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Available at: http://www.pmf.ni.ac.rs/filomat

New properties of the core–EP pre-order

Olivera Stanimirovića,∗, Dijana Mosićb
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Abstract. The first aim of this paper is to present new characterizations of the core–EP pre-order A ≤DO B
between two Hilbert space operators based on corresponding self-adjoint operators and the powers of the
core–EP inverse. Under the relation A ≤DO B, we further establish equivalent conditions for the forward
order law (AB)DO = ADOBDO to hold. We give conditions for the equivalence between the forward order law
(AB)DO = ADOBDO and the reverse order law (AB)DO = BDOADO. Also, in the case that A ≤DO B, necessary and
sufficient conditions for (B −A)DO = BDO

−ADO are studied. Applying our results, we obtain characterizations
for the core partial order and the forward order law for the core inverse.

1. Introduction

Let X and Y be arbitrary Hilbert spaces and B(X,Y) be the set of all bounded linear operators from X to
Y. Set B(X) = B(X,X). The adjoint, null space and range of A ∈ B(X,Y) are denoted by A∗, N(A) and R(A),
respectively.

The concept of generalized inverses has significant applications in different fields of mathematics such
as matrix theory, operator theory, differential equations, and in technics and engineering [2]. The definitions
of well-known generalized inverses are given now. The Moore–Penrose inverse of A ∈ B(X,Y) presents the
unique operator B ∈ B(Y,X) (denoted by A†) [2] such that ABA = A, BAB = B, (AB)∗ = AB, (BA)∗ = BA.Note
that A† exists if and only if R(A) is closed in Y.

The Drazin inverse of A ∈ B(X) is the unique operator B ∈ B(X) (denoted by AD) [2] which satisfies
BAB = B, AB = BA and Ak+1B = Ak,where k = i(A) is the index of A, i.e. the smallest non-negative integer k
in this definition. When i(A) ≤ 1, AD = A# is the group inverse of A. We use B(X)D and B(X)# to mark the
sets of all Drazin invertible and group invertible operators in B(X), respectively.

The notion of the core–EP inverse was presented for a square matrix [18] and extended to a Drazin
invertible Hilbert space operator [14, 16]. For A ∈ B(X)D with i(A) = k, there exists its unique core–EP
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inverse B ∈ B(X) (denoted by ADO) satisfying [14]

BAB = B and R(B) = R(B∗) = R(Ak),

and represented by [6]
ADO = ADAk(Ak)†.

Especially, if i(A) ≤ 1, ADO = A #O = A#AA† is the core inverse of A [1].
It is known that a binary relation on a non-empty set is a pre-order if it is reflexive and transitive. If

it is also anti-symmetric, then it is called a partial order. Generalized inverses have an important role in
defining and studying pre-orders and partial orders.

Using the core–EP inverse, the core–EP pre-order was defined in [14], for A,B ∈ B(X)D, as

A ≤DO B when AADO = BADO and ADOA = ADOB.

For various characterizations of the core–EP pre-order see [21] for complex matrix case, [14] for operators,
[15] for elements of C∗-algebra and [5, 7] for elements of a ring with involution. In particular, when
A,B ∈ B(X)#, the core partial order is given by [1, 19]

A ≤ #O B when AA #O = BA #O and A #OA = A #OB.

Interesting properties of the core partial orders can be found in [9].
One of fundamental problems in the theory of generalized inverses is to find generalized inverses

of products [3, 4, 10, 13]. For the core inverse, necessary and sufficient conditions for the reverse order
law (AB) #O = B #OA #O and the forward order law (AB) #O = A #OB #O to hold were investigated by many authors
[8, 20, 22, 24]. Note that, by [23, Theorem 2.10], the core partial order A ≤ #O B implies (AB) #O = B #OA #O = (BA) #O.
The assumptions under which the reverse order law (AB)DO = BDOADO is satisfied for the core–EP inverse were
presented in [6, 12].

Motivated by importance and different results about core-EP pre-order and core partial order, we
continue to investigate this topic and get more properties applying these binary relations. Our first goal
is to establish new characterizations for the core–EP pre-order A ≤DO B using corresponding self-adjoint
operators and the powers of the core–EP inverse. Further, in the case that A ≤DO B, we show characterizations
of the forward order law (AB)DO = ADOBDO. Necessary and sufficient conditions for the equivalence between
the forward order law (AB)DO = ADOBDO and the reverse order law (AB)DO = BDOADO are considered. Under the
condition A ≤DO B, we give equivalent conditions for (B − A)DO = BDO

− ADO to be satisfied. Applying previous
mentioned results, we get characterizations for the core partial order and properties of the forward order
law for the core inverse.

The content of this paper in details follows. Section 2 contains new characterizations of the core–EP
pre-order and consequently characterizations of the core partial order. Several equivalent conditions for
the forward order law (AB)DO = ADOBDO and the difference (B − A)DO = BDO

− ADO are part of Section 3.

2. Characterizations of the core–EP pre-order

This section is devoted to new characterizations of the core–EP pre-order. At the beginning, we state
one auxiliary result which will be useful in the sequel.

Lemma 2.1. [14, Corollary 3.7] For A ∈ B(X)D with k = i(A) and B ∈ B(X), the following statements are
equivalent:

(i) A ≤DO B;

(ii) there are the following matrix representations with respect to the orthogonal sum X = R(Ak) ⊕N((Ak)∗):

A =
[

A1 A2
0 A3

]
and B =

[
A1 A2
0 B3

]
,

where A1 ∈ B(R(Ak)) is invertible and A3 ∈ B[N((Ak)∗)] is nilpotent.
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In the first theorem, we develop equivalent conditions, which include BADO is self-adjoint, for the pre-
order A ≤DO B to hold.

Theorem 2.2. For A ∈ B(X)D with k = i(A) and B ∈ B(X), the following statements are equivalent:

(i) A ≤DO B;

(ii) BADO is self-adjoint and ADOA = ADOB;

(iii) BADO is self-adjoint and AADOA = AADOB;

(iv) BADO is self-adjoint and A∗Ak = B∗Ak;

(v) BADO is self-adjoint and A∗ADO = B∗ADO;

(vi) BADO is self-adjoint and A∗AD = B∗AD.

Proof. (i) ⇔ (ii): By [14, Corollary 2.2], A and ADO can be represented with respect to the orthogonal sum
X = R(Ak) ⊕N((Ak)∗) as

A =
[

A1 A2
0 A3

]
and ADO =

[
A−1

1 0
0 0

]
, (1)

where A1 ∈ B(R(Ak)) is invertible and A3 ∈ B[N((Ak)∗)] is nilpotent. Set

B =
[

B1 B2
B4 B3

]
:
[

R(Ak)
N((Ak)∗)

]
→

[
R(Ak)

N((Ak)∗)

]
. (2)

Firstly, notice that BADO =

[
B1A−1

1 0
B4A−1

1 0

]
is self-adjoint if and only if B1A−1

1 is self-adjoint and B4 = 0. Further,

ADOA = ADOB is equivalent to [
I A−1

1 A2
0 0

]
=

[
A−1

1 B1 A−1
1 B2

0 0

]
,

that is, B1 = A1 and B2 = A2. Using Lemma 2.1, we deduce that statements (i) and (ii) are equivalent.
(ii)⇔ (iii): It is evident by elementary calculations and ADOAADO = ADO.
(iii) ⇔ (iv): We have, by ADO = ADAk(Ak)† and (Ak)∗ = (Ak)∗Ak(Ak)†, that AADOA = AADOB if and only if

Ak(Ak)†A = Ak(Ak)†B, which is equivalent to (Ak)∗A = (Ak)∗B, i.e. A∗Ak = B∗Ak.
(iv)⇔ (v): This part is clear by ADO = AkAD(Ak)† and Ak = ADOAk+1.
(iv)⇔ (vi): By properties of the Drazin inverse, it is clear.

In the case that i(A) = 1 in Theorem 2.2, we obtain the following characterizations for the core partial
order.

Corollary 2.3. For A ∈ B(X)# and B ∈ B(X), the following statements are equivalent:

(i) A ≤ #O B;

(ii) BA #O is self-adjoint and A #OA = A #OB;

(iii) BA #O is self-adjoint and A = AA #OB;

(iv) BA #O is self-adjoint and A∗A = B∗A;

(v) BA #O is self-adjoint and A∗A #O = B∗A #O;

(vi) BA #O is self-adjoint and A∗A# = B∗A#.
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We study necessary and sufficient conditions, which involve (AADOA)∗B is self-adjoint, for the relation
A ≤DO B to be satisfied.

Theorem 2.4. For A ∈ B(X)D with k = i(A) and B ∈ B(X), the following statements are equivalent:

(i) A ≤DO B;

(ii) (AADOA)∗B is self-adjoint and AADO = BADO;

(iii) (AADOA)∗B is self-adjoint and AADOA = BADOA;

(iv) (AADOA)∗B is self-adjoint and Ak+1 = BAk;

(v) (AADOA)∗B is self-adjoint and ADOA∗ = ADOB∗;

(vi) (AADOA)∗B is self-adjoint and AAD = BAD.

Proof. (i)⇔ (ii): Suppose that A, ADO and B are expressed as in (1) and (2). Now, AADO = BADO if and only if[
I 0
0 0

]
=

[
B1A−1

1 0
B4A−1

1 0

]
,

which is equivalent to B1 = A1 and B4 = 0. Then

(AADOA)∗B =
[

A∗1 0
A∗2 0

] [
A1 B2
0 B3

]
=

[
A∗1A1 A∗1B2
A∗2A1 A∗2B2

]
is self-adjoint if and only if B2 = A2. Lemma 2.1 implies that (i) is equivalent to (ii).

Similarly as Theorem 2.2, we complete this proof.

Remark that the condition (AADOA)∗B is self-adjoint is equivalent to A∗AADOB (or BAADOA) is self-adjoint.
Theorem 2.4 implies the next consequence about the core partial order.

Corollary 2.5. For A ∈ B(X)# and B ∈ B(X), the following statements are equivalent:

(i) A ≤ #O B;

(ii) A∗B is self-adjoint and AA #O = BA #O;

(iii) A∗B is self-adjoint and A = BA #OA;

(iv) A∗B is self-adjoint and A2 = BA;

(v) A∗B is self-adjoint and A #OA∗ = A #OB∗;

(vi) A∗B is self-adjoint and AA# = BA#.

Based on the powers of the core–EP inverse ADO, we characterize A ≤DO B as follows.

Theorem 2.6. For n ∈N, A ∈ B(X)D with k = i(A) and B ∈ B(X), the following statements are equivalent:

(i) A ≤DO B;

(ii) B(ADO)n+1 = (ADO)n and ADOA = ADOB;

(iii) B(AD)n+1 = (AD)n and ADOA = ADOB;

(iv) B(ADO)n+1 = (ADO)n and (AADOA)∗B is self-adjoint;

(v) B(ADO)n+1 = (ADO)n and (AADOA)∗(A − B) = 0;
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(vi) BADO is self-adjoint and (AADOA)∗(A − B) = 0.

Proof. (i)⇒ (ii): The hypothesis A ≤DO B implies AADO = BADO and ADOA = ADOB. Hence, (ADO)n = A(ADO)n+1 =
B(ADO)n+1.

(ii)⇒ (iii): By [17, Lemma 2.1], (ADO)n = (AD)nAk(Ak)†, which gives

(ADO)nAAD = (AD)nAk(Ak)†AAD = (AD)n(Ak(Ak)†Ak)(AD)k

= (AD)nAk(AD)k = (AD)nAAD = (AD)n, (3)

for arbitrary n ∈N. Using (3) and B(ADO)n+1 = (ADO)n, it follows

B(AD)n+1 = (B(ADO)n+1)AAD = (ADO)nAAD = (AD)n.

(iii)⇒ (i): Applying ADO = ADAk(Ak)† and B(AD)n+1 = (AD)n, we obtain

BADO = BADAk(Ak)† = (B(AD)n+1)Ak+n(Ak)†

= (AD)nAk+n(Ak)† = A(ADAk(Ak)†)
= AADO.

(i)⇔ (iv): Assume that A, ADO and B are given by (1) and (2). We observe that B(ADO)n+1 = (ADO)n if and
only if [

B1A−(n+1)
1 0

B4A−(n+1)
1 0

]
=

[
A−n

1 0
0 0

]
,

which is equivalent to B1 = A1 and B4 = 0. Now, (AADOA)∗B =
[

A∗1A1 A∗1B2
A∗2A1 A∗2B2

]
is self-adjoint if and only if

B2 = A2. By Lemma 2.1, (i) and (iv) are equivalent.
(i)⇔ (v): If A, ADO and B are presented by (1) and (2), as in the part (i)⇔ (iv), note that B(ADO)n+1 = (ADO)n

is equivalent to B1 = A1 and B4 = 0. Then, from

(AADOA)∗(A − B) =
[

0 A∗1(A2 − B2)
0 A∗2(A2 − B2)

]
,

(AADOA)∗(A − B) = 0 if and only if B2 = A2.
(i)⇔ (vi): Let A, ADO and B have the forms as in (1) and (2). Because

(AADOA)∗(A − B) =
[

A∗1(A1 − B1) A∗1(A2 − B2)
A∗2(A1 − B1) A∗2(A2 − B2)

]
,

we conclude that (AADOA)∗(A − B) = 0 is equivalent to B1 = A1 and B2 = A2. Also, BADO =

[
I 0

B4A−1
1 0

]
is

self-adjoint if and only if B4 = 0.

By Theorem 2.6, we verify the next result. Note that part (iv) of Corollary 2.7 recovers part (iv) of [25,
Theorem 3.10].

Corollary 2.7. For n ∈N, A ∈ B(X)# and B ∈ B(X), the following statements are equivalent:

(i) A ≤ #O B;

(ii) B(A #O)n+1 = (A #O)n and A #OA = A #OB;

(iii) B(A#)n+1 = (A#)n and A #OA = A #OB;

(iv) B(A #O)n+1 = (A #O)n and A∗B is self-adjoint;



O. Stanimirović, D. Mosić / Filomat 39:3 (2025), 743–754 748

(v) B(A #O)n+1 = (A #O)n and A∗A = A∗B;

(vi) BA #O is self-adjoint and A∗A = A∗B.

We also prove the following characterizations for A ≤DO B.

Theorem 2.8. For A ∈ B(X)D with k = i(A) and B ∈ B(X), the following statements are equivalent:

(i) A ≤DO B;

(ii) BADO = AADOBADO and ADOB = ADOA;

(iii) BADOA = AADOBADOA and AADOB = AADOA;

(iv) BADO = AADOBADO and B∗Ak = A∗Ak;

(v) BADO = AADOBADO, ADOBADOA = ADOA and ADOB(I − AADO) = ADOA(I − AADO);

(vi) BADOA = AADOBADOA, ADOBADO = ADO and AADOB(I − AADO) = AADOA(I − AADO).

Proof. (i)⇔ (ii): Let A, ADO and B be given by (1) and (2). Then BADO = AADOBADO if and only if (I−AADO)BADO = 0
which is equivalent to [

0 0
B4A−1

1 0

]
= 0,

that is, B4 = 0. As in the proof of Theorem 2.2, ADOB = ADOA if and only if B1 = A1 and B2 = A2. The rest is
clear by Lemma 2.1.

(ii)⇔ (iii)⇔ (iv): These equivalences can be verified as in Theorem 2.2.
(i)⇔ (v): Suppose that A, ADO and B have the forms as in (1) and (2). As in part (i)⇔ (ii), we show that

BADO = AADOBADO is equivalent to B4 = 0. The equality ADOBADOA = ADOA holds if and only if[
A−1

1 B1 A−1
1 B1A−1

1 A2
0 0

]
=

[
I A−1

1 A2
0 0

]
if and only if B1 = A1. Also, ADOB(I − AADO) = ADOA(I − AADO) is equivalent to[

0 A−1
1 B2

0 0

]
=

[
0 A−1

1 A2
0 0

]
,

i.e. B2 = A2.
(vi)⇔ (v): It is clear.

Consequently, we characterize A ≤ #O B in the next manner.

Corollary 2.9. For A ∈ B(X)# and B ∈ B(X), the following statements are equivalent:

(i) A ≤ #O B;

(ii) BA #O = AA #OBA #O and A #OB = A #OA;

(iii) BA #OA = AA #OBA #OA and AA #OB = A;

(iv) BA #O = AA #OBA #O and B∗A = A∗A;

(v) BA #O = AA #OBA #O, A #OBA #OA = A #OA and A #OB(I − AA #O) = A #OA − AA #O;

(vi) BA #OA = AA #OBA #OA, A #OBA #O = A #O and AA #OB(I − AA #O) = A(I − AA #O).

Several characterizations of A ≤DO B are developed in terms of the product BADOB.
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Theorem 2.10. For A ∈ B(X)D with k = i(A) and B ∈ B(X), the following statements are equivalent:

(i) A ≤DO B;

(ii) AADO(BADOB − A) = 0 and AADO = BADO;

(iii) ADO(BADOB − A) = 0 and AADO = BADO;

(iv) AADOA = BADOB and AADO = BADO.

Proof. (i)⇔ (ii): Assume that A, ADO and B have representations as in (1) and (2). As in the proof of Theorem
2.4, we deduce that AADO = BADO is equivalent to B1 = A1 and B4 = 0. Now, by

BADOB =
[

A1 B2
0 0

]
and

AADO(BADOB − A) =
[

0 B2 − A2
0 0

]
,

AADO(BADOB − A) = 0 if and only if B2 = A2.
(ii)⇔ (iii): This is obvious.
(i) ⇔ (ii): Again, using the representations of A, ADO and B as in (1) and (2), AADO = BADO if and only if

B1 = A1 and B4 = 0. Furthermore, AADOA = BADOB is equivalent to[
A1 A2
0 0

]
=

[
A1 B2
0 0

]
,

that is, B2 = A2.

As a consequence, we characterize the relation A ≤ #O B.

Corollary 2.11. For A ∈ B(X)# and B ∈ B(X), the following statements are equivalent:

(i) A ≤ #O B;

(ii) AA #O(BA #OB − A) = 0 and AA #O = BA #O;

(iii) A #O(BA #OB − A) = 0 and AA #O = BA #O;

(iv) A = BA #OB and AA #O = BA #O.

3. Core–EP inverse of product and difference of two operators

Under the assumption A ≤DO B, we consider the core–EP inverse of the product and difference of A and
B in this section.

We firstly study necessary and sufficient conditions for ADO
≤

DO BDO to hold when A ≤DO B.

Theorem 3.1. For A,B ∈ B(X)D such that A ≤DO B, the following statements are equivalent:

(i) ADO
≤

DO BDO;

(ii) ADOBDO = BDOADO;

(iii) (ADO)2 = ADOBDO.



O. Stanimirović, D. Mosić / Filomat 39:3 (2025), 743–754 750

Proof. According to Lemma 2.1, A ≤DO B implies that it can be written, with respect to the orthogonal sum
X = R(Ak) ⊕N((Ak)∗), as

A =
[

A1 A2
0 A3

]
and B =

[
A1 A2
0 B3

]
,

where k = i(A), A1 ∈ B(R(Ak)) is invertible and A3 ∈ B[N((Ak)∗)] is nilpotent. Notice that Drazin invertibility
of B yields Drazin invertibility of B3. By [11, Lemma 2.3],

ADO =

[
A−1

1 0
0 0

]
, (ADO)DO =

[
A1 0
0 0

]
and BDO =

[
A−1

1 −A−1
1 A2BDO

3
0 BDO

3

]
.

(i)⇔ (ii): Firstly, note that the equality

ADO(ADO)DO =

[
I 0
0 0

]
= BDO(ADO)DO

holds. Because

(ADO)DOADO =

[
I 0
0 0

]
and (ADO)DOBDO =

[
I −A2BDO

3
0 0

]
,

(ADO)DOADO = (ADO)DOBDO if and only if A2BDO

3 = 0. Hence, (i) is equivalent to A2BDO

3 = 0.
From

ADOBDO =

[
A−2

1 −A−2
1 A2BDO

3
0 0

]
and BDOADO =

[
A−2

1 0
0 0

]
,

we have that ADOBDO = BDOADO is equivalent to A2BDO

3 = 0, that is, to (i).
(i)⇔ (iii): Since

(ADO)2 =

[
A−2

1 0
0 0

]
,

(ADO)2 = ADOBDO if and only if A2BDO

3 = 0, i.e. (i).

In the case that A ≤DO B, we present equivalent conditions for the forward order law (AB)DO = ADOBDO to be
satisfied. Notice that (AB)DO = ADOBDO is related with the reverse order law (AB)DO = BDOADO.

Theorem 3.2. For A,B ∈ B(X)D such that A ≤DO B, the following statements are equivalent:

(i) AB ∈ B(X)D and (AB)DO = ADOBDO;

(ii) AB ∈ B(X)D, (AB)DO(I − AADO) = 0 and AADOBDO(I − AADO) = 0;

(iii) AB ∈ B(X)D, (AB)DO(I − AADO) = 0 and ADOBDO(I − AADO) = 0;

(iv) AB ∈ B(X)D, (AB)DO = BDOADO and AADOBDO(I − AADO) = 0;

(v) AB ∈ B(X)D, (AB)DO = BDOADO and ADOBDO(I − AADO) = 0.

Proof. Applying Lemma 2.1 and the assumption A ≤DO B, with respect to the orthogonal sum X = R(Ak) ⊕
N((Ak)∗), we have the representations:

A =
[

A1 A2
0 A3

]
and B =

[
A1 A2
0 B3

]
,

where k = i(A), A1 ∈ B(R(Ak)) is invertible, A3 ∈ B[N((Ak)∗)] is nilpotent and B3 ∈ B[N((Ak)∗)]D. Observe
that

AB =
[

A2
1 A1A2 + A2B3

0 A3B3

]
.
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The Drazin invertibility of AB implies the Drazin invertibility of A3B3. Utilizing [11, Lemma 2.3], we get

ADO =

[
A−1

1 0
0 0

]
, BDO =

[
A−1

1 −A−1
1 A2BDO

3
0 BDO

3

]
and

(AB)DO =

[
A−2

1 −A−2
1 (A1A2 + A2B3)(A3B3)DO

0 (A3B3)DO

]
.

(i)⇔ (ii): Evidently,

ADOBDO =

[
A−2

1 −A−2
1 A2BDO

3
0 0

]
.

Thus, (AB)DO = ADOBDO if and only if (A3B3)DO = 0 and A2BDO

3 = 0.
Since

(AB)DO(I − AADO) =
[

0 −A−2
1 (A1A2 + A2B3)(A3B3)DO

0 (A3B3)DO

]
,

(AB)DO(I − AADO) = 0 is equivalent to (A3B3)DO = 0. The equality

AADOBDO(I − AADO) =
[

0 −A−1
1 A2BDO

3
0 0

]
implies AADOBDO(I − AADO) = 0 if and only if A2BDO

3 = 0. So, the statements (i) and (ii) are equivalent.
(ii)⇔ (iii): By direct calculations and the equality ADO = ADOAADO, we show this equivalence.
(i)⇔ (iv): Utilizing

BDOADO =

[
A−2

1 0
0 0

]
,

we have that (AB)DO = BDOADO is satisfied if and only if (A3B3)DO = 0. As in the part (i)⇔ (ii), one observes that
AADOBDO(I − AADO) = 0 if and only if A2BDO

3 = 0.
(iv)⇔ (v): It follows as (ii)⇔ (iii).

By [23, Theorem 2.10], A ≤ #O B yields (AB) #O = B #OA #O = (BA) #O. Based on this fact, Theorem 3.2 gives the
next characterizations of the forward order law (AB) #O = A #OB #O.

Corollary 3.3. For A,B ∈ B(X)# such that A ≤ #O B, the following statements are equivalent:

(i) AB ∈ B(X)# and (AB) #O = A #OB #O;

(ii) AB ∈ B(X)# and AA #OB #O(I − AA #O) = 0;

(iii) AB ∈ B(X)# and A #OB #O(I − AA #O) = 0;

(iv) AB ∈ B(X)# and B #OA #O = A #OB #O;

(v) BA ∈ B(X)# and (BA) #O = A #OB #O.

It is interesting that the similar result to Theorem 3.2 holds for (BA)DO = BDOADO although the same
assumption A ≤DO B is satisfied.

Theorem 3.4. For A,B ∈ B(X)D such that A ≤DO B, the following statements are equivalent:

(i) BA ∈ B(X)D and (BA)DO = BDOADO;

(ii) BA ∈ B(X)D, (BA)DO(I − AADO) = 0 and AADOBDO(I − AADO) = 0;

(iii) BA ∈ B(X)D, (BA)DO(I − AADO) = 0 and ADOBDO(I − AADO) = 0;
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(iv) BA ∈ B(X)D, (BA)DO = ADOBDO and AADOBDO(I − AADO) = 0;

(v) BA ∈ B(X)D, (BA)DO = ADOBDO and ADOBDO(I − AADO) = 0.

Proof. Using the matrix expressions of A and B as in Lemma 2.1, we get

BA =
[

A2
1 A1A2 + A2A3

0 B3A3

]
,

and

(BA)DO =

[
A−2

1 −A−2
1 (A1A2 + A2A3)(B3A3)DO

0 (B3A3)DO

]
.

We finish this proof as Theorem 3.2.

Using Theorem 3.1 and Theorem 3.2, we obtain the equivalence between the forward order law (AB)DO =
ADOBDO and the reverse order law (AB)DO = BDOADO.

Corollary 3.5. For A,B ∈ B(X)D such that A ≤DO B and ADO
≤

DO BDO, the following statements are equivalent:

(i) AB ∈ B(X)D and (AB)DO = ADOBDO;

(ii) AB ∈ B(X)D and (AB)DO(I − AADO) = 0;

(iii) AB ∈ B(X)D and (AB)DO = BDOADO.

Proof. Theorem 3.1 and the hypothesis ADO
≤

DO BDO give ADOBDO = BDOADO. The rest is clear by Theorem 3.2.

Similarly, by Theorem 3.1 and Theorem 3.4, we get the next result for the core–EP inverse of the product
BA.

Corollary 3.6. For A,B ∈ B(X)D such that A ≤DO B and ADO
≤

DO BDO, the following statements are equivalent:

(i) BA ∈ B(X)D and (BA)DO = BDOADO;

(ii) BA ∈ B(X)D and (BA)DO(I − AADO) = 0;

(iii) BA ∈ B(X)D and (BA)DO = ADOBDO.

In the case that A ≤DO B, we investigate equivalent conditions for (B − A)DO = BDO
− ADO to be satisfied.

Theorem 3.7. For A,B ∈ B(X)D such that A ≤DO B, the following statements are equivalent:

(i) B − A ∈ B(X)D and (B − A)DO = BDO
− ADO;

(ii) B − A ∈ B(X)D and (B − A)DO = BDO(I − AADO);

(iii) B − A ∈ B(X)D, AADOBDO = ADO and (B − A)DO = (I − AADO)BDO;

(iv) B − A ∈ B(X)D, ADOBDO = (ADO)2 and (B − A)DO = (I − AADO)BDO;

(v) B − A ∈ B(X)D, AADOBDO(I − AADO) = 0 and (B − A)DO = (I − AADO)BDO;

(vi) B − A ∈ B(X)D, ADOBDO(I − AADO) = 0 and (B − A)DO = (I − AADO)BDO.
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Proof. For k = i(A), Lemma 2.1 and A ≤DO B give that, with respect to the orthogonal sum X = R(Ak)⊕N((Ak)∗),

A =
[

A1 A2
0 A3

]
and B =

[
A1 A2
0 B3

]
,

where A1 ∈ B(R(Ak)) is invertible, A3 ∈ B[N((Ak)∗)] is nilpotent and B3 ∈ B[N((Ak)∗)]D. Using [11, Lemma
2.3], we have

ADO =

[
A−1

1 0
0 0

]
and BDO =

[
A−1

1 −A−1
1 A2BDO

3
0 BDO

3

]
.

The fact B − A =
[

0 0
0 B3 − A3

]
∈ B(X)D yields B3 − A3 ∈ B[N((Ak)∗)]D and thus

(B − A)DO =

[
0 0
0 (B3 − A3)DO

]
.

Thus, the statement (i), i.e., (B − A)DO = BDO
− ADO is equivalent to A2BDO

3 = 0 and (B3 − A3)DO = BDO

3 .
(i)⇔ (ii): From

BDO(I − AADO) =
[

A−1
1 −A−1

1 A2BDO

3
0 BDO

3

] [
0 0
0 I

]
=

[
0 −A−1

1 A2BDO

3
0 BDO

3

]
,

(B − A)DO = BDO(I − AADO) if and only if A2BDO

3 = 0 and (B3 − A3)DO = BDO

3 , which is equivalent to (i).
(i)⇔ (iii): Note that, by

AADOBDO =

[
I 0
0 0

] [
A−1

1 −A−1
1 A2BDO

3
0 BDO

3

]
=

[
A−1

1 −A−1
1 A2BDO

3
0 0

]
,

AADOBDO = ADO if and only if A2BDO

3 = 0. Since

(I − AADO)BDO =

[
0 0
0 BDO

3

]
,

(B − A)DO = (I − AADO)BDO if and only if (B3 − A3)DO = BDO

3 . Therefore, statements (i) and (iii) are equivalent.
(iii)⇔ (iv): It follows by elementary computations and ADO = A(ADO)2.
(i)⇔ (v): We observe that

AADOBDO(I − AADO) =
[

0 A−1
1 A2BDO

3
0 0

]
gives AADOBDO(I−AADO) = 0 if and only if A2BDO

3 = 0. As in part (i)⇔ (iii), one can see that (B−A)DO = (I−AADO)BDO

is equivalent to (B3 − A3)DO = BDO

3 .
(v)⇔ (vi): This equivalence is obvious.
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Djordjević), Zbornik radova 20(28) (2022) 89–119.
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[17] D. Mosić, D. Zhang, J. Hu, On operators whose core–EP inverse is n-potent, Miskolc Mathematical Notes (accepted).
[18] K. M. Prasad, K. S. Mohana, Core–EP inverse, Linear Multilinear Algebra 62(6) (2014), 792–802.
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