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Abstract. The present article introduces the concept of generalized F-Suzuki type contraction in the setting
of extended b-metric spaces, inspired by the existing concept in b-metric spaces. The newly introduced
notion is further utilized to prove fixed point theorems for F-Suzuki type contraction which unified,
extended and generalized many existing results in the literature. Finally, the established results are utilized
to solve Fredholm integral equation.

1. Introduction

In 1906, French scholar Maurice Frechet [11] introduced the notion of metric space. Multiple approaches
have been made to expand metric space since, including fuzzy metric spaces, probabilistic metric spaces
and so on, via changing or eliminating certain axioms, shifting the metric function or removing some axioms
entirely. These techniques are more used in fixed point research these days. Several beneficial findings
have been produced in this being [16, 18–20].

Fixed point theory has swell as one of the most successful approaches in contemporary mathematical
analysis. It is important in its own right way and has progressed considerably over the past century.
Stefan Banach [3] was the first person who established fixed point theorem in the settings of metric spaces.
Banach was able to extract the basic idea of fixed points from these outcomes and so began studying
the subject of metric fixed-point theory. Following the fact that this branch grew independently and
contributed to numerous advancements in a variety of fields of scientific research. The Banach contraction
principle has been extended and generalized by several writers due to its relevance and simplicity (see to
[4, 6, 7, 10, 13, 14]).

In this process, Wardowski [23] generalized Banach contraction in different manner by introducing
F-contraction and proved a fixed point theorem. After that Wardowski and Dung [24] establish the notion
of weak F-contraction by weaking the contraction condition and proved fixed point theorem. Hussein et
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al. extended the result of Wardowski by applying some weaker conditions on the self-map of a complete
metric space and proved a fixed point result which generalizes the result of Wardowski.

Bakhtin [4] and Czerwik [8] initially put forward the ideas of b-metric spaces as a new type of metric
space that weaken the triangle inequality and Czerwik [9] proved Banach contraction principle in the
settings of b-metric spaces. After that, many authors have proved fixed point theorems in the context of a
b-metric space [1, 17]. Piri et al. [1] introduced generalized F-Suzuki type contraction in b-metric space and
proved fixed point theorem for the newly established contraction.

In 2017, Kamran et al. [12] introduced the concept of extended b-metric space as a generalization of
b-metric space and proved some fixed point theorem. The main aim of this article is to establish generalized
F-Suzuki type contraction in the settings of extended b-metric space.

2. Preliminaries

In this section, some basic definitions and examples are collected from background study for further
utilize them in the main results.

Definition 2.1. [12] Let E be a non-empty set and θ : E×E→ [1,∞) be a function. A mapping mθ : E×E→ [0,∞)
is said to be an extended b-metric if for all κ, λ, µ ∈ E, the following conditions are satisfied:

(mθ1) mθ(κ, λ) = 0 iff κ = λ,
(mθ2) mθ(κ, λ) = mθ(λ, κ),
(mθ3) mθ(κ, λ) ≤ θ(κ, λ)[mθ(κ, µ) +mθ(µ, λ)].

The pair (E,mθ) is called an extended b-metric space.
An extended b-metric is a b-metric on setting θ(κ, λ) = s and θ(κ, λ) = 1 it become usual metric space. Hence

the notion of extended b-metric is a real generalization of b-metric space.

Example 2.2. Assume E = {1, 2, 3}. Define θ : E × E→ [1,∞) and mθ : E × E→ R+ as:

θ(κ, λ) = 1 + κ + λ,mθ(1, 1) = mθ(2, 2) = mθ(3, 3) = 0,
mθ(1, 2) = mθ(2, 1) = 10,mθ(1, 3) = mθ(3, 1) = 100,mθ(2, 3) = mθ(3, 2) = 50.

The conditions (mθ1) and (mθ2) trivially hold. For (mθ3) we have:

mθ(1, 3) = 100, θ(1, 3) [mθ(1, 2) +mθ(2, 3)] = 5(10 + 50) = 300,
mθ(1, 2) = 10, θ(1, 2) [mθ(1, 3) +mθ(3, 2)] = 4(100 + 50) = 600,
mθ(2, 3) = 50, θ(2, 3) [mθ(2, 1) +mθ(1, 3)] = 6(10 + 100) = 660.

Hence, for all κ, λ, µ ∈ E
mθ(κ, µ) ≤ θ(κ, µ)

[
mθ(κ, λ) +mθ(λ, µ)

]
.

Hence, (E,mθ) is an extended b-metric space but not a metric space as mθ(1, 3) ≥ mθ(1, 2) + mθ(2, 3), triangle
inequality does not hold.

Definition 2.3. [12] Let (E,mθ) be an extended b-metric space. A sequence {κn}
∞

n=1 in E is called convergent sequence
iff ∃ κ ∈ E such that mθ(κn, κ)→ 0 as n→∞ and in this case we write lim

n→∞
κn = κ.

Definition 2.4. [12] Let (E,mθ) be an extended b-metric space. A sequence {κn}
∞

n=1 in E is called Cauchy sequence
iff mθ(κn, κm)→ 0 as m,n→∞.

Definition 2.5. [12] If every Cauchy sequence in E is convergent then (E,mθ) is called complete extended b-metric
space.
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Definition 2.6. We define the continuity for extended b-metric space as follows: Let (E,mθE ) and (Y,mθY ) are
extended b-metric spaces. A mapping f : E → Y is called continuous at a point κ ∈ E, if ∀ sequence {κn}

∞

n=1 in E
such that κn → κ, then f (κn)→ f (κ). And mapping f : E→ Y is called continuous on E, if it is continuous at each
point on E.

Definition 2.7. [1] Let F denote the set of all functions F : R+ → R is mapping satisfying the following conditions:

(F1) For all κ, λ ∈ R+ such that κ < λ⇒ F(κ) < F(λ) i.e. F is strictly increasing,
(F2) For every sequence {κn}

∞

n=1, lim
n→∞

(κn) = 0⇔ lim
n→∞

F(κn) = −∞; where κn > 0 for all n ∈N.

Example 2.8. [23] Define F : R+ → R as F(κ) = ln(κ) + κ. Then, F hold the conditions (F1) and (F2). Hence,
F ∈ F.

3. Main results

Throughout this section motivated by the theme of generalized F-Suzuki type contraction in b-metric
space, the idea of generalized F-Suzuki type contraction in extended b-metric space as follows.

Definition 3.1. Let (E,mθ) be an extended b-metric space and H : E→ E be a mapping. If ∃ F ∈ F and τ > 0 such
that ∀ κ, λ ∈ E with κ , λ

1
2θ(κ,Hκ)

mθ(κ,Hκ) < mθ(κ, λ)

⇒ τ + F(mθ(Hκ,Hλ)) ≤ αF(mθ(κ, λ)) + βF(mθ(κ,Hκ)) + γF(mθ(λ,Hλ)). (1)

Where, 0 ≤ α, β ≤ 1, 0 ≤ γ < 1 with 1 = α+ β+γ. Then, H is called generalized F-Suzuki type contraction mapping
on (E,mθ) .

Theorem 3.2. Let (E,mθ) be a complete extended b-metric space, H : E→ E be a mapping and θ : E × E→ [1,∞)
be a bounded function. If H is a generalized F-Suzuki type contraction on E, then H has a fixed point κ∗ ∈ E.

Proof. Let fix κ0 ∈ E. Consider an iterative sequence {κn} as follows:

κ1 = Hκ0, κ2 = Hκ1 = H2κ0, . . . , κn+1 = Hκn = Hn+1κ0, ∀ n ∈N ∪ {0}.

If κn = κn+1 for some n ∈N ∪ {0}, therefore it is obvious that κn is a fixed point of H.
Now, consider that κn , κn+1 ∀ n ∈N ∪ {0}, this yields mθ(κn,Hκn) > 0, for all n ∈N ∪ {0}. Therefore,

1
2θ(κn,Hκn)

mθ(κn,Hκn) < mθ(κn,Hκn), ∀ n ∈N. (2)

Thus,

τ + F(mθ(Hκn,H2κn)) ≤ αF(mθ(κn,Hκn)) + βF(mθ(κn,Hκn)) + γF(mθ(Hκn,H2κn))

⇒ τ + (1 − γ)F(mθ(Hκn,H2κn)) ≤ (α + β)F(mθ(κn,Hκn)).

Since, α + β + γ = 1.

⇒ F(mθ(Hκn,H2κn)) ≤ F(mθ(κn,Hκn)) −
τ
α + β

< F(mθ(κn,Hκn)). (3)

From (F1), conclude that

mθ(κn+1,Hκn+1) = mθ(Hκn,H2κn) < mθ(κn,Hκn), for all n ∈N. (4)
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Therefore, {mθ(κn,Hκn)}∞n=1 is a bounded below and monotonically decreasing sequence. Thus, sequence
{mθ(κn,Hκn)}∞n=1 is convergent and

F(mθ(κn,Hκn)) = F(mθ(Hκn−1,H2κn)),

≤ F(mθ(κn−1,Hκn−1)) −
τ
α + β

,

≤ F(mθ(κn−2,Hκn−2)) − 2
τ
α + β

,

...

≤ F(mθ(κ0,Hκ0)) − n
τ
α + β

.

Hence,

lim
n→∞

F(mθ(κn,Hκn)) = −∞ ⇔ lim
n→∞

mθ(κn,Hκn) = 0. (5)

Our aims to demonstrate this in the subsequent stage,

lim
n,k→∞

mθ(κn, κk) = 0.

On the other hand, consider that there exists ϵ > 0 and sequences {rn}
∞

n=1 and {sn}
∞

n=1 ofN satisfying,

rn > sn > n, mθ(κrn , κsn ) ≥ ϵ, mθ(κrn−1 , κsn ) < ϵ, for all n ∈N. (6)

Then,

mθ(κrn , κsn ) ≤ θ(κrn , κsn )
[
mθ(κrn , κrn−1 ) +mθ(κrn−1 , κsn )

]
≤ θ(κrn , κsn )mθ(κrn , κrn−1 ) + θ(κrn , κsn )ϵ
= θ(κrn , κsn )mθ(κrn−1 ,Hκrn−1 ) + θ(κrn , κsn )ϵ, for all n ∈N.

(7)

From equation (5), there exists N2 ∈N such that

mθ(κrn ,Hκrn ) < ϵ, for all n > N2. (8)

Put the value in (7) find that

mθ(κrn , κsn ) < 2θ(κrn , κsn )ϵ, for all n > N2.

So from (F2), we obtain

F(mθ(κrn , κsn )) < F(2θ(κrn , κsn )ϵ), for all n > N2. (9)

On the other hand,

1
2θ(κrn ,Hκrn )

(mθ(κrn ,Hκrn )) <
ϵ

2θ(κrn ,Hκrn )
< ϵ ≤ mθ(κrn , κsn ), for all n > N2. (10)

Although, H is generalized F-Suzuki type contraction, for all n > N2, we investigate

τ + F(mθ(Hκrn ,Hκsn )) ≤αF(mθ(κrn , κsn )) + βF(mθ(κrn ,Hκrn ))
+ γF(mθ(κsn ,Hκsn )),

(11)
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By the (9),

τ + F(mθ(Hκrn ,Hκsn )) ≤αF(2θ(κrn , κsn )ϵ) + βF(mθ(κrn ,Hκrn ))
+ γF(mθ(κsn ,Hκsn )).

There exist M ∈ R such that F(2θ(κrn , κsn )ϵ) ≤ M, because θ is bounded function. So from (5) and (F2),
obtain that,

lim
n→∞

F(mθ(Hκrn ,Hκsn )) = −∞.

From (F2), we get
lim
n→∞

(mθ(Hκrn ,Hκsn )) = 0⇔ lim
n→∞

(mθ(κrn+1 , κsn+1 )) = 0.

This is a contradiction with the relation in (6). Hence, lim
n,k→∞

mθ(κn, κk) = 0, that is {κn}
∞

n=1 is a Cauchy

sequence in E. Because of completion of (E,mθ), there exists κ∗ ∈ E as well as

lim
n→∞

mθ(κn, κ
∗) = 0. (12)

Further show that, for every n ∈N

Either
1

2θ(κn,Hκn)
mθ(κn,Hκn) < mθ(κn, κ

∗),

or
1

2θ(κn,Hκn)
mθ(Hκn,H2κn) < mθ(Hκn, κ

∗), ∀n ∈N.
(13)

Assume, on the other hand, that there is n0 ∈N satisfying,

1
2θ(κn0 ,Hκn0 )

mθ(κn0 ,Hκn0 ) ≥ mθ(κn0 , κ
∗)

and
1

2θ(Hκn0 ,H2κn0 )
mθ(Hκn0 ,H

2κn0 ) ≥ mθ(Hκn0 , κ
∗)

(14)

From (4)

mθ(Hκn0 ,H
2κn0 ) < mθ(κn0 ,Hκn0 ). (15)

It follows from (14) and (15) that

mθ(κn0 ,Hκn0 ) ≤ θ(κn0 ,Hκn0 )
[
mθ(κn0 , κ

∗) +mθ(κ∗,Hκn0 )
]
,

≤ θ(κn0 ,Hκn0 )mθ(κn0 , κ
∗) + θ(κn0 ,Hκn0 )mθ(κ∗,Hκn0 ),

≤
1
2

mθ(κn0 ,Hκn0 ) +
1
2

mθ(Hκn0 ,H
2κn0 ),

<
1
2

mθ(κn0 ,Hκn0 ) +
1
2

mθ(κn0 ,Hκn0 ),

= mθ(κn0 ,Hκn0 ).

(16)

Which is a contradiction. Hence, inequality (13) holds. Then,
either

τ + F(mθ(Hκn,Hκ∗)) ≤αF(mθ(κn, κ
∗)) + βF(mθ(κn,Hκn))

+ γF(mθ(κ∗,Hκ∗)),
(17)

or

τ + F(mθ(H2κn,Hκ∗)) ≤αF(mθ(Hκn, κ
∗)) + βF(mθ(Hκn,H2κn))

+ γF(mθ(κ∗,Hκ∗)),
(18)
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Letting n→∞ and applying equation (5) and (12), in (17), deduce

lim
n→∞

F(mθ(Hκn,Hκ∗)) = −∞,

⇒ lim
n→∞

(mθ(Hκn,Hκ∗)) = 0. (19)

Considering the triangular inequality, observe that

mθ(κ∗,Hκ∗) ≤ θ(κ∗,Hκ∗)
[
mθ(κ∗,Hκn) +mθ(Hκn,Hκ∗)

]
,

≤ θ(κ∗,Hκ∗)
[
mθ(κ∗, κn+1) +mθ(Hκn,Hκ∗)

]
.

Let n→ ∞ in the inequality above, as well as the constraints in (12) and (19), deduce that, mθ(κ∗,Hκ∗) = 0.
Thus κ∗ is a fixed point of H.
By equation (5) and (12)

lim
n→∞

F(mθ(κn+1, κ
∗)) = −∞, lim

n→∞
F(mθ(κn+1,Hκn+1)) = −∞. (20)

Letting n→∞ and applying equation (5) and (12), in (18), deduce

lim
n→∞

F(mθ(H2κn,Hκ∗)) = −∞,

⇒ lim
n→∞

(mθ(H2κn,Hκ∗)) = 0. (21)

Considering the triangular inequality, we observe that

mθ(κ∗,Hκ∗) ≤ θ(κ∗,Hκ∗)
[
mθ(κ∗,H2κn) +mθ(H2κn,Hκ∗)

]
,

= θ(κ∗,Hκ∗)
[
mθ(κ∗, κn+2) +mθ(H2κn,Hκ∗)

]
.

Let n → ∞ in the inequality above, as well as the constraints in (12) and (21), deduce that mθ(κ∗,Hκ∗) = 0.
Thus κ∗ is a fixed point of H.

Example 3.3. Consider the sequence {Sn}n∈N as follows:

S1 = 1, S2 = 1 + 22, · · ·

Sn = 1 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

Let E = {Sn : n ∈N} and mθ(x, y) = |x−y|. Then (E,mθ) is complete extended b-metric space, (whereθ(x, y) = 1).
Define the mapping H : X→ X by H (S1) = S1 and H (Sn) = Sn−1 for every n > 1. Since,

lim
n→∞

mθ (H (Sn) ,H (S1))
mθ (Sn,S1)

= 1.

H is not a Banach contraction and a Suzuki contraction. On the other hand taking F(α) = −1
α + α ∈ F, we obtain

the result that H is an generalized F-Suzuki type contraction with τ = 2. To see this, let us consider the following
calculation. First observe that,

1
2

mθ (Sn,HSn) < mθ (Sn,Sm) ⇔ [(1 = n < m) ∨ (1 ≤ m < n) ∨ (1 < n < m)].

For 1 = n < m, we have

|H (Sm) −H (S1)| = |Sm−1 − S1| = 22 + 32 + · · · + (m − 1)2.

|Sm − S1| = 22 + 32 + · · · +m2.
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Since m > 1 and −1
22+32+···+(m−1)2 <

−1
22+32+···+m2 , we have

2 −
1

|H (Sm) −H (S1)|
+ |H (Sm) −H (S1)|

= 2 −
1

22 + 32 + · · · + (m − 1)2 + [22 + 32 + · · · + (m − 1)2],

< 2 −
1

22 + 32 + · · · +m2 + [22 + 32 + · · · + (m − 1)2)],

≤ −
1

22 + 32 + · · · +m2 + [22 + 32 + · · · + (m − 1)2] +m2,

= −
1

22 + 32 + · · · +m2 + [22 + 32 + · · · +m2],

= −
1

|Sm − S1|
+ |Sm − S1| .

For 1 = m < n, similar to 1 = n < m, we have

2 −
1

|H (Sm) −H (S1)|
+ |H (Sm) −H (S1)| < −

1
|Sm − S1|

+ |Sm − S1| .

For 1 < n < m, we have

|H (Sm) −H (Sn)| = n2 + (n + 1)2 + · · · + (m − 1)2.

|Sm − Sn| = (n + 1)2 + (n + 2)2 + · · · +m2.

We know that −1
n2+(n+1)2+···+(m−1)2 <

−1
(n+1)2+(n+2)2+···+m2 . Therefore,

2−
1

|H (Sm) −H (Sn)|
+ |H (Sm) −H (Sn)| ,

= 2 −
1

n2 + (n + 1)2 + · · · + (m − 1)2 + [n2 + (n + 1)2 + · · · + (m − 1)2],

< 2 −
1

(n + 1)2 + (n + 2)2 + · · · +m2 + [n2 + (n + 1)2 + · · · + (m − 1)2],

= −
1

(n + 1)2 + (n + 2)2 + · · · +m2 + [(n + 1)2 + (n + 2)2 + · · · + (m − 1)2] +m2,

≤ −
1

(n + 1)2 + (n + 2)2 + · · · +m2 + [(n + 1)2 + (n + 2)2 + · · · +m2],

< −
1

|Sm − Sn|
+ |Sm − Sn| .

Therefore, τ + F (mθ (H (Sm) ,H (Sn))) ≤ mθ (Sm,Sn), for all m,n ∈ N. Hence, H is a generalized F-Suzuki type
contraction and H (S1) = S1.

Theorem 3.4. Let (E,m) be a complete b-metric space and a mapping H : E → E be a self-map. Assume, there is a
F ∈ F and τ > 0 such that ∀ κ, λ ∈ E with κ , λ,

1
2s

m(κ,Hκ) < m(κ, λ)

⇒ τ + F(m(Hκ,Hλ)) ≤ αF(m(κ, λ)) + βF(m(κ,Hκ)) + γF(m(λ,Hλ)). (22)

Where 0 ≤ α, β ≤ 1, 0 ≤ γ < 1 with 1 = α + β + γ
Then, H has a fixed point κ∗ ∈ E.
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Proof. By setting θ(κ, λ) = s in Theorem (3.2), the desired proof is obtained.

Theorem 3.5. Let (E,m) be a complete metric space and H : E→ E be a mapping . Assume, there is one F ∈ F and
τ > 0 such that for all κ, λ ∈ E with κ , λ,

1
2

m(κ,Hκ) < m(κ, λ)⇒ τ + F(m(Hκ,Hλ)) ≤ F(m(κ, λ)).

Then, H has a unique fixed point κ∗ ∈ E.

Proof. By setting α = 1, β = γ = 0 and θ(κ, λ) = 1 in Theorem (3.2), then find H has a fixed point. Let fixed
point is κ∗ ∈ E. Furthermore, if ∃ λ∗ ∈ E such that H(λ∗) = λ∗ and κ∗ , λ∗ then,

1
2

m(κ∗,Hκ∗) < m(κ∗, λ∗)⇒ τ + F(m(Hκ∗,Hλ∗)) ≤ F(m(κ∗, λ∗)),

⇒ τ + F(m(κ∗, λ∗)) ≤ F(m(κ∗, λ∗)).

Which is contradiction. So, H has a unique fixed point.

Remark 3.6. (I) When θ(κ, λ) = s ≥ 1. Then, Theorem (3.2) reduces to main result of Alsulami, karapnar and Piri
[1]. Hence, Theorem (3.2) is a proper generalization of theorem (9) of [1].

Definition 3.7. Let (E,mθ) be an extended b-metric space and H : E→ E be a mapping. If ∃ F ∈ F and τ > 0 such
that ∀ κ, λ ∈ E with κ , λ,

0 < mθ(Hκ,Hλ),
⇒ τ + F(mθ(Hκ,Hλ)) ≤ αF(mθ(κ, λ)) + βF(mθ(κ,Hκ)) + γF(mθ(λ,Hλ)). (23)

Where, 0 ≤ α, β ≤ 1, 0 ≤ γ < 1 with 1 = α+ β+γ. Then, H is called generalized F- contraction on extended b-metric
space (E,mθ) .

Theorem 3.8. Let (E,mθ) be a complete extended b-metric space, H be a continuous self-mapping on E and θ :
E × E→ [1,∞) is a bounded function. If H is a generalized F-contraction on E, then H has a fixed point κ∗ ∈ E.

Proof. Let fix κ0 ∈ E. Consider an iterative sequence {κn} as follows:

κ1 = Hκ0, κ2 = Hκ1 = H2κ0, . . . , κn+1 = Hκn = Hn+1κ0, ∀ n ∈N ∪ {0}.

If κn = κn+1 for some n ∈N ∪ {0}, therefore result is obviously true.
Now, consider that κn , κn+1 for all n ∈N ∪ {0}, this yields

mθ(κn,Hκn) > 0 for all n ∈N ∪ {0}.

Thus, by the hypothesis of theorem, we have

τ + F(mθ(Hκn,H2κn)) ≤ αF(mθ(κn,Hκn)) + βF(mθ(κn,Hκn)) + γF(mθ(Hκn,H2κn)),

⇒ τ + (1 − γ)F(mθ(Hκn,H2κn)) ≤ (α + β)F(mθ(κn,Hκn)).

Since α + β + γ = 1.

F(mθ(Hκn,H2κn)) ≤ F(mθ(κn,Hκn)) −
τ
α + β

≤ F(mθ(κn,Hκn)). (24)

From (F1), conclude that

mθ(κn+1,Hκn+1) = mθ(Hκn,H2κn) < mθ(κn,Hκn), for all n ∈N. (25)
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Therefore, {mθ(κn,Hκn)}∞n=1 is a bounded below and monotonically decreasing sequence. Thus, {mθ(κn,Hκn)}∞n=1
converges and

F(mθ(κn,Hκn)) = F(mθ(Hκn−1,H2κn)),

≤ F(mθ(κn−1,Hκn−1)) −
τ
α + β

,

≤ F(mθ(κn−2,Hκn−2)) − 2
τ
α + β

,

...

≤ F(mθ(κ0,Hκ0)) − n
τ
α + β

.

Hence we have

lim
n→∞

F(mθ(κn,Hκn)) = −∞ ⇒ lim
n→∞

mθ(κn,Hκn) = 0. (26)

Our aims to demonstrate this in the subsequent stage,

lim
n,k→∞

mθ(κn, κk) = 0.

If not satisfy this equation. Then, consider that there exists ϵ > 0 such that sequences {rn}
∞

n=1 and {sn}
∞

n=1 of
N satisfying,

rn > sn > n, mθ(κrn , κsn ) ≥ ϵ, mθ(κrn−1 , κsn ) < ϵ, for all n ∈N. (27)

By triangle inequality,

mθ(κrn , κsn ) ≤ θ(κrn , κsn )
[
mθ(κrn , κrn−1 ) +mθ(κrn−1 , κsn )

]
,

≤ θ(κrn , κsn )mθ(κrn , κrn−1 ) + θ(κrn , κsn )ϵ,
≤ θ(κrn , κsn )mθ(κrn−1 ,Hκrn−1 ) + θ(κrn , κsn )ϵ, for all n ∈N.

(28)

Because of (26), there one exists N2 ∈N satisfying,

mθ(κrn ,Hκrn ) < ϵ, for all n > N2, (29)

Put in (28) find that
mθ(κrn , κsn ) < 2θ(κrn , κsn )ϵ, for all n > N2,

⇒ F(mθ(κrn , κsn )) < F(2θ(κrn , κsn )ϵ), for all n > N2.

On the other hand from (26),

ϵ ≤ mθ(κrn+1, κsn+1) = mθ(Hκrn ,Hκsn ).

Then,

τ + F(mθ(Hκrn ,Hκsn )) ≤αF(mθ(κrn , κsn )) + βF(mθ(κrn ,Hκrn ))
+ γF(m(κsn ,Hκsn )),

⇒ τ + F(mθ(Hκrn ,Hκsn )) ≤αF(2θ(κrn , κsn )ϵ) + βF(mθ(κrn ,Hκrn ))
+ γF(mθ(κsn ,Hκsn )).

(30)
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There exist M ∈ R such that F(2θ(κrn , κsn )ϵ) ≤ M, because θ is bounded function. So from (26) and (F2),
obtain that

lim
n→∞

F(mθ(Hκrn ,Hκsn )) = −∞,

⇒ lim
n→∞

(mθ(Hκrn ,Hκsn )) = 0.

This is a contradiction with the relation in (27). Hence, lim
n,k→∞

mθ(κn, κk) = 0; that is {κn}
∞

n=1 is a Cauchy

sequence in E. Because of completion of (E,mθ), there exists κ∗ ∈ E as well as.

lim
n→∞

mθ(κn, κ
∗) = 0. (31)

due to continuity of H, observe that
lim
n→∞

mθ(Hκn,Hκ∗) = 0.

As m(κ∗,Hκ∗) ≤ θ(κ∗,Hκ∗)
[
mθ(κ∗, κn)+mθ(κn,Hκ∗)

]
, thus, mθ(κ∗,Hκ∗) = 0 and so κ∗ is a fixed point of H.

Example 3.9. Consider the sequence {Sn}n∈N as follows:

S1 = 1, S2 = 1 + 23, · · ·

Sn = 1 + 23 + · · · + n3 =

(
n(n + 1)

2

)2

.

Let E = {Sn : n ∈N} and mθ(x, y) = |x−y|. Then (E,mθ) is complete extended b-metric space, (whereθ(x, y) = 1).
Define the mapping H : X→ X by H (S1) = S1 and H (Sn) = Sn−1 for every n > 1. Since,

lim
n→∞

mθ (H (Sn) ,H (S1))
mθ (Sn,S1)

= 1.

H is not a Banach contraction and a Suzuki contraction. On the other hand taking F(α) = −1
α + α ∈ F, we obtain the

result that H is an generalized F-contraction with τ = 1.5. To see this, let us consider the following calculation. First
observe that,

0 < mθ (HSn,HSm) .

Then,
For 1 = n < m, we have

|H (Sm) −H (S1)| = |Sm−1 − S1| = 23 + 33 + · · · + (m − 1)3,

|Sm − S1| = 23 + 33 + · · · +m3.

Since m > 1 and −1
23+33+···+(m−1)3 <

−1
23+33+···+m3 , we have

1.5 −
1

|H (Sm) −H (S1)|
+ |H (Sm) −H(S1)|

= 1.5 −
1

23 + 33 + · · · + (m − 1)3 + [23 + 33 + · · · + (m − 1)3],

< 1.5 −
1

23 + 33 + · · · +m3 + [23 + 33 + · · · + (m − 1)3],

≤ −
1

23 + 33 + · · · +m3 + [23 + 33 + · · · + (m − 1)3] +m3,

= −
1

23 + 33 + · · · +m3 + [23 + 33 + · · · +m3],

= −
1

|Sm − S1|
+ |Sm − S1| .
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For 1 = m < n, similar to 1 = n < m, we have

1.5 −
1

|H (Sm) −H (S1)|
+ |H (Sm) −H (S1)| < −

1
|Sm − S1|

+ |Sm − S1| .

For 1 < n < m, we have

|H (Sm) −H (Sn)| = n3 + (n + 1)3 + · · · + (m − 1)3,

|Sm − Sn| = (n + 1)3 + (n + 2)3 + · · · +m3.

We know that −1
n3+(n+1)3+···+(m−1)3 <

−1
(n+1)3+(n+2)3+···+m3 . Therefore,

1.5−
1

|H (Sm) −H (Sn)|
+ |H (Sm) −H (Sn)| ,

= 1.5 −
1

n3 + (n + 1)3 + · · · + (m − 1)3 + [n3 + (n + 1)3 + · · · + (m − 1)3],

< 2 −
1

(n + 1)3 + (n + 2)3 + · · · +m3 + [n3 + (n + 1)3 + · · · + (m − 1)3],

= −
1

(n + 1)3 + (n + 2)3 + · · · +m3 + [(n + 1)3 + (n + 2)3 + · · · + (m − 1)3] +m3,

≤ −
1

(n + 1)3 + (n + 2)3 + · · · +m3 + [(n + 1)3 + (n + 2)3 + · · · +m3],

< −
1

|Sm − Sn|
+ |Sm − Sn| .

Therefore, τ + F (mθ (H (Sm) ,H (Sn))) ≤ mθ (Sm,Sn), for all m,n ∈ N. Hence, H is a F-Suzuki contraction and
H (S1) = S1.

Theorem 3.10. Let (E,m) be a complete b-metric space and a mapping H : E → E be a continuous map. Assume,
there is one F ∈ F and τ > 0 such that ∀ κ, λ ∈ E with κ , λ,

0 < m(Hκ,Hλ)⇒ τ + F(m(Hκ,Hλ)) ≤ αF(m(κ, λ)) + βF(m(κ,Hκ)) + γF(m(λ,Hλ)).

Where, 0 ≤ α, β ≤ 1, 0 ≤ γ < 1 with 1 = α + β + γ. Then, H has a fixed point κ∗ ∈ E.

Proof. By setting θ(κ, λ) = s in Theorem (3.8), the desired proof is obtained.

Theorem 3.11. Let (E,m) be a complete metric space and a mapping H : E→ E be a continuous map. Assume, there
is one F ∈ F and τ > 0 such that ∀ κ, λ ∈ E with κ , λ,

0 < m(Hκ,Hλ)⇒ τ + F(m(Hκ,Hλ)) ≤ F(m(κ, λ)).

Then, H has a unique fixed point κ∗ ∈ E.

Proof. By setting α = 1, β = γ = 0 and θ(κ, λ) = 1 in Theorem (3.8), then one can find that H has a fixed
point. Furthermore, if there exists λ∗, κ∗ ∈ E such that H(λ∗) = λ∗ and H(κ∗) = κ∗ with κ∗ , λ∗ then,

0 < m(Hκ∗,Hλ∗)⇒ τ + F(m(Hκ∗,Hλ∗)) ≤ F(m(κ∗, λ∗)),
⇒ τ + F(m(κ∗, λ∗)) ≤ F(m(κ∗, λ∗)).

This is contraction. So, H has a unique fixed point.

Remark 3.12. (I) When, θ(κ, λ) = s ≥ 1.Then, Theorem (3.8) reduces to main result of Alsulami, karapnar and Piri
[1]. Hence, Theorem (3.8) is a proper generalization of theorem (15) of [1].
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4. Applications

In this section, we find the solution of Fredholm integral equation by using Theorem (3.2). Let E =
C([0, 1],R) be the set of all continuous real valued functions defined on [0,1]. Note that E is complete
extended b-metric space by considering,

mθ(λ, κ) = sup
x∈[0,1]

|λ(x) − κ(x)|2,

with θ(λ, κ) = |λ(x)| + |κ(x)| + 2, where θ : E × E→ [1,∞).
Consider

λ(x) =
∫ 1

0
M(x, y, λ(y))dy + 1(x), x, s ∈ [a, b]. (32)

be the Fredholm integral equation, where 1 : [0, 1] × [0, 1] ×R→ R are continuous function.
Let H : E→ E be an operator is given by,

Hλ(x) =
∫ 1

0
M(x, y, λ(y))dy + 1(x), x, y ∈ [0, 1]. (33)

Further, assume that
|M(x, y, λ(y)) −M(x, y, κ(y))| ≤ e−

τ
2 |λ(y) − κ(y)|.

Then, the integral equation 32 has a solution.

Proof. For any λ, κ ∈ E we have,

|H(λ(x)) −H(κ(x))| =

∣∣∣∣∣∣
∫ 1

0
M(x, y, λ(y))dy + 1(x) −

∫ 1

0
M(x, y, κ(y))dy − 1(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0
M(x, y, λ(y))dy −

∫ 1

0
M(x, y, κ(y))dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0

(
M(x, y, λ(y)) −M(x, y, κ(y))

)
dy

∣∣∣∣∣∣
≤

∫ 1

0
e−
τ
2 |λ(y) − κ(y)|dy

≤

∫ 1

0
e−
τ
2
√

mθ(λ, κ)dy

= e−
τ
2
√

mθ(λ, κ),

⇒

√
mθ(H(λ(x)) −H(κ(x))) ≤ e−

τ
2
√

mθ(λ, κ),
⇒ mθ(H(λ(x)) −H(κ(x))) ≤ e−τmθ(λ, κ),

⇒ τ + log mθ(H(λ(x)) −H(κ(x))) ≤ log mθ(λ, κ).

Hence, H satisfying all the conditions of Theorem (3.2). Therefore, the operator H has a fixed point that is,
the fredholm integral equation has a solution.
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