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Abstract. In this article, it is shown that if G is a strongly topological gyrogroup, H is a closed strong
subgyrogroup of G and H is inner neutral, then the quotient space G/H is a sequential α4-space if and
only if it is a strongly Fréchet-Urysohn space, which deduces that the quotient space G/H is a weakly
first-countable space if and only if it is metrizable. Then, it is shown that every Fréchet-Urysohn Hausdorff
paratopological gyrogroup having the property (∗∗) is a strong α4-space, which deduces that every Fréchet-
Urysohn Hausdorff paratopological gyrogroup having the property (∗∗) is a strongly Fréchet-Urysohn
space. Moreover, it is shown that if a Hausdorff paratopological gyrogroup having the property (∗∗) is a
sequentialα4-space, then it is a strongly Fréchet-Urysohn space. Finally, we investigate the Fréchet-Urysohn
Hausdorff paratopological gyrogroup with an ωω-base and show that every Fréchet-Urysohn Hausdorff
paratopological gyrogroup having the property (∗∗) with an ωω-base is first-countable.

1. Introduction

A gyrogroup is a generalization of a group such that the associative law has been replaced by a
weaker one. The concept of gyrogroups was introduced by A.A. Ungar when he study the c-ball of
relativistically admissible velocities with Einstein velocity addition in [38], where Einstein velocity addition
is the standard velocity addition of relativistically admissible velocities that Einstein introduced in [20]
that founded the special theory of relativity in 1905. In 2017, W. Atiponrat [4] introduced the concept of
topological gyrogroups. A topological gyrogroup is a gyrogroup G endowed with a topology such that the
binary operation ⊕ : G × G → G is jointly continuous and the inverse mapping ⊖(·) : G → G, i.e. x → ⊖x,
is also continuous. By further study on the classical Möbius gyrogroups, Bao and Lin [8] introduced the
concept of strongly topological gyrogroups. A topological gyrogroup G is called a strongly topological
gyrogroup if there exists a neighborhood base U of 0 such that, for every U ∈ U , gyr[x, y](U) = U for
any x, y ∈ G. Clearly, every topological group is a strongly topological gyrogroup. A series of results on
(strongly) topological gyrogroups have been obtained in [5, 8–11, 13, 15–17, 41–43].
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This research was supported by the National Natural Science Foundation of China (Nos. 12471070, 12071199), the Project of

Suqian Sci&Tech Program (Grant No. K202441), and the Foundation of PhD start-up of Suqian University (Nos. 2024XRC003), the
Qing Lan Project.

* Corresponding author: Qianqian Sun
Email addresses: mengbao95213@163.com (Meng Bao), 909950213@qq.com (Qianqian Sun)



M. Bao, Q. Sun / Filomat 39:3 (2025), 883–893 884

In [37], T. Suksumran and K. Wiboonton introduced the notion of L-subgyrogroups and showed that
if H is an L-subgyrogroup of a gyrogroup G, then the set {a ⊕ H : a ∈ G} forms a disjoint partition of G.
It is natural to research the quotient spaces of gyrogroups. In particular, Bao and Xu [12] constructed a
subgyrogroup H in a strongly topological gyrogroup G such that 1yr[x, y](H) = H for all x, y ∈ G, hence
they introduced the concept of strong subgyrogroups in a topological gyrogroup. Clearly, for a topological
gyrogroup G, every strong subgyrogroup of G is an L-subgyrogroup.

The concept of ωω-base was introduced by Ferrando et al. in [23] in the framework of locally convex
spaces for studying (DF)-spaces and C(X)-spaces. Then Gabriyelyan, Kakol and Leiderman investigated
topological groups with an ωω-base and showed that a topological group G is metrizable if and only if
it is Fréchet-Urysohn and has an ωω-base. In 2022, Bao and Xu [12] improved the result and showed
that all Fréchet-Urysohn rectifiable spaces with countable cs∗-character are metrizable, which deduces that
all Fréchet-Urysohn topological gyrogroups with countable cs∗-character are metrizable. Moreover, they
extended the result that a topological group G is metrizable if and only if it is Fréchet-Urysohn and has
an ωω-base to quotient spaces of strongly topological gyrogroups. They showed that if G is a strongly
topological gyrogroup, H is a closed strong subgyrogroup of G and H is inner neutral, then G/H is first-
countable if and only if G/H is Fréchet-Urysohn with an ωω-base. Therefore, it is natural to extend some
important results of topological groups to quotient spaces of strongly topological gyrogroups. It is well-
known that every weakly first-countable topological group is metrizable, then the following question is
posed.

Question 1.1. Let G be a strongly topological gyrogroup, H a closed inner neutral strong subgyrogroup of G. If the
quotient space G/H is weakly first-countable, is it metrizable?

In 2020, W. Atiponrat and R. Maungchang posed the concept of paratopological gyrogroups and showed
that every regular micro-associative paratopological gyrogroup is completely regular, see [6, 27]. Then P.
Li and R. Shen [29] proved that every T0 compact paratopological gyrogroup is a Hausdorff topological
gyrogroup. Since every paratopological group is a paratopological gyrogroup, we would like to extend
some important results of paratopological groups to paratopological gyrogroups. In particular, Cai et al. [18]
investigated paratopological groups with an ωω-base and proved that every Fréchet-Urysohn Hausdorff
paratopological group having the property (∗∗) with an ωω-base is first-countable, hence submetrizable,
where a paratopological group G has the property (∗∗) if there exists a non-trivial sequence {xn}n∈N in G such
that both {xn}n∈N and {x−1

n }n∈N converge to the identity of G. It is natural to consider the following question.

Question 1.2. Is every Fréchet-Urysohn Hausdorff paratopological gyrogroup G with an ωω-base first-countable?
What if G has the property (∗∗)?

In this paper, we show that if G is a strongly topological gyrogroup, H is a closed strong subgyrogroup
of G and H is inner neutral, then the quotient space G/H is a sequential α4-space if and only if it is a strongly
Fréchet-Urysohn space, which deduces that if the quotient space G/H is a weakly first-countable space
if and only if it is metrizable, which gives an affirmative answer to Question 1.1. Then, it is shown that
every Fréchet-Urysohn Hausdorff paratopological gyrogroup having the property (∗∗) is a strong α4-space,
which deduces that every Fréchet-Urysohn Hausdorff paratopological gyrogroup having the property (∗∗)
is a strongly Fréchet-Urysohn space. Moreover, it is shown that if a Hausdorff paratopological gyrogroup
having the property (∗∗) is a sequential α4-space, then it is a strongly Fréchet-Urysohn space. Finally,
we investigate the Fréchet-Urysohn Hausdorff paratopological gyrogroup with an ωω-base and show that
every Fréchet-Urysohn Hausdorff paratopological gyrogroup having the property (∗∗) with an ωω-base is
first-countable, which gives an affirmative answer to Question 1.2 when a paratopological gyrogroup G has
the property (∗∗).

2. Preliminaries

Throughout this paper, if not specified, we assume that all topological spaces are T1 spaces. Moreover,
the set of all positive integers denoted by N and the first infinite ordinal denoted by ω. The reader may
consult [3, 21, 31, 40] for notation and terminology not explicitly given here.
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Definition 2.1. ([4]) Let G be a nonempty set, and let ⊕ : G × G→ G be a binary operation on G. Then the
pair (G,⊕) is called a groupoid or magma. A function f from a groupoid (G1,⊕1) to a groupoid (G2,⊕2) is
called a groupoid homomorphism if f (x⊕1 y) = f (x)⊕2 f (y) for any elements x, y ∈ G1. Furthermore, a bijective
groupoid homomorphism from a groupoid (G,⊕) to itself will be called a groupoid automorphism. We write
Aut(G,⊕) for the set of all automorphisms of a groupoid (G,⊕).

Definition 2.2. ([40]) Let (G,⊕) be a groupoid. The system (G,⊕) is called a gyrogroup, if its binary operation
satisfies the following conditions:

(G1) There exists a unique identity element 0 ∈ G such that 0 ⊕ a = a = a ⊕ 0 for all a ∈ G.
(G2) For each x ∈ G, there exists a unique inverse element ⊖x ∈ G such that ⊖x ⊕ x = 0 = x ⊕ (⊖x).
(G3) For all x, y ∈ G, there exists gyr[x, y] ∈ Aut(G,⊕) with the property that x⊕(y⊕z) = (x⊕y)⊕gyr[x, y](z)

for all z ∈ G.
(G4) For any x, y ∈ G, gyr[x ⊕ y, y] = gyr[x, y].

Notice that a group is a gyrogroup (G,⊕) such that gyr[x, y] is the identity function for all x, y ∈ G. The
definition of a subgyrogroup is as follows.

Definition 2.3. ([37]) Let H be a nonempty subset of a gyrogroup G. We call H a subgyrogroup provided
with H forming a gyrogroup under the operation inherited from G and gyr[x, y]|H being an automorphism
of H for each x, y ∈ H, denoted by H ≤ G.

Furthermore, a subgyrogroup H of G is said to be an L-subgyrogroup, denoted by H ≤L G, if gyr[a, h](H) =
H for all a ∈ G and h ∈ H.

Proposition 2.4. ([37]) Let (G,⊕) be a gyrogroup, and let H be a nonempty subset of G. Then H is a subgyrogroup
if and only if the following statements are true:

1. For any x ∈ H, ⊖x ∈ H.
2. For any x, y ∈ H, x ⊕ y ∈ H.

Lemma 2.5. ([40]). Let (G,⊕) be a gyrogroup. Then for any x, y, z ∈ G, we obtain the following:
1. (⊖x) ⊕ (x ⊕ y) = y.
2. (x ⊕ (⊖y)) ⊕ gyr[x,⊖y](y) = x.
3. (x ⊕ gyr[x, y](⊖y)) ⊕ y = x.
4. gyr[x, y](z) = ⊖(x ⊕ y) ⊕ (x ⊕ (y ⊕ z)).

Definition 2.6. ([39]) Let (G,⊕) be a gyrogroup, and x ∈ G. We define the left gyrotranslation by x to be the
function Lx : G→ G such that Lx(y) = x ⊕ y for any y ∈ G; the right gyrotranslation by x is defined to be the
function Rx : G→ G such that Rx(y) = y ⊕ x for any y ∈ G.

Definition 2.7. ([4]) A triple (G, τ,⊕) is called a topological gyrogroup if the following statements hold:
1. (G, τ) is a topological space.
2. (G,⊕) is a gyrogroup.
3. The binary operation ⊕ : G × G → G is jointly continuous while G × G is endowed with the product

topology, and the operation of taking the inverse ⊖(·) : G→ G, i.e. x→ ⊖x, is also continuous.

If a triple (G, τ,⊕) satisfies the first two conditions and its binary operation is continuous, it is called a
paratopological gyrogroup [6]. In particular, if the binary operation and the topology are clear, we just say
that G is a topological gyrogroup (paratopological gyrogroup).

Example 2.8. ([4]) The Einstein gyrogroup with the standard topology is a topological gyrogroup but not
a topological group.

Let R3
c = {v ∈ R3 : ||v|| < c}, where c is the vacuum speed of light, and ||v|| is the Euclidean norm of a

vector v ∈ R3. The Einstein velocity addition ⊕E : R3
c ×R

3
c → R

3
c is given as follows:

u ⊕E v =
1

1 + u·v
c2

(u +
1
γu

v +
1
c2

γu

1 + γu
(u · v)u),
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for any u,v ∈ R3
c , u · v is the usual dot product of vectors in R3, and γu is the gamma factor which is given

by

γu =
1√

1 − u·u
c2

.

It was proved in [40] that (R3
c ,⊕E) is a gyrogroup but not a group. Moreover, with the standard topology

inherited from R3, it is clear that ⊕E is continuous. Finally, −u is the inverse of u ∈ R3 and the operation of
taking the inverse is also continuous. Therefore, the Einstein gyrogroup (R3

c ,⊕E) with the standard topology
inherited from R3 is a topological gyrogroup but not a topological group.

The following concepts are important in our researches.

Definition 2.9. Let X be a topological space.
(1) X is called a weakly first-countable space or 1 f -countable space [2] if for each point x ∈ X it is possible to

assign a sequence {B(n, x) : n ∈ N} of subsets of X containing x in such a way that B(n + 1, x) ⊆ B(n, x) and
so that a set U is open if, and only if, for each x ∈ U there exists n ∈N such that B(n, x) ⊆ U.

(2) X is called a sequential space [24] if for each non-closed subset A ⊆ X, there are a point x ∈ X \ A and
a sequence in A converging to x in X.

(3) X is called a Fréchet-Urysohn space [24] if for any subset A ⊆ X and x ∈ A, there is a sequence in A
converging to x in X.

(4) X is called a strongly Fréchet-Urysohn space [36] if the following condition is satisfied:
(SFU) For each x ∈ X and every sequence ξ = {An : n ∈ N} of subsets of X such that x ∈

⋂
n∈N An, there

exists a sequence η = {bn : n ∈N} in X converging to x and intersecting infinitely many members of ξ.
(5) X is called an α4-space [35], if for every point x ∈ X and each sheaf {Sn : n ∈ N} with the vertex x,

there exists a sequence converging to x which meets infinitely many sequences Sn.

Definition 2.10. ([3]) Let ζ be a family of non-empty subsets of a topological space X.
(1) ζ is called a prefilter on X if whenever P1 and P2 are in ζ, there exists P ∈ ζ such that P ⊆ P1 ∩ P2.
(2) A prefilter ζ on X is said to converge to a point x ∈ X if every open neighbourhood of x contains an

element of ζ.
(3) A prefilter ζ on X is said to accumulate to a point x ∈ X if x belongs to the closure of each element of ζ.
(4) Two prefilters ζ and η on X are said to be synchronous if, for any P ∈ η and Q ∈ η, P ∩Q , ∅.
(5) X is called a bisequential space if, for every prefilter ζ on X accumulating to a point x ∈ X, there exists

a countable prefilter η on X converging to the same point x such that ζ and η are synchronous.

The following diagram shows basic relationships between the classes of spaces defined in Definitions
2.9 and 2.10.

bisequential
space

- strongly Fréchet-Urysohn
space

-

?

Fréchet-Urysohn
space

?first-countable
space

���

@@R α4-space sequential
space

weakly first-countable
space

-

6

The relationships between the classes of spaces defined in Definitions 2.9 and 2.10
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3. Quotient spaces with inner neutral strong subgyrogroups

In this section, it is shown that if G is a strongly topological gyrogroup, H is a closed strong subgyrogroup
of G and H is inner neutral, then the quotient space G/H is a sequential α4-space if and only if it is a strongly
Fréchet-Urysohn space, which deduces that if the quotient space G/H is a weakly first-countable space if
and only if it is metrizable, which gives an affirmative answer to Question 1.1.

First, we recall the following concept of the coset space of a topological gyrogroup.
Let (G, τ,⊕) be a topological gyrogroup and H an L-subgyrogroup of G. It follows from [37, Theorem

20] that G/H = {a ⊕H : a ∈ G} is a coset space which defines a partition of G. We denote by π the mapping
a 7→ a ⊕H from G onto G/H. Clearly, for each a ∈ G, we have π−1(π(a)) = a ⊕H. Indeed, for any a ∈ G and
h ∈ H,

(a ⊕ h) ⊕H = a ⊕ (h ⊕ gyr[h, a](H))
= a ⊕ (h ⊕ gyr−1[a, h](H))
= a ⊕ (h ⊕H)
= a ⊕H

Denote by τ(G) the topology of G, the quotient topology on G/H is as follows:

τ(G/H) = {O ⊆ G/H : π−1(O) ∈ τ(G)}.

Definition 3.1. ([12]) A subgyrogroup H of a topological gyrogroup G is called strong subgyrogroup if for
any x, y ∈ G, we have 1yr[x, y](H) = H.

Obviously, for a topological gyrogroup G, every strong subgyrogroup of G is an L-subgyrogroup.
Moreover, the authors claimed that every strongly topological gyrogroup G contains some strong subgy-
rogroups which are union-generated from open neighborhoods of the identity element by construction, see
[12, Proposition 3.11].

A topological space X is called a coset space if X is homeomorphic to G/H, for some closed subgroup H
of a topological group G. It is well-known that every first-countable topological group is metrizable by the
Birkhoff-Kakutani theorem. However, the following example shows that it does not hold in coset spaces.

Example 3.2. ([22]) The two arrows space is a compact coset space which is first-countable, but not sub-
metrizable.

Since every topological group is a strongly topological gyrogroup and each subgroup is a strong subgy-
rogroup, the Example 3.2 shows that the axioms of first-countability is not equivalent with metrizability in
the quotient space G/H, where G is a strongly topological gyrogroup and H is a closed strong subgyrogroup
of G.

Definition 3.3. ([12]) A subgyrogroup H of a topological gyrogroup G is called inner (outer) neutral if for
every open neighborhood U of 0 in G, there exists an open neighborhood V of 0 such that H ⊕ V ⊆ U ⊕ H
(V ⊕H ⊆ H ⊕U). H is called neutral if it is not only inner neutral but also outer neutral.

Remark 3.4. According to [12, Proposition 3.16], it was proved that if G is a strongly topological gyrogroup,
then every compact strong subgyrogroup H of G is outer neutral, that is, for every open neighborhood U
of 0 in G, there exists an open neighborhood V of 0 such that V ⊕ H ⊆ H ⊕ U. It is not difficult to see that
every compact strong subgyrogroup H of G is inner neutral by the similar proof. Therefore, every compact
strong subgyrogroup of a strongly topological gyrogroup is neutral.

Lemma 3.5. ([12]) Let G be a strongly topological gyrogroup and H a closed strong subgyrogroup of G. Then the
family {π(x⊕V) : V ∈ τ, 0 ∈ U} is a local base of the space G/H at the point x⊕H ∈ G/H, and G/H is a homogeneous
T1-space.
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Theorem 3.6. Suppose that G is a strongly topological gyrogroup, H is a closed strong subgyrogroup of G and H is
inner neutral, then the followings are equivalent.

(1) G/H is a sequential α4-space;
(2) G/H is Fréchet-Urysohn;
(3) G/H is strongly Fréchet-Urysohn.

Proof. It is well-known that a topological space X is a strongly Fréchet-Urysohn space if and only if it is
Fréchet-Urysohn and strong α4-space. According to [12, Theorem 3.19], it was proved that if G is a strongly
topological gyrogroup, H is an inner neutral closed strong subgyrogroup of G and G/H is Fréchet-Urysohn,
then G/H is a strong α4-space. Therefore, it suffices to prove that (1)⇒ (2). Suppose further that the space
G/H is non-discrete.

(1) ⇒ (2). For A ⊆ G/H, we write [A] the set of all limit points of sequences in A. Suppose on the
contrary that G/H is not Fréchet-Urysohn. There is a subset B of G/H such that [B] , B. If [B] is closed in
G/H, then B ⊆ [B] = [B] ⊆ B, which is a contradiction. Hence, [B] is not closed in G. By the hypothesis,
G/H is sequential, so [B] is not sequentially closed, that is [[B]] , [B]. Thus there is b ∈ [[B]] \ [B]. We may
assume b = π(0) without loss of generality, since G/H is homogeneous by Lemma 3.5.

Let {bn : n ∈N} be a sequence of points of [B] converging to π(0). For each n ∈N, fix a point xn ∈ π−1(bn).
For each bn, let {bn( j) : j ∈ N} be a sequence of points of B converging to bn. For each j ∈ N, fix a point
xn( j) ∈ π−1(bn( j)). We claim lim j→∞ π((⊖xn) ⊕ xn( j)) = π(0).

Indeed, let O be an open neighborhood of π(0) in G/H, then there is an open neighborhood U of 0
in G such that π(U) ⊆ O. Since lim j→∞ π(xn( j)) = lim j→∞ bn( j) = bn = π(xn), there is m ∈ N such that
π(xn( j)) ∈ π(xn ⊕ U) for j ≥ m. So π((⊖xn) ⊕ xn( j)) ∈ π((⊖xn) ⊕ (xn ⊕ U)) = π(U) ⊆ O for j ≥ m. Hence
lim j→∞ π((⊖xn) ⊕ xn( j)) = π(0).

Since G/H is an α4-space, it is possible to pick nk, jk for each k ∈ N such that {π((⊖xnk ) ⊕ xnk ( jk)) : k ∈ N}
converges to π(0) and nk < nk+1 for each k ∈ N. It follows from [12, Lemma 3.17] that limk→∞ bnk ( jk) =
limk→∞ π(xnk ( jk)) = limk→∞ π(xnk ⊕ ((⊖xnk ) ⊕ xnk ( jk))) = π(0), this contradicts the assumption that π(0) < [B].
Therefore, G/H is Fréchet-Urysohn.

Note. It was claimed in [34, Theorem 4.4] that for a strongly topological gyrogroup G, if H is a closed
neutral strong subgyrogroup of G, then G/H is metrizable if and only if G/H is first-countable. Moreover,
it follows from [32, Corollary 1.3.10(2)] that every weakly first-countable Fréchet-Urysohn space is first-
countable. Therefore, we conclude the following result.

Corollary 3.7. Suppose that G is a strongly topological gyrogroup, H is a closed strong subgyrogroup of G and H is
inner neutral, then the quotient space G/H is a weakly first-countable space if and only if G/H is metrizable.

4. On Fréchet-Urysohn paratopological gyrogroups

In this section, we show that every Fréchet-Urysohn Hausdorff paratopological gyrogroup having the
property (∗∗) is a strong α4-space, which deduces that every Fréchet-Urysohn Hausdorff paratopological
gyrogroup having the property (∗∗) is a strongly Fréchet-Urysohn space. Moreover, it is shown that if a
Hausdorff paratopological gyrogroup having the property (∗∗) is a sequential α4-space, then it is a strongly
Fréchet-Urysohn space. Finally, we show that every Fréchet-Urysohn Hausdorffparatopological gyrogroup
having the property (∗∗) with an ωω-base is first-countable, which gives an affirmative answer to Question
1.2 when a paratopological gyrogroup G has the property (∗∗).

Proposition 4.1. Let G be a paratopological gyrogroup and x be any element of G. Then the left gyrotranslation Lx
of G by x is a homeomorphism of the space G onto itself.

Proof. It is clear that Lx is a continuous bijection. For any y ∈ G, Lx(y) = x⊕ y. Then L⊖x(Lx(y)) = L⊖x(x⊕ y) =
⊖x⊕(x⊕y) = y. Therefore, L⊖x◦Lx is the identity mapping, it follows that the inverse of Lx is also continuous.
Hence, Lx is a homeomorphism of the space G onto itself.
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Proposition 4.2. Every paratopological gyrogroup is a homogeneous space.

Proof. Let G be a paratopological gyrogroup. For arbitrary x, y ∈ G, put z = y ⊕ 1yr[y, x](⊖x). Then
Lz(x) = z ⊕ x = (y ⊕ 1yr[y, x](⊖x)) ⊕ x = y by Lemma 2.5. Moreover, Lz is homeomorphic by Proposition 4.1,
so G is homogeneous.

Proposition 4.3. Let G be a paratopological gyrogroup, U a neighborhood of the identity element 0. Then there exists
an open neighborhood V of 0 such that V ⊆ U and V ⊕ V ⊆ U.

Proof. Since the mapping ⊕ : G×G→ G is continuous, (⊕)−1(Int(U)) is an open set containing (0, 0). We can
find open neighborhoods V1 and V2 of 0 such that 0 ∈ V1 ⊕V2 ⊆ Int(U) ⊆ U. Put V = V1 ∩V2. Then V is an
open neighborhood of 0 such that V ⊆ U and V ⊕ V ⊆ U.

Definition 4.4. A paratopological gyrogroup is said to have the property (∗∗) if there exists a non-trivial
sequence {xn}n∈N in G such that both {xn}n∈N and {⊖xn}n∈N converge to the identity element 0 of G.

Definition 4.5. ([18]) A topological space X is called a strong α4-space if for any subset {xm,n : m,n ∈N} ⊆ X
with limn→∞xm,n = x ∈ X for each m ∈ N, there are strictly increasing sequences of natural numbers {ik}k∈N
and { jk}k∈N such that limk→∞xik , jk = x.

The idea of the following proof is originated from [19, Lemma 1.3], then Lin, Cai and Ling used the same
method to investigate rectifiable spaces, paratopological groups and coset spaces of topological groups,
respectively, see [30, Lemma 5.1], [18, Theorem 2.3] and [33, Theorem 3.7].

Theorem 4.6. Every Fréchet-Urysohn Hausdorff paratopological gyrogroup having the property (∗∗) is a strong
α4-space.

Proof. Let G be a Fréchet-Urysohn Hausdorff paratological gyrogroup having the property (∗∗) and {xm,n :
m,n ∈ N} ⊆ G be such that limn→∞xm,n = 0 for each m ∈ N. Since G is homogeneous by Proposition 4.2,
it suffices to show that there exist strictly increasing sequences of natural numbers {ik}k∈N and { jk}k∈N such
that limk→∞xik, jk = 0.

Since G has the property (∗∗), there exists a non-trivial sequence {am}m∈N in G with limm→∞am = 0 and
limm→∞ ⊖ am = 0. For every m, l ∈N, put

ym,l =

{
am ⊕ xm,l+m , am ⊕ xm,l+m , 0;

am , otherwise.

Set M = {ym,l : (m, l) ∈N ×N}. Then 0 <M, we show that 0 ∈M.
Indeed, for each open neighborhood U of 0 in G, there exists a neighborhood V of 0 such that V⊕V ⊆ U

by Proposition 4.3. Since limm→∞am = 0, we can find m ∈N such that am ∈ V. It follows from limn→∞xm,n = 0
that xm,l+m ∈ U for some l ∈N. Hence ym,l ∈ V ⊕ V ⊆ U, which deduces that M ∩U , ∅ and 0 ∈M.

Since G is Fréchet-Urysohn, we can find a sequence {ymk,lk }k∈N converging to 0 in G.
Case 1. The sequence {lk}k∈N is bounded.
Choose a subsequence if necessary, then assume that lk = r, k = 1, 2, · · ·, for some natural number r.

Since limk→∞ymk ,r = limk→∞ymk,lk = 0 and ymk ,r , 0, we know that limk→∞mk = ∞. Choosing once more a
subsequence, we assume further that mk < mk+1 for each k ∈N.

Subcase 1.1. The set N1 = {k ∈N : ymk ,r = amk } is infinite.
Denote N1 = {p1, p2, · · ·} with pk < pk+1 for each k ∈ N. Then ampk

⊕ xmpk ,r+mpk
= 0 for each k ∈ N. As

limk→∞ ⊖ ampk
= 0, we have limk→∞xmpk ,r+mpk

= limk→∞[(⊖ampk
) ⊕ (ampk

⊕ xmpk ,r+mpk
)] = 0. For each k ∈ N, put

ik = mpk and jk = r +mpk , then {ik}k∈N and { jk}k∈N are strictly increasing sequences such that limk→∞xik , jk = 0.
Subcase 1.2. The set N1 = {k ∈N : ymk ,r = amk } is finite.
Then put N2 = {k ∈ N : ymk,r , amk }, so N2 is infinite. Denote N2 = {q1, q2, · · ·} with qk < qk+1 for

each k ∈ N. Then ymqk ,lqk
= amqk

⊕ xmqk ,r+mqk
for each k ∈ N. Since limk→∞ ⊖ amqk

= 0, we have that
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limk→∞xmqk ,r+mqk
= limk→∞[(⊖amqk

) ⊕ (amqk
⊕ xmqk ,r+mqk

)] = 0. For each k ∈N, put ik = mqk and jk = r +mqk , then
{ik}k∈N and { jk}k∈N are also strictly increasing sequences such that limk→∞xik , jk = 0.

Case 2. The sequence {lk}k∈N is not bounded.
Assume that {lk}k∈N is strictly increasing, then limk→∞mk = ∞. Otherwise, taking a subsequence if

necessary, there exists s ∈N such that mk = s for each k ∈N. Since {lk}k∈N is strictly increasing, limk→∞xs,s+lk =
0. From limk→∞ys,lk = 0, it follows that amk = as = 0, which is a contradiction with the choice of {am}m∈N.
Thus limk→∞mk = ∞. Then there exists a strictly increasing sequence {nk}k∈N ofN such that mn1 < mn2 < · · ·.
As limk→∞amnk

⊕ xmnk ,lnk+mnk
= limk→∞ymnk ,lnk

= 0 and limk→∞ ⊖ amnk
= 0, we have that limk→∞xmnk ,lnk+mnk

=
limk→∞[(⊖amnk

)⊕ (amnk
⊕ xmnk ,lnk+mnk

)] = 0. For each k ∈N, put ik = mnk and jk = lnk +mnk , so {ik}k∈N and { jk}k∈N
are strictly increasing sequences such that limk→∞xik, jk = 0. We conclude that G is a strong α4-space.

It is well-known that a topological space X is a strongly Fréchet-Urysohn space if and only if it is
Fréchet-Urysohn and strong α4-space. Then the following result is obtained.

Corollary 4.7. Every Fréchet-Urysohn Hausdorff paratological gyrogroup having the property (∗∗) is a strongly
Fréchet-Urysohn space.

Theorem 4.8. Let G be a Hausdorff paratopological gyrogroup having the property (∗∗). If G is a sequential α4-space,
then it is a strongly Fréchet-Urysohn space.

Proof. For A ⊆ G, we write [A] the set of all limit points of sequences in A. First, we show that G is a
Fréchet-Urysohn space. Suppose on the contrary that G is not Fréchet-Urysohn. There is a subset B of G
such that [B] , B. If [B] is closed in G, then B ⊆ [B] = [B] ⊆ B, which is a contradiction. Hence, [B] is
not closed in G. By the hypothesis, G is sequential, so [B] is not sequentially closed, that is [[B]] , [B].
Thus there is b ∈ [[B]] \ [B]. We may assume b = 0 without loss of generality, since G is homogeneous by
Proposition 4.2.

Since 0 ∈ [[B]], we can find a sequence {xn}n∈N of points of [B] such that {xn}n∈N converges to 0. For
each n ∈ N, there exists a sequence {xn, j} j∈N ⊆ B such that the sequence {xn, j} j∈N converges to xn. Then
lim j→∞{(⊖xn)⊕xn, j} = 0. By the hypothesis, G is a α4-space, it is possible to pick nk, jk for each k ∈N such that
limk→∞{(⊖xnk )⊕xnk, jk } = 0 and nk < nk+1 for each k ∈N. Then limk→∞ xnk , jk = limk→∞(xnk ⊕{(⊖xnk )⊕xnk , jk }) = 0,
this contradicts the assumption that 0 < [B]. Therefore, G is Fréchet-Urysohn.

Finally, it follows from Corollary 4.7 that G is a strongly Fréchet-Urysohn space.

Definition 4.9. ([25]) A point x of a topological space X is said to have a neighborhood ωω-base or a local
G-base if there exists a base of neighborhoods at x of the form {Uα(x) : α ∈ NN} such that Uβ(x) ⊆ Uα(x) for
all elements α ≤ β inNN, whereNN consisting of all functions fromN toN is endowed with the natural
partial order, ie., f ≤ 1 if and only if f (n) ≤ 1(n) for all n ∈ N. The space X is said to have an ωω-base or a
G-base if it has a neighborhood ωω-base or a local G-base at every point x ∈ X.

Suppose that G is a paratopological gyrogroup and G has an ωω-base {Uα : α ∈NN}. Set

Ik(α) = {β ∈NN : βi = αi for i = 1, · · · , k}, and Dk(α) =
⋂
β∈Ik(α)

Uβ,

where α = (αi)i∈N ∈ NN and k ∈ N. It is clear that {Dk(α)}k∈N is an increasing sequence of subsets of G and
contains the identity element 0.

Lemma 4.10. ([26]) Let α = (αi)i∈N ∈ NN and βk = (βk
i )i∈N ∈ Ik(α) for every k ∈ N. Then there is γ ∈ NN such

that α ≤ γ and βk ≤ γ for every k ∈N.

Theorem 4.11. Every Fréchet-Urysohn Hausdorff paratopological gyrogroup having the property (∗∗) with an ωω-
base is first-countable.
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Proof. Let G be a Fréchet-Urysohn Hausdorff paratopological gyrogroup having the property (∗∗) with
an ωω-base {Uα : α ∈ NN}. First, we show that for each α ∈ NN, there is k ∈ N such that Dk(α) is a
neighborhood of the identity element 0. Suppose on the contrary, we can find α ∈NN such that Dk(α) is not
a neighborhood of 0, for any k ∈ N. It means that 0 ∈ G \Dk(α) for any k ∈ N. Since G is Fréchet-Urysohn,
we can find a sequence {xn,k}n∈N in G \Dk(α) which converges to 0. It follows from Theorem 4.6 that G is a
strong α4-space, so there are strictly increasing sequences (ni)i∈N and (ki)i∈N of natural numbers such that
limi→∞xni,ki = 0. For every i ∈ N, there exists βki ∈ Iki (α) such that xni,ki < Uβki

. It follows from Lemma 4.10
that there is γ ∈NN such that βki ≤ γ for every i ∈N. Therefore, for any i ∈N, xni,ki < Uγ. We conclude that
the sequence {xni,ki }i∈N does not converge to 0 and this is a contradiction.

Therefore, for each α ∈NN, we can find a minimal natural number kα such that Dkα (α) is a neighborhood
of the identity element 0. It is clear that Dkα (α) ⊆ Uα. Moreover, for i ∈N, fix α(i) = (i, α2, α3, · · · ) ∈NN. Then
for any β = (β1, β2, · · · ) ∈ I1(α(i)), D1(β) = D1(αi). Therefore, {D1(α) : α ∈NN} = {D1(α(i)) : i ∈N} is countable.
So, {Dk(α) : k ∈ N, α ∈ NN} is countable. Furthermore, {Dkα (α) : α ∈ NN} ⊆ {Dk(α) : k ∈ N, α ∈ NN}. Thus,
we have that the family {Dkα (α) : α ∈NN} is countable. In conclusion, the family {int(Dkα (α)) : α ∈NN} is a
countable base of open neighborhoods at 0 in G. It follows from Proposition 4.2 that G is first-countable.

It follows from Proposition 4.2 that if a paratopological gyrogroup G is first-countable, then it has an
ωω-base. Therefore, by Theorem 4.11, the following result is clear.

Corollary 4.12. Let G be a Hausdorff paratopological gyrogroup having the property (∗∗). Then G is first-countable
if and only if G is Fréchet-Urysohn with an ωω-base.

A topological space X is hemicompact if X =
⋃

n∈N Xn, where Xn is compact for every n ∈N and for every
compact K ⊆ X, there is n ∈N such that K ⊆ Xn.

Proposition 4.13. Every Fréchet-Urysohn hemicompact topological gyrogroup is locally compact and metrizable.

Proof. Let G be a Fréchet-Urysohn hemicompact topological gyrogroup and G =
⋃

n∈N Kn, where {Kn}n is
an increasing sequence of compact subsets of K containing the identity element 0 such that every compact
set in G is contained in some Kn. Then we can find n ∈ N such that Kn is a neighborhood of 0. Suppose on
the contrary that Kn is not a neighborhood of 0 for any n ∈N. Then for each n ∈N and each neighborhood
U of 0, there exists xU,n ∈ U \ Kn. For each n ∈ N, set Bn = {xU,n : U is an open neighborhood of 0}. Then
0 ∈ Bn. Since G is Fréchet-Urysohn, for each n ∈N, we can find an open neighborhood sequence {Un(k)}k of
0 such that xUn(k),n → 0 at k → ∞. Since every Fréchet-Urysohn topological gyrogroup is a strong α4-space
by [14, Lemma 3.3], there exists strictly increasing sequences {kp}p∈N and {np}p∈N such that xUnp (kp),np → 0 at
p → ∞. Since the set B = {xUnp (kp),np : p ∈ N} ∪ {0} is compact in G, we can find m ∈ N such that B ⊆ Km,
which is a contradiction. Taking into account that G is homogeneous by Proposition 4.2, it follows that G is
locally compact.

Since every locally compact topological gyrogroup is feathered and every topological gyrogroup is a
rectifiable space, it follows from [1, Theorem 3.4] that every feathered topological gyrogroup with countable
tightness is first-countable. Hence, G is metrizable by [1, Theorem 3.2].

Revising the proof of Proposition 4.13, we show that every Fréchet-Urysohn Hausdorff paratopological
gyrogroup having the property (∗∗) is locally compact.

Proposition 4.14. Every Fréchet-Urysohn Hausdorff hemicompact paratopological gyrogroup having the property
(∗∗) is locally compact.

Proof. Let G be a Fréchet-Urysohn Hausdorff hemicompact paratopological gyrogroup having the property
(∗∗) and G =

⋃
n∈N Kn, where Kn is compact for every n ∈N and for every compact K ⊆ G there exists n ∈N

such that K ⊆ Kn. Then we show that there exists n ∈ N such that Kn is a neighborhood of 0. Suppose on
the contrary that Kn is not a neighborhood of 0 for any n ∈N. Then for each n ∈N and each neighborhood
U of 0, there exists xU,n ∈ U \ Kn. For each n ∈ N, set Bn = {xU,n : U is an open neighborhood of 0}. Then
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0 ∈ Bn. Since G is Fréchet-Urysohn, for each n ∈N, we can find an open neighborhood sequence {Un(k)}k of
0 such that xUn(k),n → 0 at k→ ∞. Since every Fréchet-Urysohn Hausdorff paratological gyrogroup having
the property (∗∗) is a strong α4-space by Theorem 4.6, there exists strictly increasing sequences {kp}p∈N and
{np}p∈N such that xUnp (kp),np → 0 at p→ ∞. Since the set B = {xUnp (kp),np : p ∈ N} ∪ {0} is compact in G, we can
find m ∈N such that B ⊆ Km, which is a contradiction. Therefore, we obtain that G is locally compact.

In [28], Jin and Xie introduced the concept of strongly paratopological gyrogroups, that is, G is called a
strongly paratopological gyrogroup if G is a paratopological gyrogroup and there exists a neighborhood base
U of 0 in G such that for every U ∈ U , gyr[x, y](U) = U for any x, y ∈ G. They showed that every locally
compact Hausdorff strongly paratopological gyrogroup is a topological gyrogroup. Then we obtain the
following result by Propositions 4.13 and 4.14.

Corollary 4.15. Every Fréchet-Urysohn Hausdorff hemicompact strongly paratopological gyrogroup having the
property (∗∗) is locally compact and metrizable.

A space X is submetrizable if there exists a continuous one-to-one mapping of X onto a metrizable
space. In [7], Banakh and Ravsky showed that every first-countable Hausdorff paratopological group is
submetrizable. Then the following question is natural.

Question 4.16. Is every first-countable Hausdorff paratopological gyrogroup submetrizable?
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