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Homotopy extendability and selections for acyclic type maps
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Abstract. In this paper for acyclic type maps we consider null-homoptic, extendabilty and essentiality and
present some new Leray-Schauder results and some new fixed point theorems.

1. Introduction

In this paper we consider acyclic type maps and also maps which have upper semicontinuous selections.
Using these classes we present a homotopy principle (Theorem 2.6) based on null–homotopic [7] and a
Leray-Schauder principle (Theorem 2.9) based on extendability. A new fixed point result (Theorem 2.12) is
also given for acyclic maps. Our homotopy principles motivate the notion of an essential map which we
will then use to obtain an existence result (Theorem 2.20). Our theory here was motivated from some ideas
in the literature [1, 2, 6, 7, 10, 11, 12].

We first present the following classes of maps from the literature. Let X and Z be subsets of Hausdorff
topological spaces. We will consider maps F : X → K(Z) i.e. F has nonempty compact values. Recall
a nonempty topological space is said to be a acyclic if all its reduced C̆ech homology groups over the
rationals are trivial. First we consider the acyclic maps, namely F : X → Ac(Z) i.e. F : X → K(Z) with
acyclic values (i.e. F has nonempty acyclic compact values). We say F ∈ AC(X,Z) if F : X→ Ac(Z) is upper
semicontinuous. The following result was established in [6 pp 161].

Theorem 1.1. Suppose X ∈ AR and G ∈ AC(X,X) is a compact map. Then G has a fixed point.

Now we describe the class of maps in [1, 12]. Let X and Y be subsets of Hausdorff topological vector
spaces E1 and E2 and let F be a multifunction. We say F ∈W(X,Y) if F : X→ 2Y (here 2Y denotes the family
of nonempty subsets of Y) and there exists a θ : X→ 2Y which is lower semicontinuous with co (θ(x)) ⊆ F(x)
for each x ∈ X. It is of interest to note [9] that if θ : X → 2Y is lower semicontinuous then coθ is lower
semicontinuous so one can say F ∈ W(X,Y) if F : X → 2Y and there exists a lower semicontinuous map
θ : X → 2Y with closed convex values and with θ(x) ⊆ F(x) for each x ∈ X. The following result was
established in [1, 12].
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Theorem 1.2. Let X be a paracompact subset of a Hausdorff topological vector space E1 and Y a metrizable, complete
subset of a Hausdorff locally convex linear topological space E2. If F ∈W(X,Y) then there exists an upper semicontin-
uous map G : X → CK(Y) with G(x) ⊆ F(x) for x ∈ X; here CK(Y) denotes the family of nonempty convex compact
subsetes of Y.

For a subset K of a topological space X, we denote by CovX (K) the directed set of all coverings of K
by open sets of X (usually we write Cov (K) = CovX (K)). Given a map F : X→ 2X and α ∈ Cov (X), a point
x ∈ X is said to be an α–fixed point of F if there exists a member U ∈ α such that x ∈ U and F(x)∩U , ∅.

Given two maps F, G : X→ 2Y and α ∈ Cov (Y), F and G are said to be α–close if for any x ∈ X there
exists Ux ∈ α, y ∈ F(x) ∩Ux and w ∈ G(x) ∩Ux. Of course, given two single valued maps f , 1 : X→ Y and
α ∈ Cov (Y), then f and 1 are α–close if for any x ∈ X there exists Ux ∈ α containing both f (x) and 1(x).

The following result was established in [3].

Theorem 1.3. Let X be a regular topological space, F : X → 2X an upper semicontinuous map with closed values
and suppose there exists a cofinal covering θ ⊆ CovX (F(X)) such that F has an α–fixed point for every α ∈ θ. Then F
has a fixed point.

Remark 1.4. From Theorem 1.3 in proving the existence of fixed points in uniform spaces for upper semicontinuous
compact maps with closed values it suffices [4, page 298] to prove the existence of approximate fixed points (since open
covers of a compact set A admit refinements of the form {U[x] : x ∈ A} where U is a member of the uniformity [8,
page 199], so such refinements form a cofinal family of open covers). Note also that uniform spaces are regular (in fact
completely regular [5]). Also note in Theorem 1.3 if F is compact valued, then the assumption that X is regular can be
removed. In Section 2 when we apply this result our space X will be a metric space so in particular a uniform space.

2. Fixed point results

To obtain our first main result (Theorem 2.9) we will use the notion of null–homotopic [7] to present our
continuation principle (Theorem 2.6). In this section E will be a completely regular topological space (i.e. a
Tychonoff space).

Definition 2.1. We say F ∈ ACW(E,E) if F : E → Ac(E) is a upper semicontinuous compact map (i.e. F ∈
ACW(E,E) if F ∈ AC(E,E) is a compact map).

Definition 2.2. We say F ∈ AW(E,E) if F : E → 2E is a compact map and there exists a upper semicontinuous
selection G : E→ Ac(E) of F (i.e. F ∈ AW(E,E) if F is a compact map and there exists a selector G ∈ AC(E,E) of F).

Remark 2.3. (i). Note G in Definition 2.2 is a compact map since G(E) ⊆ F(E) and F is a compact map, so
G ∈ ACW(E,E) in Definition 2.2. Thus we say F ∈ AW(E,E) if F is a compact map and there exists a selector
G ∈ ACW(E,E) of F.

(ii). If E is a Fréchet space (so E is metrizable so paracompact) and F ∈ W(E,E) is a compact map, then from
Theorem 1.2 there exists an upper semicontinuous selection G : X→ CK(Y) of F so G has convex (so acyclic) values
(i.e. G ∈ ACW(E,E)).

Definition 2.4. (i). Suppose F ∈ ACW(E,E) and u0 ∈ E. We say F � {u0} in ACW(E,E) if there exists a upper
semicontinuous compact map H : E × [0, 1] → K(E) with Ht ∈ AC(E,E) for each t ∈ [0, 1], H1 = F and H0 = {u0};
here Ht(x) = H(x, t).

(ii). Suppose F ∈ AW(E,E) and u0 ∈ E. We say F � {u0} in AW(E,E) if for any selector G ∈ ACW(E,E) of
F there exists a upper semicontinuous compact map H : E × [0, 1] → K(E) with Ht ∈ AC(E,E) for each t ∈ [0, 1],
H1 = G and H0 = {u0}.

Remark 2.5. If E is a Hausdorff topological vector space and u0 = 0 then one could take H(x, t) = t F(x) in Definition
2.4 (i). Note for a fixed t ∈ [0, 1] and a fixed x ∈ E we have that Ht(x) is acyclic valued (recall homeomorphic spaces
have isomorphic homology groups).
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Theorem 2.6. Let E be a completely regular topological space, U an open subset of E and u0 ∈ U.
(i). Let F ∈ ACW(E,E) and suppose there exists a upper semicontinuous compact map H : E × [0, 1] → K(E)

with Ht ∈ AC(E,E) for each t ∈ [0, 1], H1 = F and H0 = {u0} and x < Ht(x) for x ∈ ∂U and t ∈ (0, 1]. In addition
assume the following condition is satisfied:

(2.1)
{

for any θ ∈ ACW(E,E) with θ � {u0} in ACW(E,E)
we have that θ has a fixed point in E.

Then F has a fixed point in U.
(ii). Let F ∈ AW(E,E) and for any selector G ∈ ACW(E,E) of F suppose there exists a upper semicontinuous

compact map H : E × [0, 1]→ K(E) with Ht ∈ AC(E,E) for each t ∈ [0, 1], H1 = G and H0 = {u0} and x < Ht(x) for
x ∈ ∂U and t ∈ (0, 1]. In addition assume (2.1) holds. Then F has a fixed point in U.

Proof. We will only consider (ii) (since (i) is the same by replacing G with F). Let G ∈ ACW(E,E) be a selector
of F and let H be as in the statement of Theorem 2.6 (ii). Now let

B = {x ∈ E\U : x ∈ Ht(x) for some t ∈ [0, 1]} .

We consider two cases, namely B , ∅ and B = ∅.

Case (i). B = ∅.

Then for every t ∈ [0, 1] we have x < Ht(x) for x ∈ E\U. Also from H1 � {u0} in ACW(E,E) then from
(2.1) we have that there exists a y ∈ E with y ∈ H1 (y). Now since x < H1(x) for x ∈ E\U then y ∈ U. Thus
y ∈ U and y ∈ H1(y) = G(y) ⊆ F(y).

Case (ii). B , ∅.

Note B is closed and compact (recall H : E × [0, 1] → K(E) is a upper semicontinuous compact map)
and B ∩ U = ∅ since x < Ht(x) for x ∈ ∂U and t ∈ [0, 1]. Then (recall E is completely regular) there
exists a continuous map µ : E → [0, 1] with µ(B) = 0 and µ(U) = 1. Define a map R : E → K(E) by
R(x) = H(x, µ(x)) = H ◦ w(x) where w(x) = (x, µ(x)). If x is fixed, note R(x) (= Hµ(x)(x)) is acyclic valued
so R : E → Ac(E) and as a result R ∈ ACW(E,E). We claim R � {u0} in ACW(E,E). To see this let
Ω : E × [0, 1] → K(E) be given by Ω(x, t) = H(x, tµ(x)) = H ◦ τ(x, t) where τ(x, t) = (x, tµ(x)). Note Ω is a
upper semicontinuous compact map and Ωt ∈ AC(E,E) for t ∈ [0, 1] (for fixed x ∈ E note Ωt(x) = Htµ(x)(x)
is acyclic valued) and Ω0 = {u0} (note Ω(x, 0) = H(x, 0) = {u0} for x ∈ E) and Ω1 = R. Thus R � {u0} in
ACW(E,E). Now (2.1) guarantees that there exists a x ∈ E with x ∈ R(x) = Hµ(x) (x). If x ∈ E\U then since
x ∈ B we have µ(x) = 0 and so x ∈ H0(x) = {u0}, a contradiction since u0 ∈ U. Thus x ∈ U so µ(x) = 1 and
so x ∈ R(x) = Hµ(x)(x) = H1(x) = G(x) ⊆ F(x).

In applications one is usually interested in maps F : U → 2E where U is an open subset of E. One can
adjust the statement of Theorem 2.6 to this situation as the following result shows (this also motivates the
definition of an essential map in this situation).

Let E be a Tychonoff space and U an open subset of E.

Definition 2.7. We say F ∈ ACW(U,E) if F : U → Ac(E) is a upper semicontinuous compact map (i.e. F ∈
ACW(U,E) if F ∈ AC(U,E) is a compact map).

Definition 2.8. We say F ∈ AW(U,E) if F : U → 2E is a compact map and there exists a upper semicontinuous
selection G : U→ Ac(E) of F (i.e. F ∈ AW(U,E) if F is a compact map and there exists a selector G ∈ AC(U,E) of F).

Theorem 2.9. Let E be a completely regular topological space, U an open subset of E and u0 ∈ U.
(i). Let F ∈ ACW(U,E) and suppose there exists a upper semicontinuous compact map Λ : U × [0, 1] → K(E)

with Λt ∈ AC(U,E) for each t ∈ [0, 1], Λ1 = F and Λ0 = {u0} and x < Λt(x) for x ∈ ∂U and t ∈ (0, 1]. In addition
assume (2.1) holds. Then F has a fixed point in U.
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(ii). Let F ∈ AW(U,E) and for any selector G ∈ ACW(U,E) of F suppose there exists a upper semicontinuous
compact map Λ : U × [0, 1]→ K(E) with Λt ∈ AC(U,E) for each t ∈ [0, 1], Λ1 = G and Λ0 = {u0} and x < Λt(x) for
x ∈ ∂U and t ∈ (0, 1]. In addition assume (2.1) holds. Then F has a fixed point in U.

Proof. We will only consider (ii) (since (i) is the same by replacing G with F). Let G ∈ ACW(E,E) be a selector
of F and let Λ be as in the statement of Theorem 2.9 (ii). Now let

D = {x ∈ U : x ∈ Λt(x) for some t ∈ [0, 1]}.

Now D , ∅ (since u0 ∈ U), D is closed and compact and D∩ (E\U) = ∅. Then there exists a continuous map
σ : E→ [0, 1] with σ(D) = 1 and σ(E\U) = 0. Let H : E × [0, 1]→ K(E) be given by

H(x, t) =
{
Λ(x, t σ(x)), x ∈ U
{u0}, x ∈ E\U

(note for x ∈ ∂U we have H(x, t) = Λ(x, 0) = Λ0(x) = {u0}). Now H : E × [0, 1] → K(E) is a upper
semicontinuous compact map and for each fixed t ∈ [0, 1] and fixed x ∈ E note Ht(x) is acyclic valued, so
Ht ∈ AC(U,E) for each t ∈ [0, 1]. Note H0 = {u0}. Also x < Ht(x) for x ∈ ∂U and t ∈ (0, 1] since if there exists
a x ∈ ∂U and t ∈ (0, 1] with x ∈ Ht(x), then x ∈ Λt σ(x) (x), so x ∈ D, and as a result σ(x) = 1, so x ∈ Λt (x), a
contradiction. Thus H satisfies the conditions in Theorem 2.6 (i) with F = H1 there (note H1 ∈ ACW(E,E)).
From Theorem 2.6 (i) there exists a x ∈ U with x ∈ H1(x), so x ∈ Λσ(x)(x). Thus x ∈ D which implies σ(x) = 1.
As a result we have x ∈ Λ1(x) = G(x) ⊆ F(x).

For conditions in the literature to guarantee (2.1) we refer the reader to [1, 2, 10, 12]. We now present
two general results. Let Ω be a class of topological spaces (in our results below Ω is a metric space). A
space E is called a ANR(Ω) (written E ∈ ANR(Ω); see [6, 7]) if E ∈ Ω and given any closed embedding K
of E in a space X ∈ Ω there exists an open set U ⊆ X containing K and a continuous retraction r : U → K.
A more general concept is the following. A space E is called an Approximative ANR(Ω) (written E ∈
Approximative ANR(Ω); see [7]) if E ∈ Ω and given any closed embedding K of E in a space X ∈ Ω there
exists for any covering α ∈ CovX(K) an open set Uα ⊆ X containing K and a continuous map rα : Uα → K
such that rα|K and the identity i|K : K→ K are α–close.

Remark 2.10. In our case Ω is a metric space so E is a metric space so from the Arens-Eells theorem [6 pg 4, 7 pg
597] (recall the Arens–Eells theorem states that any metric space can be isometrically embedded as a closed subset in
a normed linear space) E can be regarded as a closed subset of a normed space X, so when we apply our situation we
can replace K above by E.

Theorem 2.11. Let E ∈ ANR(metric). Then (2.1) holds.

Proof. Let θ ∈ ACW(E,E) with θ � {u0} in ACW(E,E); here in fact we can take u0 ∈ E. Then there exists a
upper semicontinuous compact map H : E × [0, 1]→ K(E) with Ht ∈ AC(E,E) for each t ∈ [0, 1], H1 = θ and
H0 = {u0}. Note E can be regarded as a closed subset of a normed space X. Since E ∈ ANR(metric) there
exists an open neighborhood V of E in X and a continuous retraction r : V → E (note there exists an open
set U of E in X and a continuous retraction r : U→ E so since X is a normal topological space there exists an
open set V with E ⊂ V ⊂ V ⊂ U). Let η : X→ [0, 1] be a continuous map with η(X\V) = 0 and η(E)=1. Let

Q(x) =
{

H(r(x), η(x)), x ∈ V
{u0}, x ∈ X\V

(note for x ∈ ∂V we have Q(x) = H(r(x), η(x)) = H(r(x), 0) = {u0}). Now Q : X → K(X) is a upper
semicontinuous compact map and Q ∈ AC(X,X) (for a fixed x ∈ X note Q(x) is acyclic valued). Now
Theorem 1.1 guarantees that there exists a x ∈ X with x ∈ Q(x). If x ∈ X\V then x ∈ {u0}, a contradiction
since u0 ∈ E and E ⊆ V. Thus x ∈ V. If x ∈ V\E then since Q : X → K(E) (note H : E × [0, 1] → K(E)) we
have since x ∈ Q(x) that x ∈ E, a contradiction. Thus x ∈ E so as a result r(x) = x (note E ⊆ V) and η(x) = 1.
Consequently x ∈ Q(x) = H(x, 1) = θ(x). Thus (2.1) holds.
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Theorem 2.12. Let E ∈ Approximative ANR(metric). Then (2.1) holds.

Proof. Let θ ∈ ACW(E,E) with θ � {u0} in ACW(E,E); here in fact we can take u0 ∈ E. Then there exists a
upper semicontinuous compact map H : E × [0, 1]→ K(E) with Ht ∈ AC(E,E) for each t ∈ [0, 1], H1 = θ and
H0 = {u0}. Note E can be regarded as a closed subset of a normed space X. Let β ∈ CovX(θ(E)). Then α =
β∪
{
X\ θ(E)

}
is an open covering of X (and of E) so α ∈ CovX(E). Now since E ∈ Approximative ANR(metric)

there exists an open set Vα ⊆ X containing E and a continuous map rα : Vα → E (note X is a normal
topological space) such that rα|E and the identity i|E : E→ E are α–close. Let ηα : X→ [0, 1] be a continuous
map with ηα(X\Vα) = 0 and ηα(E)=1. Let

Qα(x) =
{

H(rα(x), ηα(x)), x ∈ Vα
{u0}, x ∈ X\Vα.

Now Qα : X→ K(X) is a upper semicontinuous compact map and Qα ∈ AC(X,X). Theorem 1.1 guarantees
that there exists a x ∈ X with x ∈ Qα(x). If x ∈ X\Vα then x ∈ {u0}, a contradiction since u0 ∈ E and E ⊆ Vα.
If x ∈ Vα\E then since Qα : X → K(E) (note H : E × [0, 1] → K(E)) we have since x ∈ Qα(x) that x ∈ E, a
contradiction. Thus x ∈ E so ηα(x) = 1. As a result x ∈ H(rα(x), 1) = θ(rα(x)) i.e. x ∈ E and x ∈ θ(rα(x)). Now
since rα|E and the identity i|E : E → E are α–close then there exists a Ux ∈ α with x ∈ Ux and rα(x) ∈ Ux.
Note x ∈ θ(rα(x)) implies x ∈ θ(E) so Ux , X\ θ(E), so as a result Ux ∈ β. Rewriting, we have shown that
there exists a Ux ∈ β with x ∈ Ux and rα(x) ∈ Ux. Let y = rα(x). Then y ∈ Ux and θ(y) ∩Ux , ∅ since x ∈ Ux
and x ∈ θ(rα(x)) = θ(y) i.e. Ux ∈ β, y ∈ Ux and θ(y) ∩ Ux , ∅ . Thus θ has a β–fixed point (i.e. y) for every
β ∈ CovX(θ(E)). Now Remark 1.4 guarantees that θ has a fixed point, so (2.1) holds.

Our next result is based on the notion of an essential map. Let E be a a completely regular topological
space and U an open subset of E.

Definition 2.13. We say F ∈ AW∂U(U,E) if F ∈ AW(U,E) (see Definition 2.8) and x < F(x) for x ∈ ∂U.

Definition 2.14. We say G ∈ ACW∂U(U,E) if G ∈ ACW(U,E) (see Definition 2.9) and x < G(x) for x ∈ ∂U.

Definition 2.15. We say F ∈ AW∂U(U,E) is essential in AW∂U(U,E) if for any selection G ∈ ACW(U,E) of F and
any map θ ∈ ACW∂U(U,E) with θ|∂U = G|∂U there exists a x ∈ U with x ∈ θ(x).

Remark 2.16. (i). In Definition 2.15 note G ∈ ACW∂U(U,E) since x < F(x) for x ∈ ∂U and G is a selection of F.
(ii). If F ∈ AW∂U(U,E) is essential in AW∂U(U,E) and if G ∈ ACW(U,E) is a selection of F, then there exists a

x ∈ U with x ∈ G(x) (take θ = G in Definition 2.15), so in particular x ∈ F(x).

Definition 2.17. We say F ∈ ACW∂U(U,E) is essential in ACW∂U(U,E) if for any map θ ∈ ACW∂U(U,E) with
θ|∂U = F|∂U there exists a x ∈ U with x ∈ θ(x).

Definition 2.18. Let F, G ∈ AW∂U(U,E). We say F � G in AW∂U(U,E) if for any selection Ψ ∈ ACW∂U(U,E) of
G and any selection Φ ∈ ACW∂U(U,E) of F there exists a upper semicontinuous compact map H : U× [0, 1]→ K(E)
with Ht ∈ AC(U,E) for each t ∈ [0, 1], H1 = Φ and H0 = Ψ and x < Ht(x) for x ∈ ∂U and t ∈ (0, 1).

Definition 2.19. Let F, G ∈ ACW∂U(U,E). We say F � G in ACW∂U(U,E) if there exists a upper semicontinuous
compact map H : U × [0, 1] → K(E) with Ht ∈ AC(U,E) for each t ∈ [0, 1], H1 = F and H0 = G and x < Ht(x) for
x ∈ ∂U and t ∈ (0, 1).

We state a result for AW∂U(U,E) maps (there is an obvious analogue for ACW∂U(U,E) maps).

Theorem 2.20. Let E be a completely regular topological space, U an open subset of E, G ∈ AW∂U(U,E) is essential
in AW∂U(U,E), F ∈ AW∂U(U,E) and F � G in AW∂U(U,E). Then there exists a x ∈ U with x ∈ F(x).
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Proof. Let Ψ ∈ ACW∂U(U,E) be a selection of G and Φ ∈ ACW∂U(U,E) be a selection of F. Since F � G in
AW∂U(U,E) there exists a a upper semicontinuous compact map H : U × [0, 1] → K(E) with Ht ∈ AC(U,E)
for each t ∈ [0, 1], H1 = Φ and H0 = Ψ and x < Ht(x) for x ∈ ∂U and t ∈ (0, 1). Let

B =
{
x ∈ U : x ∈ Ht(x) for some t ∈ [0, 1]

}
.

Notice B , ∅ (since G is essential in AW∂U(U,E) and see Remark 2.16), B is closed and compact and
B∩ ∂U = ∅ (note x < Ht(x) for x ∈ ∂U and t ∈ [0, 1]). Then there exists a continuous map µ : U→ [0, 1] with
µ(B) = 1 and µ(∂U) = 0. Define a map R : U → K(E) by H(x) = H(x, µ(x)) = H ◦ w where w(x) = (x, µ(x)).
Now R is a upper semicontinuous compact map and for each x ∈ U note R(x) = Hµ(x)(x) has acyclic values.
Thus R ∈ ACW(U,E). In fact R ∈ ACW∂U(U,E) since R|∂U = H0|∂U = Ψ|∂U. Since G ∈ AW∂U(U,E) is essential
in AW∂U(U,E) then there exists a x ∈ U with x ∈ R(x) i.e. x ∈ Hµ(x)(x). Then x ∈ B so µ(x) = 1 and as a result
x ∈ H1(x) = Φ(x) ⊆ F(x).
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