi j is defined above. Let αi j, i, j = 1, 2 be proper filters on B.

(ii) σ =
2⋃

j,i=1
π−1

i j αi j is proper if and only if either (a) (α11 ∪ α12) and (α21 ∪ α22) are proper or (b) (α21 ∪ α11) and

(α22 ∪ α12) are proper.

(iii) There exists a proper filter σ on B2
∨∆ B2 such that πi jσ = αi j for all j, i = 1, 2 if and only if

(1) If (α11 ∪ α12) is improper or (α21 ∪ α22) is improper, then α11 = α21 and α22 = α12.

(2) If (α11 ∪ α21) is improper or (α12 ∪ α22) is improper, then α11 = α12 and α21 = α22.

(3) If both (a) and (b) hold, then α11 ∩ α22 = α12 ∩ α21.

3. T2 constant filter convergence spaces

We show that the categories KT2ConFCO and Chy are isomorphic. Moreover, we prove that if a constant
filter convergence space (A,K) is finite, then there is a bijection from the set KT2(A) of all KT2 constant filter
convergence stuctures on A onto the set Eq(A) of all equivalence relations on A.

Let B be a category with finite products and pushouts, U : E → B be topological, and X ∈ Ob(E) with
U(X) = B.

Let SB (resp. AB) be the initial lift of the U-source S (resp. A) : B2∨
∆ B2

→ U(X3) and W(B2
∨
∆ B2) be the

final lift of the U-sink {q ◦ i1, q ◦ i2 : U(X2) → B2
∨∆ B2

}, where ik : B2
→ B2∐B2, k = 1, 2 are the canonical

injection maps and q : B2∐B2
→ B2∨

∆ B2 is the quotient map.

Definition 3.1. (1) If SB = AB, then X is said to be a PreT2 object.
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(2) If the initial lift of the U-source ∇ : B2
∨∆ B2

→ U(D(B2)) and id : B2
∨∆ B2

→ U(B2
∨∆ B2,W(B2

∨
∆ B2)) is

discrete, then X is said to be a T′0 object, where D is the discrete functor.

(3) If the diagonal ∆ is strongly closed in X2, then X is said to be a ST2 object.

(4) If X is T′0 and PreT2, then X is said to be a KT2 object.

Remark 3.2. (1) For E = Top and B = Set, T′0 (resp. KT2 or ST2) reduce to the usual T0 (resp. T2 ) axiom
[5, p.43]. A topological space is PreT2 or pre-Hausdorff if and only if for any two distinct points,
if there is a neighborhood of one missing the other, then the points have disjoint neighborhoods [2,
p.338]. There is no implication between PreT2 and each of T0 and T1. Take the integers set Z with
indiscrete and cofinite topologies. In the realm of PreT2 topological spaces, by the Theorem 4.3 of [8],
all T0,T1, and T2 spaces are equivalent.

(2) For B = Set, Definition 3.1 is given in [2, p.337] and if B is a category with finite limits and colimit,
then (1) of Definition 3.1 is given in [20, p.18].

Theorem 3.3. A constant filter convergence space (A,K) is KT2 if and only if it is a Cauchy space.

Proof. Suppose (A,K) is KT2 and α ∪ δ is proper for any proper filters α, δ ∈ K. In Theorem 2.6, let

α11 = α, α21 = α ∪ δ, α12 = α ∩ δ, α12 = δ.

Note that
α12 ∪ α11 = α, α21 ∪ α22 = α ∪ δ, α21 ∪ α11 = α ∪ δ, α22 ∪ α12 = δ

are proper and α11∩α22 = α∩ δ = α12∩α21. By Theorem 2.6, there exists a proper filter β on the wedge with

π1Aβ = α11 = π1Sβ, π2Aβ = α21 = π2Sβ, π3Aβ = α12, π3Sβ = α22.

Since (A,K) is preT2 and π1Aβ = π1Sβ, π1Aβ = π2Sβ, π3Sβ ∈ K, we get π3Aβ = α ∩ δ ∈ K and hence, (A,K) is
a Cauchy space.

Suppose (A,K) is a Cauchy space. First, we show that (A,K) is preT2, i.e., for any filter β on wedge, π1Aβ,
π2Aβ, π3Aβ ∈ K if and only if π1Sβ, π2Sβ, π3Sβ ∈ K. Note that π1Aβ = π1Sβ and π2Aβ = π2Sβ. We need to
show that π3Aβ ∈ K if and only if π3Sβ ∈ K.

If β = [∅], then nothing to show. If β , [∅], then let

β0 = π
−1
1 (π1Aβ) ∪ π−1

2 (π2Aβ) ∪ π−1
3 (π3Aβ) ∪ π−1

3 (π3Sβ).

By Theorem 2.6, β0 ⊂ β, πiAβ0 = πiAβ, and πiSβ0 = πiSβ for each i = 1, 2, 3.
We apply Theorem 2.6 with

α11 = π1Aβ = π1Sβ,

α21 = π2Aβ = π2Sβ,

α12 = π3Aβ,

and
α22 = π3Sβ.

If (1) of Theorem 2.6 (iii) holds, then α22 = α12 and consequently α22 ∈ K if and only if α12 ∈ K. If (2) of
Theorem 2.6 (ii) holds, then α11 = α12, α22 = α21, and consequently α12 ∈ K and α22 ∈ K. If (3) of Theorem
2.6 (iii) holds, then α11 ∩ α22 = α12 ∩ α21. Let α21 = α, α12 = δ, α11 = α ∪ δ and note that α ∪ δ is proper. By
assumption, we get α∩ δ ∈ K. But α∩ δ ⊂ α22 = π3Sβ and α∩ δ ⊂ α12 = π3Aβ imply π3Sβ ∈ K and π3Aβ ∈ K.
Hence, by Definition 3.1, (A,K) is preT2.
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Next, we show that (A,K) is T′0. Suppose α is any filter on the wedge with α ⊃ (q ◦ ik)(β) for some β in
K2, where K2 is the product constant filter convergence structure on A2, k = 1 or 2 and ∇(α) = [∅] or [(t, s)]
for some (t, s) ∈ A2. Then it follows easily that

α = [∅], [(t, s)2], [(t, s)1]

or
α ⊃ [(t, s)2] ∩ [(t, s)1].

If t = s, then α = [(t, t)]. Suppose t , s. If α = [(t, s)2] ∩ [(t, s)1], then α ⊃ (q ◦ ik)(β) for some β in K2 and k = 1
or 2, a contradiction since t , s.

If [∅] , α , [(t, s)2] ∩ [(t, s)1], then α ⊃ [(t, s)2] ∩ [(t, s)1] if and only if α = [(t, s)2] or [(t, s)1].
If α = [(t, s)2] or [(t, s)1], then α ⊃ [(t, s)2] ∩ [(t, s)1]. If α ⊃ [(t, s)2] ∩ [(t, s)1] and [∅] , α , [(t, s)2] ∩ [(t, s)1],

then ∃U ∈ αwith V = {(t, s)2, (t, s)1} 1 U. Since α is a filter and U,V ∈ α, U ∩V = {(t, s)2} or {(t, s)1} belongs α
and consequently, α = [(t, s)2] or [(t, s)1]. Hence, (A,K) is T′0 and thus, (A,K) is KT2.

Theorem 3.4. The categories KT2ConFCO and Chy are isomorphic.

Proof. Combine Theorems 2.5 and 3.3.

Theorem 3.5. If A is finite, then there is a bijection from the set KT2(A) of all KT2 constant filter convergence
stuctures on A onto the set Eq(A) of all equivalence relations on A.

Proof. Let (A,K) be a finite constant filter convergence space. Define functions f : Eq(A) → KT2(A) and
1 : KT2(A)→ Eq(A) as follow.

If K ∈ KT2(A), then let 1(K) = RK be given by aRKb if and only if [a] ∩ [b] ∈ K for all a, b ∈ A. RK is
reflexive and symmetric. Suppose aRKb and bRKc for a, b, c ∈ A. Since ([a] ∩ [b]) ∪ ([b] ∩ [c]) = [b] is proper
and (A,K) is KT2, by Theorem 3.3, ([a] ∩ [b]) ∩ ([b] ∩ [c]) ∈ K and thus, [a] ∩ [c] ∈ K ((A,K) is a constant filter
convergence space), i.e., aRKc, i.e., RK is transitive. Hence, RK ∈ Eq(A).

If R ∈ Eq(A), then let f (R) = KR be given by KR(a) = {α : [aR] ⊂ α} ∪ {[∅]} for all a ∈ A, where aR = {b ∈ B :
aRb }, the equivalence class of a. We show that (A,KR) is a KT2 constant filter convergence space. Since R is
reflexive and [aR] ⊂ [a], [a] ∈ KR for each a ∈ A. If α ∈ KR and β ⊃ α for any filter β on A, then [aR] ⊂ α and
hence, [aR] ⊂ β ∈ KR.

If α, β ∈ KR, then [aR] ⊂ α and [bR] ⊂ β for some a, b ∈ A. If α ∪ β is proper, then [aR] ∪ [bR] is proper.
Thus, aR ∩ bR , ∅ and since R is the equivalence relation on A, we have aR = bR and thus, α ∩ β ∈ KR. By
Theorem 3.3, (A,KR) is a KT2 constant filter convergence space.

Finally, we need to verify that 1o f = idEq(A) and f o1 = idKT2(A). Let R ∈ Eq(A) and 1o f (R) = 1(KR) = SKR .
Then for each a, b ∈ A, aSKR b if and only if [a] ∩ [b] ∈ KR and only if [aR] ⊂ [a] ∩ [b] if and only if aRb which
shows that 1o f = idEq(A).

Let K ∈ KT2(A) and f o1(K) = f (RK) = LRK . Then a proper filter α ∈ LRK if and only if [aRK ] ⊂ α for some
a ∈ A. Since (A,K) is finite, α = [D], where D = {a1, a2, ..., an} ⊂ aRK and aRKai, i = 1, 2, ...n. Note that [ai] ∈ K
and [a1] ∪

⋂n
i=2[ai] is proper. Since (A,K) is a KT2 constant filter convergence space, by Theorem 3.3, we get

α = [D] =
⋂n

i=1[ai] ∈ K. Hence, f o1(K) = f (RK) = LRK = K, i.e., 1o f = idKT2(A).

Example 3.6. (1) By Theoren 3.3, both indiscrete and discret constant filter convergence spaces are KT2
constant filter convergence spaces.

(2) Let A = {a, b}, K = {[∅], [a], [b], [c]}, and L = {[∅], [a], [b], [a] ∩ [b] = [A]} = F(A). By Theoren 3.3, both
(A,K) and (A,L) are KT2 constant filter convergence spaces.

(3) Let A = {a, b, c}, K = {[∅], [a], [b], [c], [a] ∩ [b], [a] ∩ [c], [b] ∩ [c]}, and L = {[∅], [a], [b], [c], [a] ∩ [b]}. By
Theoren 3.3, (A,K) is not KT2 constant filter convergence space since ([a] ∩ [b]) ∪ ([a] ∩ [c]) = [a] is
proper but ([a]∩ [b])∩ ([a]∩ [c]) = [A] < K. On the other hand, (A,L) is a KT2 constant filter convergent
space.
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(4) By Theorem 3.5, if A is finite, then every equivalence relation on A induces KT2 constant filter
convergent structure on A.

(5) By Theorem 4 of [19, p.353], ConFCO is a bireflective subcategory of FCO and for a filter convergence
space (A,K), 1A : (A,K)→ (A,L) is the bireflection, where for a ∈ A, L(a) = {K(x) : x ∈ A} is a constant
function. (A,L) is constant filter convergence space. By Theorem 4.10 of [7, p.598] and Corollary 3.14
of [4, p.392], T′2 and ST2 filter convergence spaces are KT2 constant filter convergence spaces.

(6) Every topological space (A, τ) induces a filter convergence space. Indeed, for a ∈ A, let ηa = {U ⊂ A :
∃V ∈ τ such that a ∈ V ⊂ U} be a neighborhood filter at the point a and define K(a) = {α : α ⊃ ηa}. Then
(A,K) is a filter convergence space and by Part (5), the bireflection (A,L) is constant filter convergence
space. Moreover, if (A, τ) is T2 topological space, then by Theoren 3.3 and Part (5), (A,L) is KT2 constant
filter convergence space. In particular, all metric spaces induce KT2 constant filter convergence spaces.

We denote by TE the subcategory of E whose objects are the T-spaces, where T = PreT2,KT2,T′0 and
E = ConFCO or Chy.

Remark 3.7. (A) In Top, there is no implication between PreT2 and T′0. Take the integers set Z with indiscrete
and cofinite topologies. In the realm of PreT2 topological spaces, by the Theorem 4.3 of [8], T′0, ST2, and KT2
are equivalent.

(B) In ConFCO, by Theorem 3.3, KT2ConFCO = PreT2ConFCO ⊂ T′0ConFCO = ConFCO. In partic-
ular, every PreT2 constant filter convergence space is T′0. However, (B = {x, y, z,w},K) in Example 2.4 is T′0
but it is not PreT2 since ([y] ∩ [z]) ∪ ([z] ∩ [w]) = [z] is proper and ([z] ∩ [y]) ∩ ([z] ∩ [w]) = [{z, y,w}] < K.

In the realm of PreT2 constant filter convergence spaces, by Theorem 3.3, T′0 and KT2 are equivalent.
(C) By Theorems 4.1-4.4 of [14], ST2Chy ⊂ KT2Chy = T′0Chy = PreT2Chy = Chy. In particular, all KT2,

PreT2, and T′0 Cauchy spaces are equal.

4. Strongly compact constant filter convergence spaces

In this section, we characterize strongly compact constant filter convergence spaces and investigate
some invariance properties of them.

Definition 4.1. Let U : E → B be a normalized topological functor, A,B ∈ Ob(E), and f : A −→ B be a
morphism inE that has epi-mono factorization, whereB is a category with finite products, a terminal object,
and pushouts.

(1) If the image of each strongly closed subobject of A is a strongly closed subobject of B, then f is said to
be strongly closed.

(2) If the projection π2 : A × B −→ B is strongly closed for each object B in E, then A is said to be strongly
compact.

If B = Set, then Definition 4.1 reduces to the one that was given in [6, p.225] and if E = Top,B = Set,
and a topological space is T1, then the notion of strong compactness (resp. closedness) reduces to usual
one.

Theorem 4.2. A constant filter convergence space (A,K) is strongly compact if and only if every ultra filter in A
converges.

Proof. Suppose (A,K) is a strongly compact space and α is a non covergent ultrafilter on A. Let B be the set
obtained by adjoining a new element to A, i.e., B = A ∪ {∞}. Define a convergence structure L on B by

L = {[∅], [x] : x ∈ A} ∪ {β ∈ F(B) : α = β ∪ [A] or β = [∞]}
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and let △ = {[(x, y) ∈ A × B : x = y} ⊂ A × B. Note that (B,L) is a constant filter convergence space. Let
σ = π−1

1 ([x]) ∪ π−1
2 (β). Since π1(σ) = [x] ∈ K and π2(σ) = β ∈ L, we have σ ∈ S, where S is the product

structure on A × B. By Theorem 2.5, the strong closure SclA×B(△) of △ is a strongly closed subset of A × B
and SclB×A(△) ⊂ A × A ⊂ A × B. Consequently, π2(SclA×B(△)) = A which is not a strongly closed subset of A
since ∞ ∈ B, ∞ < π2(△) = A, α 1 [∞] and α ∪ [π2(△)] = α ∪ [A] is proper for α ∈ L. Thus, by Theorem 2.3,
π2(△) ⊂ B is not strongly closed, a contradiction since (B,L) is strongly compact.

Suppose every ultrafilter in A converges. We need to show that for each constant filter convergence
space (B,L), the projection map π2 : (A × B,S) −→ (B,L) is strongly closed, where S is the product structure
on A × B. Suppose M ⊂ A × B is strongly closed and π2(M) is not strongly closed. By Theorem 2.3, α ⊂ [a]
and α∪ [π2(M)] is proper for some a ∈ B with a < π2(M) and some α ∈ L. Let σ = [M]∪π−1

2 (α). Note that σ is
proper, π1(σ) is a proper filter on A, and there exists a ultrafilter β ∈ K (by assumption) with π1(σ) ⊂ β. Let
θ = π−1

1 (β) ∪ π−1
2 (α). Note that π1(θ) = β ∈ K, π2(θ) = α ∈ L and by Proposition 2.1, θ ∈ S. Since π1(σ) ⊂ β,

θ ∪ [M] is proper. Also, a < π2(M) implies (x, a) < M for x ∈ A and θ ⊂ [(x, a)] (since π1(σ) ⊂ β = π1(θ) ∈ K)
and α ⊂ [a]. Thus, by Theorem 2.3, M is not strongly closed, a contradiction. Hence, π2(M) has to be
strongly closed subset of B and by Definition 4.1, (A,K) is strongly compact.

Example 4.3. By Theorem 4.2,

(1) every indiscrete constant filter convergence space is strongly compact.

(2) every finite constant filter convergence space is strongly compact.

(3) the discrete constant filter convergence space is strongly compact if and only if it is finite. Therefore,
the infinite discrete constant filter convergence space is not strongly compact.

(4) Let R be the reals and define K and L as K = {[∅], [x] : x ∈ R} ∪ {α : α is a free filter} and L = {α ∈ F(R) :
there is some ultrafilter β on R and some x ∈ R with α ⊃ β ∩ [x]} ∪ {α ∈ F(R) : α ⊃ {U ⊂ R : R \ U is
finite}}. By Theorem 4.2, (R,K) and (R,L) are strongly compact.

Theorem 4.4. (1) If Z is strongly closed subset of a strongly compact constant filter convergence space (A,K),
then Z is strongly compact.

(2) A strongly compact subset of KT2 constant filter convergence space need not be strongly closed.

Proof. (1) Suppose Z is strongly closed subset of a strongly compact space (A,K) and α is any ultrafilter on
Z. Let KZ be the initial structure on Z induced by the inclusion map i : Z → (A,K). Note that i(α) is an
ultrafilter on A with i(α) ∈ K since (A,K) is strongly compact and by Proposition 2.1, α ∈ KZ. Hence, by
Theorem 4.2, Z is strongly compact.

(2) Let R be the reals. Then, by Theorem 3.3, the indiscrete space (R,F(R)) is KT2 and by Theorem 2.3,
the subset [0, 3] of R is not strongly closed but by Theorem 4.2, [0, 3] is strongly compact.

Theorem 4.5. Let f : (A,K) −→ (B,L) be continuous.

(1) If (A,K) is strongly compact, then f (A) is strongly compact.

(2) If (B,L) is KT2 and (A,K) is strongly compact, then f need not be strongly closed.

Proof. (1) Let α be a ultrafilter on f (A) and L f (A) be the initial structure on f (A) induced by the inclusion
map i : f (A) → B. Then, f−1(i(α)) = [{ f−1(V) : V ∈ i(α)}] ∈ F(A) and there is a ultrafilter β on A with
β ⊃ f−1(i(α)). Since (A,K) is strongly compact, by Theorem 4.2, β ∈ K. Note that f (β) ⊃ f ( f−1(i(α)) ⊃ i(α)
and thus, i(α) = f (β) (i(α) is a ultrafilter on B). Since f : (A,K) −→ (B,L) is continuous and β ∈ K, then
i(α) = f (β) ∈ L, and so, α ∈ L f (A). Hence, by Theorem 4.2, ( f (A),L f (A)) is strongly compact.

(2) Let (R,K) be as in Example 4.3 (4) and (R,F(R)) be the indiscrete constant filter convergence space.
The identity function id : (R,K) −→ (R,F(R)) is continuous and by Theorem 4.2, (R,K) is strongly compact
and by Theorem 3.3, (R,F(R)) is KT2. By Theorem 2.3, {3} is strongly closed subset of (R,K). Indeed, for
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every a ∈ R with a < {3} and every α ∈ K, we have α = [∅], [a] for a ∈ R or α is a free filter. If α = [3], then
α 1 [a] for every a ∈ R with a < {3} and if α , [3], then α∪ [3] is improper. If α is a free filter, then α 1 [a] for
every a ∈ R with a < {3} and α ∪ [3] is improper (if α ∪ [3] were proper, then α = [3], a contradiction since α
is a free filter). However, id({3}) = {3} is not strongly closed subset of (R,F(R)).

Theorem 4.6. An arbitrary product of strongly compact constant filter convergence spaces is strongly compact.

Proof. Let (Ai,Ki) be strongly compact constant filter convergence spaces for every i ∈ I and α be any
ultrafilter on the product space (A =

∏
i∈I Ai,K). Since πi(α) is an ultrafilter on Ai and each (Ai,Ki) is

strongly compact, by Theorem 4.2, πi(α) ∈ Ki for each i ∈ I and by Proposition 2.1, α ∈ K. Hence, by
Theorem 4.2, (A,K) is strongly compact.

5. Comments

For B = Set, Definitions 2.1, 3.1, and 4.1 reduce to the ones that were given in [2, p.337], [6, p.225] and
if B is a category with finite limits and colimit, then (1) of Definition 3.1 reduces to that was given in [20,
p.18]. In general, by Remark 2.8 of [5] and Remark 3.6, there is no implication between PreT2 (resp. KT2)
and T′0 (resp. ST2). In the realm of PreT2 topological spaces, by the Theorem 4.3 of [8], T′0, ST2, and KT2 are
equivalent. Does this result hold in general?

Note that a notion of closedness at the level of set-based topological categories was defined in [4]. In
Top, if a space is T1, then the notions of closedness and strong closedness coincide. By Theorem 3.1, 3.2,
3.9, and 3.10 of [4], these notions are independent of each other in a topological category, in general. When
do these notions coincide?

Definitions 2.1, 3.1, and 4.1 open the way to the investigation of separation properties, compactness,
disconnectedness, and connectedness in a much larger non set-based topological categories. Therefore,
it will be useful to have the characterization of each of them and present important theorems in general
topology.

If U : E → B is topological andD is a full subcategory of E such that the restriction U1 = U|D : D → B
is still topological, then for an object X ∈ D we have two notions of strong closedness, KT2, PreT2, and T′0
objects one with respect to U and one with respect to U1. One may expect that the two notions may differ.
Take E = ConFCO andD = Top. Then by Remark 3.6 and Theorem 3.3,

T′0ConFCO = ConFCO, KT2ConFCO = Chy = PreT2ConFCO

T′0Top = T0Top, KT2Top = ST2Top = T2Top ⊂ PreT2Top.

In Top, by Remark 3.6, there is no implication between PreT2 and T′0 and in the realm of PreT2 topological
spaces, by the Theorem 4.3 of [8], T′0, ST2, and KT2 are equivalent. Every zero-dimensional topological
space is PreT2. If B is a PreT2 topological space and an arbitrary intersection of open subsets of B is open,
then B is zero-dimensional [20, p.84].

By Theorem 3.3 and Remark 3.6, all KT2, PreT2, and T′0 Cauchy spaces are equal and every ST2 Cauchy
space is KT2.

By Theorem 2.5, the category ConFCO is a link between the categories Fil and FCO. In constant filter
convergence spaces the concept of completeness is not available but in KT2 constant filter convergence
spaces, this concept is available since by Theorem 3.3, KT2 constant filter convergence structure induces the
associated Cauchy structure.

In ConFCO, if (A,K) is a finite constant filter convergence space, then

(1) by Theorem 3.5, the partitions of A are in one-to-one correspondence with the distinct KT2 constant
filter convergence structures on A.

(2) by Theorem 3.3 and Remark 3.6, every PreT2 constant filter convergence space is T′0 and in the realm
of PreT2 constant filter convergence spaces, T′0 and KT2 are equivalent.
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T′0 and PreT2 were used to define T2, T3, and T4 objects in topological categories [2, p.340].
The equivalence relations can be characterized in terms of KT2 reflexive spaces [8]. The equivalence

(rep. partial, equals) relations can be characterized in terms of PreT2 (resp. T′0,KT2) preordered spaces [8].
If an extended pseudo-quasi-semi metric space (A, d) is KT2, then A has a partition consisting of strongly

closed subsets [9, p.4759] and [15, p.709].
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