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Abstract. Let ψq,n = (−1)n−1 ψ(n)
q for n ∈ N ∪ {0} and q ∈ (0, 1), where ψ(n)

q is the q-polygamma functions. In
this paper, by means of the monotonicity of means and two classes of completely monotonicity functions,
we establish lower and upper bounds for the means Iψq,n ,w (a, b) defined, for b > a > 0 and w being positive
and integrable on [a, b], by

Iψq,n ,w (a, b) = ψ−1
q,n


∫ b

a
w (x)ψq,n (x) dx∫ b

a
w (x) dx

 ;

and prove that the sequence
{
Iψq,n ,w (a, b)

}
n≥0

is decreasing with

lim
n→∞

Iψq,n ,w (a, b) = a.

Moreover, we show that, for a, b ∈ R with a , b, the function

x 7→ ψ−1
q,n


∫ b

a
w (t)ψq,n (x + t) dt∫ b

a
w (t) dt

 − x

is increasing from (−min {a, b} ,∞) onto
(
min {a, b} , β2

)
, where

β2 = logq


∫ b

a
w (t) qtdt∫ b

a
w (t) dt

 .
These generalize some known results.
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1. Introduction

The q-gamma function is defined [11], [20] for x > 0 and q , 1 by

Γq (x) =


(
1 − q

)1−x ∏
∞

n=0
1 − qn+1

1 − qn+x if 0 < q < 1,(
q − 1

)1−x qx(x−1)/2 ∏
∞

n=0
1 − q−(n+1)

1 − q−(n+x)
if q > 1.

(1)

It follows from (1) that, for all q > 0,

Γq (x) = q(x−1)(x−2)/2Γ1/q (x) , x > 0. (2)

It is easy to see that

lim
x→0
Γq (x) = ∞ and lim

x→∞
Γq (x) = ∞.

The logarithmic derivative of the q-gamma function ψq (x) = Γ′q (x) /Γq (x) is known as q-psi or q-digamma
function, which has a series representation:

ψq (x) = − ln
(
1 − q

)
+

(
ln q

) ∞∑
k=0

qk+x

1 − qk+x
(3)

= − ln
(
1 − q

)
+

(
ln q

) ∞∑
k=1

qkx

1 − qk
for 0 < q < 1. (4)

The ψ′q, ψ′′q , ..., ψ(n)
q are called q-polygamma functions. For convenience, we denote by ψq,n = (−1)n−1 ψ(n)

q for
n ∈N and ψq,0 = −ψq. From (4) ψq,n has a series representation:

ψq,n (x) = (−1)n−1 ψ(n)
q (x) =

(
− ln q

)n+1
∞∑

k=1

knqkx

1 − qk
if 0 < q < 1 (5)

for x > 0 and n ∈N, which shows that ψq,n for n ∈N is completely monotonic on (0,∞).

Remark 1.1. A function f is called completely monotonic on an interval I, if f has the derivative of any order on I
and satisfies

(−1)k ( f (x)
)(k)
≥ 0

for all k ∈N0=N∪ {0} on I, see [7, 41] and recent papers [22, 39, 42, 43, 46, 47].

It is readily seen from (4) and (5) that, for n ∈N and q ∈ (0, 1),

lim
x→0+

ψq (x) = −∞, lim
x→∞

ψq (x) = − ln
(
1 − q

)
,

lim
x→0+

ψq,n (x) = ∞, lim
x→∞

ψq,n (x) = 0.
(6)

Usually, Γq and ψq are respectively called a q-analogue of the ordinary gamma Γ and digamma ψ
functions since

lim
q→1−
Γq (x) = lim

q→1+
Γq (x) = Γ (x) and lim

q→1−
ψq (x) = lim

q→1+
ψq (x) = ψ (x) (7)
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for x > 0, where the first and second limit relations were proved in [5] (see also [11, p. 17], [23]) and in [21].
Similarly, as shown in Appendix, ψ(n)

q is a q-analogue of the ordinary polygamma functions ψ(n). We thus
have

lim
q→1

ψq,n (x) = lim
q→1

[
(−1)n−1 ψ(n)

q (x)
]
= (−1)n−1 ψ(n) (x) = ψn (x) .

This allows us to deduce the properties of the polygamma functions ψ(n) via ψ(n)
q , or, to generalize the

properties of polygamma functions ψ(n) to ψ(n)
q .

Let f : I → R be (strictly) monotonic, a, b ∈ I. Elezović and Pečarić [9] (see also [24]) introduced the
so-called integral f -mean of a and b defined as

I f (a, b) = f−1


∫ b

a f (x) dx

b − a

 if a , b and I f (a, a) = a. (8)

The authors proved that for x, a, b > 0, Iψ′ (a, b) ≤ Iψ (a, b), and the function x 7→ Iψ (x + a, x + b) − x is
increasing concave with

lim
x→∞

(
Iψ (x + a, x + b) − x

)
=

a + b
2
.

Yang and Zheng in [48, Theorems 1.2, 1.3] showed that for x, a, b > 0, the sequence {Iψn (a, b)}n≥0 is strictly
decreasing with

lim
n→∞

Iψn (a, b) = min {a, b} ;

the function x 7→ Iψn (x + a, x + b) − x is strictly increasing from (−min {a, b} ,∞) onto (min {a, b} , (a + b) /2).
Moreover, Qi [31, Theorem 1] established lower and upper bounds for Iψn (a, b) in terms of generalized
logarithmic mean, that is, the double inequality

Lp2 (a, b) < Iψn (a, b) = ψ−1
n


∫ b

a ψn (t) dt

b − a

 ≤ Lp1 (a, b) (9)

holds for a, b > 0 with a , b if p1 ≥ −n + 1 and p2 ≤ −n, where

Lp (a, b) =
(

1
p

ap
− bp

a − b

)1/(p−1)
if p

(
p − 1

)
, 0 (10)

is the generalized logarithmic mean of a and b (see [37]). This improved Batir’s results in [6].
In what follows, we always suppose that w : I→ R+ = (0,∞) is integrable. For a, b ∈ I, it is easy to check

that

I f ,w (a, b) := f−1


∫ b

a w (x) f (x) dx∫ b

a w (x) dx

 if a , b and I f ,w (a, a) = a (11)

is also a mean of a and b. We call I f ,w (a, b) an integral f -mean with weight w of a and b. Similarly, if
f : R→ R is (strictly) monotonic, then we can verify that

A f ,w (x) := f−1


∫ b

a w (t) f (x + t) dt∫ b

a w (t) dt

 − x if a , b and A f ,w (x) = a if a = b (12)
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is a mean of a and b.
Motivated by the results mentioned above, the aims of this paper are to
(i) find the lower and upper bounds for the mean I f ,w (a, b) for f = ψq,n;
(ii) prove that the sequence

{
Iψq,n,w (a, b)

}
n≥0

is decreasing;
(iii) prove that the function x 7→ A f ,w (x) for f = ψq,n is increasing on (−min {a, b} ,∞).
The paper is organized as follows. In Section 2, we recall the monotonicity results for the one-parameter

mean and power mean of a function on an interval with a weight, and the latter is crucial to prove Lemma
4 and Theorem 1. In Section 3, we present two classes of completely monotonic functions involving q-
polygamma functions, which are of independent interest. The main results are stated and proved in Section
4, in which several consequences are also listed. In the last section, we summarize the conclusions of this
paper and propose two problems.

2. Preliminaries

2.1. One-parameter mean and power mean of a function
Let a, b > 0 with a , b and r ∈ R. The one parameter mean Jr (a, b) is defined as

Jr (a, b) =



r
r + 1

ar+1
− br+1

ar − br if r , −1, 0,
a − b

ln a − ln b
= L (a, b) if r = 0,

ab
ln a − ln b

a − b
=

G2 (a, b)
L (a, b)

if r = −1,

where L (a, b) and G (a, b) are the logarithmic and geometric means of a and b. It was shown in [30, Theorem
1] (see also [44]) that

Lemma 2.1. Let a, b > 0 and r ∈ R. The function r 7→ Jr (a, b) is increasing on R.

This monotonicity result will be used in the proof of Lemma 3.1.
Recall that the r-th power mean in the discrete case. Let a = (a1, a2, ..., an), w = (w1,w2, ...,wn) be two

positive n-tuples, r ∈ R., Then the r-th power mean of a with weight w is defined by

M[r]
n (a; w) =

(∑n
k=0 wkar

k∑n
k=0 wk

)1/r

if r , 0 and M[0]
n (a; w) =

n∏
k=0

a
w′k
k

where w′k = wk/
∑n

k=0 wk. It is known that the function r 7→M[r]
n (a; w) is increasing on R with

lim
r→−∞

M[r]
n (a; w) = min {a} and lim

r→∞
M[r]

n (a; w) = max {a} .

Let f ,w be two positive and integrable functions on [a, b] (a < b). The r-th power mean of f on [a, b] with
the weight w is defined [25, Defintion 2.3] by

M[r]
f ,w (a, b) =




∫ b

a w (x) f (x)r dx∫ b

a w (x) dx


1/r

if r , 0,

exp


∫ b

a w (x) ln f (x) dx∫ b

a w (x) dx

 if r = 0.

(13)

Evidently, M[r]
f ,w (a, b) is completely analogous to the discrete case. The following monotonicity result

will be used to prove Lemma 3.4.
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Lemma 2.2 ([32, Theorem 1.1], [8, p. 375, Theorem 6]). Let f ,w be positive and integrable on [a, b] (a < b). Then
the function r 7→M[r]

f ,w (a, b) is increasing on R. Moreover, if f is monotonic on [a, b], then

lim
r→−∞

M[r]
f ,w (a, b) = min

{
f (a) , f (b)

}
and lim

r→∞
M[r]

f ,w (a, b) = max
{
f (a) , f (b)

}
.

2.2. Simple properties of ψq,n

The following lemma gives five simple properties of ψq,n.

Lemma 2.3. Let ψq,n = (−1)n−1 ψ(n)
q for q ∈ (0, 1) and n ∈N. Then the following statements are true and equivalent

to each other:
(i) The inequality

ψq,n (x)ψq,n+2 (x) > ψ2
q,n+1 (x) (14)

holds for x > 0.
(ii) The sequence {ψq,n+1/ψq,n}n∈N is strictly increasing for each fixed x > 0.
(iii) The function x 7→ ψq,n+1 (x) /ψq,n (x) is strictly decreasing on (0,∞).
(iv) The function x 7→ ψq,n (x) is log-convex on (0,∞).
(v) The function x 7→ ψq,n+1 ◦ ψ−1

q,n (x) is convex on (0,∞).

Proof. (i) Using the series representation (5) we obtain

Uq,n (x) :=
ψq,n (x)ψq,n+2 (x) − ψ2

q,n+1 (x)(
− ln q

)2n+4

=

 ∞∑
k=1

knqkx

1 − qk


 ∞∑

k=1

kn+2qkx

1 − qk

 −
 ∞∑

k=1

kn+1qkx

1 − qk


2

=

∞∑
j=1

∞∑
k=1

jnkn+2
− jn+1kn+1(

1 − qk) (1 − q j) q(k+ j)x. (15)

Since the indices k and j are symmetric, interchanging them yields

Uq,n (x) =
∞∑

k=1

∞∑
j=1

kn jn+2
− kn+1 jn+1(

1 − q j) (1 − qk) q( j+k)x. (16)

An addition of (15) and (16) gives

2Uq,n (x) =
∞∑
j=1

∞∑
k=1

kn jn
(
j − k

)2(
1 − qk) (1 − q j)q(k+ j)x > 0 (17)

for x > 0, which proves the inequality (14).
(ii) The inequality (14) implies that ψq,n+2/ψq,n+1 > ψq,n+1/ψq,n for n ∈N, which is the required increasing

property.
(iii) Since ψ′q,n = −ψq,n+1, we have

(
ψq,n+1

ψq,n

)′
=
ψ′q,n+1ψq,n − ψq,n+1ψ′q,n

ψ2
q,n

=
−ψq,n+2ψq,n + ψ2

q,n+1

ψ2
q,n

< 0,

that is, the third assertion is true.
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(iv) Differentiation gives

(
lnψq,n

)′
=
ψ′q,n
ψq,n

= −
ψq,n+1

ψq,n
,

(
lnψq,n

)′′
= −

(
ψq,n+1

ψq,n

)′
> 0.

(v) Differentiation yields

[
ψq,n+1 ◦ ψ

−1
q,n (x)

]′
=

ψ′n+1

(
ψ−1

q,n (x)
)

ψ′q,n
(
ψ−1

q,n (x)
) = ψq,n+2

(
y
)

ψq,n+1
(
y
) , where y = ψ−1

q,n (x)

[
ψq,n+1 ◦ ψ

−1
q,n (x)

]′′
=

[
ψq,n+2

(
y
)

ψq,n+1
(
y
) ]′ 1

ψ′q,n
(
y
) = − [

ψq,n+2
(
y
)

ψq,n+1
(
y
) ]′ 1

ψq,n+1
(
y
) > 0,

which completes the proof.

Remark 2.4. From the relation (17), we have

2 (−1)m U(m)
q,n (x) =

(
− ln q

)m
∞∑
j=1

∞∑
k=1

kn jn
(
j − k

)2 (
k + j

)m(
1 − qk) (1 − q j) q(k+ j)x > 0,

for x > 0 and m ∈ N0, which implies that the function x 7→ ψq,n (x)ψq,n+2 (x) − ψ2
q,n+1 (x) is completely monotonic

on (0,∞). Some completely monotonic functions involving the q-gamma and q-polygamma functions can be found in
[12, 13, 16–18, 33–36] and recent papers [1, 38].

Remark 2.5. The function ψq,n has another interesting property proved in [26], which states that the functions

x 7→

[
ψ′q (x) − ln q

]2
+ ψ′′q (x) for q ∈ (0, 1) ,

x 7→

[
ψ′q (x)

]2
+ ψ′′q (x) for q ∈ (1,∞)

are completely monotonic on (0,∞). Clearly, this is a generalization of the complete monotonicity of the function
x 7→

[
ψ′ (x)

]2 + ψ′′ (x) on (0,∞)(see [27].

3. Two classes of completely monotonic functions

To prove Theorem 4.1 below, we have to determine the values of the parameter α such that the function

1q,n (x;α) =
qx
− 1

ln q
ψq,n+1 (x) −

(
1 + αqx)ψq,n (x) (18)

is positive or negative for x > 0. In fact, we can find the sufficient conditions under which the function
x 7→ ±1q,n (x;α) are completely monotonic on (0,∞) for all q ∈ (0, 1) and n ∈N, which reads as follows.

Lemma 3.1. Let q ∈ (0, 1) and n ∈N. The following statements are valid:
(i) If α ≤ α1

(
n, q

)
= n − 2q/

(
q + 1

)
, then the function x 7→ 1q,n (x;α) is completely monotonic on (0,∞).

(ii) If α ≥ α2
(
n, q

)
=

(
2n + q − 1

)
/
(
q + 1

)
then the function x 7→ −1q,n (x;α) is completely monotonic on (0,∞).

Remark 3.2. Letting q→ 1− yields

1n (x;α) := 11,n (x;α) = xψn+1 (x) − (1 + α)ψn (x) .

Qi and his coauthors [28] proved that the function ±1n (x;α) is completely monotonic on (0,∞) if and only if
0 ≤ 1+ α ≤ n (1+ α ≥ n+ 1). Obviously, Lemma 3.1 is a generalization of Qi et al.’s result, and the proof of Lemma
3.1 is more difficult than the case of q→ 1−.
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The following corollary is a direct consequence of Lemma 3.1.

Corollary 3.3. Let q ∈ (0, 1) and n ∈N. The double inequality

1 + α1qx <
qx
− 1

ln q
ψq,n+1 (x)
ψq,n (x)

< 1 + α2qx (19)

holds for x > 0, where α1 = α1
(
n, q

)
and α2 = α2

(
n, q

)
are as in Lemma 3.1.

Proof of Lemma 3.1. Using the representation (4) yields

1q,n (x;α)(
− ln q

)n+1 =
(
1 − qx) ∞∑

k=1

kn+1qkx

1 − qk
−

(
1 + αqx) ∞∑

k=1

knqkx

1 − qk

=

∞∑
k=1

(
kn+1

1 − qk
−

(k − 1)n+1

1 − qk−1
− α

(k − 1)n

1 − qk−1
−

kn

1 − qk

)
qkx

=

∞∑
k=2

(uk (n) − α)
(k − 1)n

1 − qk−1
qkx,

where

uk (n) =
kn

(k − 1)n−1

1 − qk−1

1 − qk
− (k − 1) .

Then, for m ∈N0,

(−1)m
(
1q,n (x;α)

)(m)
=

(
− ln q

)m+n+2
∞∑

k=2

(uk (n) − α)
(k − 1)n km

1 − qk−1
qkx.

Note that

uk (n + 1) − uk (n) =
kn

(k − 1)n
1 − qk−1

1 − qk
=

1

(1 − 1/k)n−1

1
Jk−1

(
1, q

) := ∆k (n) ,

where Jk−1
(
1, q

)
is the one-parameter mean of 1 and q.

By Lemma 2.1 we see that the sequence
{
Jk−1

(
1, q

)}
k≥2 is positive and increasing; the sequence

{
(1 − 1/k)n−1

}
k≥2

is clearly positive and increasing; these yield that the sequence {∆k (n)}k≥2 is decreasing, and therefore,

1 = lim
k→∞
∆k (n) ≤ uk (n + 1) − uk (n) ≤ ∆2 (n) =

2n

q + 1
. (20)

The first inequality of (20) implies that

uk (n + 1) −
(
n + 1 −

2q
q + 1

)
≥ uk (n) −

(
n −

2q
q + 1

)
for all n ∈N, that is, the sequence

{
uk (n) −

(
n − 2q/

(
q + 1

))}
n≥1 is increasing, and hence,

uk (n) −
(
n −

2q
q + 1

)
≥ uk (1) −

(
1 −

2q
q + 1

)
= k

1 − qk−1

1 − qk
− k +

2q
q + 1

= −
(
1 − q

) kqk−1

1 − qk
+

2q
q + 1

≥ 0,
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where the second inequality holds due to the fact that sequence
{
kqk−1/

(
1 − qk

)}
k≥2

is decreasing. Then
uk (n) − α ≥ uk (n) −

(
n − 2q/

(
q + 1

))
≥ 0 if α ≤ n − 2q/

(
q + 1

)
= α1

(
n, q

)
, and we thus conclude that 1q,n (x;α)

is completely monotonic on (0,∞) for α ≤ α1
(
n, q

)
.

The second inequality of (20) implies that

uk (n + 1) −
2n+1 + q − 1

q + 1
≤ uk (n) −

2n + q − 1
q + 1

for all n ∈N, that is, the sequence
{
uk (n) −

(
2n + q − 1

)
/
(
q + 1

)}
n≥1 is decreasing, and therefore,

uk (n) −
2n + q − 1

q + 1
≤ uk (1) −

2 + q − 1
q + 1

= k
1 − qk−1

1 − qk
− (k − 1) − 1 = −kqk−1 1 − q

1 − qk
< 0.

This yields that

uk (n) − α ≤ uk (n) −
(
2n + q − 1

)
/
(
q + 1

)
≤ 0

if α ≥
(
2n + q − 1

)
/
(
q + 1

)
= α2

(
n, q

)
, and we conclude that −1q,n (x;α) is completely monotonic on (0,∞) for

α ≥ α2
(
n, q

)
. This completes the proof.

To prove Theorem 4.6 below, we need to determine the positivity or negativity of the function

hq,n
(
x; β

)
=

∫ b

a w (t)ψq,n (x + t) dt∫ b

a w (t) dt
− ψq,n

(
x + β

)
(21)

on
(
−min

{
a, b, β

}
,∞

)
. The following lemma offers the necessary and sufficient conditions for the function

x 7→ ±hq,n
(
x; β

)
to be completely monotonic on (0,∞) for q ∈ (0, 1) and n ∈N0.

Lemma 3.4. Let q ∈ (0, 1), n ∈N0, a, b ∈ Rwith a , b and β ≥ min {a, b}. The function x 7→ hq,n
(
x; β

)
is completely

monotonic on (−min {a, b} ,∞) if and only if

β ≥ β2 = logq M[1]
qt,w (a, b) = logq


∫ b

a w (t) qtdt∫ b

a w (t) dt

 ; (22)

while the function x 7→ −hq,n
(
x; β

)
is completely monotonic on (−min {a, b} ,∞) if and only if β = β1 = min {a, b}.

Remark 3.5. The above lemma for w (t) = 1 was proved by Tian and Yang in [38, Corollary 3].

Taking β = β1, β2 in Lemma 3.4 we have the following corollary.

Corollary 3.6. Let q ∈ (0, 1), n ∈N0 and a, b ∈ R with a , b. The double inequality

ψq,n
(
x + β2

)
<

∫ b

a w (t)ψq,n(x + t)dt∫ b

a w (t) dt
< ψq,n

(
x + β1

)
(23)

holds for x > −min {a, b} with the best constants β1 = min {a, b} and β2 given in (22).
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Proof of Lemma 3.4. First, we prove sufficiency. Using the series representation (5) we obtain that, for
n ∈N,

hq,n
(
x; β

)
=

∫ b

a w (t)
(
ψq,n(x + t) − ψq,n

(
x + β

))
dt∫ b

a w (t) dt

=
(
− ln q

)n+1
∞∑

k=1

dk
(
β
)

1 − qk
knqkx, (24)

where

dk
(
β
)
=

∫ b

a w (t) qktdt∫ b

a w (t) dt
− qkθ =M[k]

qt,w (a, b)k
− qkθ, (25)

and M[r]
f ,w (a, b) is defined by (13). Clearly, the relation(24) is also true for n = 0. Then, for m ∈N0,

h(m)
q,n

(
x; β

)
=

(
− ln q

)m+n+1
∞∑

k=1

dk
(
β
)

1 − qk
km+nqkx.

Since

dk
(
β
)
=

M[k]
qt,w (a, b)k

− qkβ

ln M[k]
qt,w (a, b)k

− ln qkβ

(
ln M[k]

qt,w (a, b)k
− ln qkβ

)
= L

(
M[k]

qt,w (a, b)k , qkβ
)
×

(
−k ln q

) (
β − logq M[k]

qt,w (a, b)
)
,

where L
(
x, y

)
=

(
x − y

)
/
(
ln x − ln y

)
is the logarithmic mean of x, y > 0 with x , y, we see that

sgn dk = sgn
(
β − logq M[k]

qt,w (a, b)
)
.

By Lemma 2.2 we see that the sequence
{
M[k]

qt,w (a, b)
}

k≥1
is increasing with

inf
k∈N

{
M[k]

qt,w (a, b)
}
= M[1]

qt,w (a, b) ,

sup
k∈N

{
M[k]

qt,w (a, b)
}
= lim

k→∞
M[k]

qt,w (a, b) = max
{
qa, ab

}
due to that t 7→ qt is decreasing onR. Consequently, dk ≥ 0 for all k ∈N if and only if β ≥ logq M[1]

qt,w (a, b) = β2;

dk < 0 for all k ∈N if and only if β ≤ logq

(
max

{
qa, ab

})
= min {a, b}. This proves sufficiency.

Second, we prove the necessity. Suppose that x 7→ −hq,n
(
x; β

)
is completely monotonic on (−min {a, b} ,∞).

We prove that β = min {a, b}. In view of the symmetry of a and b, we let b > a. Then β1 = min {a, b} = a. If
β , a, that is, β > a, then limx→−a+ ψq,n

(
x + β

)
= ψq,n

(
β − a

)
is a constant. If we prove that

lim
x→−a+

∫ b

a w (t)ψq,n (x + t) dt∫ b

a w (t) dt
= ∞, (26)

then limx→−a+ hq,n
(
x; β

)
= ∞, which yields a contradiction, and the necessity follows. In fact, since w (t) is

positive and integrable on [a, b], we have∫ b

a
w (t)ψq,n (x + t) dt > min

t∈[a,b]
{w (t)}

∫ b

a
ψq,n (x + t) dt

= min
t∈[a,b]

{w (t)}
(
ψq,n−1 (x + a) − ψq,n−1 (x + b)

)
,
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which, by (6), clearly tends to infinity as x → −a+. This proves the necessary condition for x 7→ −hq,n
(
x; β

)
to be completely monotonic on (−min {a, b} ,∞) is that: β = min {a, b}.

The necessary condition for x 7→ hq,n
(
x; β

)
to be completely monotonic on (−min {a, b} ,∞) follows from

the limit relation

lim
x→∞

hq,n
(
x; β

)
qx =

(
− ln q

)n+1 d1 ≥ 0,

which implies that β ≥ logq M[1]
qt,w (a, b) = β2, thereby completing the proof.

4. Main results

4.1. Bounds for Iψq,n,w (a, b)

In this subsection, we establish the lower and upper bounds for the mean

Iψq,n,w (a, b) = ψ−1
q,n


∫ b

a w (x)ψq,n (x) dx∫ b

a w (x) dx

 . (27)

Theorem 4.1. For q ∈ (0, 1), r ∈ R, n ∈ N0 and a, b > 0 with a , b, let M[r]
f ,w (a, b) be defined by (13), where

f (x) = 1 − qx and w (x) is positive and integrable on [min {a, b} ,max {a, b}]. The double inequality

logq

(
1 −M[r1]

f ,w (a, b)
)
< Iψq,n,w (a, b) < logq

(
1 −M[r2]

f ,w (a, b)
)

(28)

holds if

r1 ≤ −α2
(
n + 1, q

)
= −

2n+1 + q − 1
q + 1

and

r2 ≥ −α1
(
n + 1, q

)
= −n −

1 − q
q + 1

.

In particular, we have

lim
n→∞

Iψq,n,w (a, b) = min {a, b} . (29)

Proof. Let fr (x) = f (x)r =
(
1 − qx)r (r < 0) and 1 (x) = ψq,n (x). Then f−1

r (x) = logq

(
1 − x1/r

)
. Since

f ′r (x) = −
(
r ln q

)
qx (

1 − qx)r−1 < 0,

the desired inequalities are equivalent to

fr1 ◦ 1
−1


∫ b

a w (x) 1 (x) dx∫ b

a w (x) dx

 <

∫ b

a w (x) fr1 (x) dx∫ b

a w (x) dx
,

fr2 ◦ 1
−1


∫ b

a w (x) 1 (x) dx∫ b

a w (x) dx

 >

∫ b

a w (x) fr2 (x) dx∫ b

a w (x) dx
,
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which suffice to check that the function fr ◦ 1−1 is convex if r = r1 and is concave if r = r2. Differentiation
yields(

fr
(
1−1 (x)

))′
=

f ′r
(
y
)

1′
(
y
) , where y = 1−1 (x) ,(

fr
(
1−1 (x)

))′′
=

f ′′r
(
y
)
1′

(
y
)
− f ′r

(
y
)
1′′

(
y
)

1′
(
y
)3 :=

D
(
y
)

1′
(
y
)3 .

A direct computation gives

D (x)

−r
(
ln q

)2 qx (
1 − qx)−n−2 =

1 − qx

− ln q
ψq,n+2 (x) −

(
1 − rqx)ψq,n+1 (x) = 1q,n+1 (x;−r) ,

where 1q,n (x;α) is as in (18). Using Lemma 3.1 we see that 1q,n+1 (x;−r) < (>) 0 if −r ≥ α2
(
n + 1, q

)
(0 < −r ≤

α1
(
n + 1, q

)
), where α1

(
n, q

)
and α2

(
n, q

)
are as in Lemma 3.1. This together with 1′

(
y
)
= −ψq,n+1 (x) < 0

yields that
(

fr
(
1−1 (x)

))′′
> (<) 0 if r ≤ −α2

(
n + 1, q

)
(−α1

(
n + 1, q

)
≤ r < 0), which proves the double

inequality (28) if r1 ≤ −α2
(
n + 1, q

)
and −α1

(
n + 1, q

)
≤ r2 < 0. The right hand side inequality in (28) if r2 ≥ 0

follows from the increasing property of the function r 7→M[r]
f ,w (a, b) given by Lemma 2.2.

Taking r1 = −α2
(
n + 1, q

)
and r2 = −α1

(
n + 1, q

)
in (28) and letting n→∞, then we see that r1, r2 → −∞.

Since f (x) = 1 − qx is increasing on (0,∞), an application of Lemma 2.2 yields

lim
n→∞

M[ri]
f ,w (a, b) = lim

ri→∞
M[ri]

f ,w (a, b) = min
{
1 − qa, 1 − qb

}
, i = 1, 2,

then

lim
n→∞

logq

(
1 −M[r1]

f ,w (a, b)
)
= lim

n→∞

(
1 −M[r2]

f ,w (a, b)
)
= min {a, b} ,

which implies the limit relation (29), and the proof is done.

The double inequality (28) is equivalent to

ψq,n

(
logq

(
1 −M[r2]

f ,w (a, b)
))
<

∫ b

a w (x)ψq,n (x) dx∫ b

a w (x) dx
< ψq,n

(
logq

(
1 −M[r1]

f ,w (a, b)
))
.

Taking n = 0 and w (x) = 1 in Theorem 4.1, and noting that∫ b

a

dx
1 − qx = b − a −

1
ln q

ln
1 − qb

1 − qa ,

we obtain the following corollary.

Corollary 4.2. Let q ∈ (0, 1) and a, b > 0 with a , b. The double inequality

ψq

(
logq

(
1 −M[r1]

f ,1 (a, b)
))
< ln

[
Γq (b)
Γq (a)

]1/(b−a)

< ψq

(
logq

(
1 −M[r2]

f ,1 (a, b)
))

(30)

holds if r1 ≤ −1 and r2 ≥
(
q − 1

)
/
(
q + 1

)
, where

M[r]
f ,1 (a, b) =


∫ b

a

(
1 − qx)r dx

b − a


1/r

.
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In particular, when (r1, r2) = (−1, 0), we have

ψq

logq

ln
(
1 − qb

)
− ln

(
1 − qa)

ln
(
q−b − 1

)
− ln

(
q−a − 1

)  < lnΓq (b) − lnΓq (a)
b − a

< ψq

logq

1 − exp

∫ b

a ln
(
1 − qx) dx

b − a


 .

(31)

Remark 4.3. Since 1 − qx = 1 − ex ln q ∼ −x ln q as q→ 1−, we have

M[r]
f ,1 (a, b) =


∫ b

a

(
1 − qx)r dx

b − a


1/r

∼
(
− ln q

) 
∫ b

a xrdx

b − a


1/r

=
(
− ln q

)
Lr+1 (a, b) ,

logq

(
1 −M[r]

f ,1 (a, b)
)
∼

ln
(
1 −

(
− ln q

)
Lr+1 (a, b)

)
ln q

→ Lr+1 (a, b) ,

as q→ 1−, where Lp (a, b) is the generalized logarithmic mean of a and b defined by (10). Then the double inequality
(30) is reduced to

Lr1+1 (a, b) < Iψn (a, b) = ψ−1
n


∫ b

a ψn (x) dx

b − a

 < Lr2+1 (a, b)

if r1 ≤ −2n and r2 ≥ −n. This lower bound for Iψn (a, b) is weaker than Qi’s in (9).

Remark 4.4. Letting q→ 1− in the double inequality (31) gives

ψ (L (a, b)) <
lnΓ (b) − lnΓ (a)

b − a
< ψ (I (a, b)) , (32)

where L (a, b) = (b − a) / (ln b − ln a) and

I (a, b) = exp
(

b ln b − a ln a
b − a

− 1
)

are the logarithmic and exponential means of a and b. Inequalities (32) can also be deduced by taking
(
p1, p2

)
=

(−n + 1,−n) and n = 0 in (9).

4.2. Monotonicity of the sequence {Iψq,n,w (a, b)}n≥0

Using Lemma 2.3 (v) and Theorem 4.1 we easily prove the monotonicity of the sequence {Iψq,n,w (a, b)}n≥0,
where Iψq,n,w (a, b) is explicitly given by (27).

Theorem 4.5. For a, b > 0 with a , b, the sequence {Iψq,n,w(a, b)}n≥0 is strictly decreasing with

lim
n→∞

Iψq,n,w (a, b) = min {a, b} .

Proof. The inequality Iψq,n,w (a, b) > Iψq,n+1,w (a, b) is equivalent to

ψq,n+1 ◦ ψ
−1
q,n


∫ b

a w (x)ψq,n (x) dx∫ b

a w (x) dx

 <
∫ b

a w (x)ψq,n+1 (x) dx∫ b

a w (x) dx
,

which follows from the convexity of the function ψq,n+1 ◦ψ−1
q,n on (0,∞) (given by Lemma 2.3 (v)) and Jensen

inequality.
The limit relation limn→∞ Iψq,n,w (a, b) = min {a, b} follows from (29), which completes the proof.
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4.3. Monotonicity of the function Aψq,n,w (x)
Theorem 4.6. Let q ∈ (0, 1), n ∈N0 and a, b ∈ R with a , b. Then the function

x 7→ Aψq,n,w (x) = ψ−1
q,n


∫ b

a w (t)ψq,n(x + t)dt∫ b

a w (t) dt

 − x (33)

is strictly increasing from (−min {a, b} ,∞) onto
(
β1, β2

)
, where β1 = min {a, b} and β2 is given in (22).

Proof. Let

yn = yn (x) = ψ−1
q,n


∫ b

a w (t)ψq,n(x + t)dt∫ b

a w (t) dt

 .
Then

ψq,n
(
yn

)
=

∫ b

a w (t)ψq,n(x + t)dt∫ b

a w (t) dt
.

Differentiation with respect to x yields

−ψq,n+1
(
yn

)
y′n = −

∫ b

a w (t)ψq,n+1(x + t)dt∫ b

a w (t) dt
= −ψq,n+1

(
yn+1

)
,

which implies that

y′n =
ψq,n+1

(
yn+1

)
ψq,n+1

(
yn

) .
Since ψq,n+1 ◦ ψ−1

q,n is convex on (0,∞) (given by Lemma 2.3 (v)), by Jensen inequality we have

ψq,n+1
(
yn

)
= ψq,n+1

ψ−1
q,n


∫ b

a w (t)ψq,n(x + t)dt∫ b

a w (t) dt




<

∫ b

a w (t)ψq,n+1(x + t)dt∫ b

a w (t) dt
= ψq,n+1

(
yn+1

)
,

which leads to

y′n =
ψq,n+1

(
yn+1

)
ψq,n+1

(
yn

) >
ψq,n+1

(
yn+1

)
ψq,n+1

(
yn+1

) = 1.

It follows that

A′ψq,n,w (x) = y′n (x) − 1 > 0,

which proves the required monotonicity.
It remains to compute the limit values of Aψq,n,w (x) when x → −min {a, b} ,∞. By the symmetry of a

and b, we assume that b > a. Then β1 = min {a, b} = a. By (6) we see that ψq,n (0+) = ∞ for n ≥ 0, and so
ψ−1

q,n (∞) = 0. Now, by (26) we see that

lim
x→−a+

ψq,n
(
yn

)
= lim

x→−a+

∫ b

a w (t)ψq,n (x + t) dt∫ b

a w (t) dt
= ∞,
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and then

lim
x→−a+

Aψq,n,w (x) = lim
x→−a+

yn (x) + a = ψ−1
q,n (∞) + a = a.

By the double inequality (23) we see that

ψq,n
(
x + β2

)
< ψq,n

(
yn

)
,

which, due to ψ′q,n = −ψq,n+1 < 0, implies that

yn < x + β2

for x > −a. On the other hand, by mean value theorem we have

ψq,n
(
yn

)
− ψq,n

(
x + β2

)
yn − x − β2

= ψ′q,n (ξ) = −ψq,n+1 (ξ) ,

where yn < ξ < x + β2. Noting that ψq,n
(
yn

)
− ψq,n

(
x + β2

)
= hq,n

(
x; β2

)
and using the series representations

(24) together with d1
(
β2

)
= 0 and (5), we derive that

0 < x + β2 − yn =
ψq,n

(
yn

)
− ψq,n

(
x + β2

)
ψq,n+1 (ξ)

<
ψq,n

(
yn

)
− ψq,n

(
x + β2

)
ψq,n+1

(
x + β2

)
=

(− ln q
)n+1

∞∑
k=1

dk
(
β2

)
1 − qk

knqkx

/
(− ln q

)n+2
∞∑

k=1

kn+1qkβ2

1 − qk
qkx

→ 0

as x→∞, which proves that limx→∞
(
yn − x

)
= β2. This completes the proof.

Taking w (t) = 1 in Theorem 4.6 and noting that

β2 = logq


∫ b

a qtdt

b − a

 = logq L
(
qa, qb

)
= β∗2,

where L
(
qa, qb

)
is the logarithmic mean of qa and qb, the following corollary is immediate.

Corollary 4.7. Let q ∈ (0, 1), n ∈N0, a, b ∈ R with a , b. Then the function

x 7→ Aψq,n (x) = ψ−1
q,n


∫ b

a ψq,n(x + t)dt

b − a

 − x

is strictly increasing from (−min {a, b} ,∞) onto
(
min {a, b} , β∗2

)
, where β∗2 = logq L

(
qa, qb

)
. Consequently, the double

inequality

ψq,n

(
x + β∗2

)
<

∫ b

a ψq,n(x + t)dt

b − a
< ψq,n (x +min {a, b}) (34)

holds for x > −min {a, b} with the best constants min {a, b} and β∗2. In particular, when n = 0, we have

exp
(
ψq (x +min {a, b})

)
<

(
Γq (x + b)
Γq (x + a)

)1/(b−a)

< exp
(
ψq

(
x + β∗2

))
.
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Remark 4.8. Ismail and Muldoon [19] proved that, for 0 < s < 1, the inequality

Γq (x + 1)
Γq (x + s)

< e(1−s)ψq(x+(s+1)/2)

holds for x > 0. Alzer [2] proposed an open problem: let 0 < q , 1 and v ∈ (0, 1) be real numbers. Determine the best
possible values r1

(
q, v

)
and r2

(
q, v

)
such that the inequalities

eψq(x+r1(q,v)) <
(
Γq (x + 1)
Γq (x + v)

)1/(1−v)

< eψq(x+r2(q,v)) (35)

hold for all x > 0. This was solved by Gao in [14], and was resolved by Alzahrani, Salem and El-Shahed in [1,
Corollary 3.1]. Clearly, Alzer’s problem can be easily attacked by Corollary 4.7.

5. Conclusions

In this paper, we established the lower and upper bounds for the mean Iψq,n,w (a, b) (Theorem 1), which
is a generalization of Qi’s inequalities (9); proved that the sequence

{
Iψq,n,w (a, b)

}
n≥0

is decreasing with
limn→∞ Iψq,n,w (a, b) = min {a, b} (Theorem 2); and presented that, for a, b ∈ Rwith a , b, the function Aψq,n,w (x)
defined by (33) is strictly increasing from (−min {a, b} ,∞) onto

(
min {a, b} , β2

)
, where β2 is given by (22)

(Theoem 3). It is emphasized that some known results are direct consequences of Theorem 3.
Moreover, we presented several interesting properties of the q-polygamma functions, and found the

conditions for which the functions ±1q,n (x;α) and ±hq,n
(
x; β

)
are completely monotonic on (0,∞) and

(−min {a, b} ,∞), respectively. As consequences, we established two double inequalities (19) and (23),
which are new.

Finally, we propose two problems. The first is inspired by the inequality (14) and the monotonicity of
xψn+1 (x) /ψn (x) proved by Alzer [3, Lemma 2] (see also [4, Lemma 2.1], [45, Corollary 2], [40]), which is
stated as follows.

Problem 5.1. Let q ∈ (0, 1) and n ∈N. Prove that the function

x 7→
qx
− 1

ln q
ψq,n+1 (x)
ψq,n (x)

is decreasing on (0,∞).

The second is motivated by Lemma 3.4.

Problem 5.2. Let q ∈ (0, 1), n ∈ N0, a, b, c, d ∈ R with (a − b) (c − d) , 0 and ρ = min {a, b, c, d}. What are the
conditions such that the function

x 7→

∫ b

a w (t)ψq,n (x + t) dt∫ b

a w (t) dt
−

∫ d

c w (t)ψq,n (x + t) dt∫ d

c w (t) dt

is completely monotonic on
(
−ρ,∞

)
?

6. Appendix: limq→1 ψ
(n)
q (x) = ψ(n) (x)

Proposition 6.1. Let q ∈ R with q , 1 and n ∈N. For x > 0, we have

lim
q→1

ψ(n)
q (x) = ψ(n) (x) .
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Proof. First assume that q ∈ (0, 1). By (3) we have, for n ∈N,

ψ(n)
q (x) =

∞∑
k=0

dn

dxn

(
ln q

1 − qk+x
− ln q

)
.

It thus suffices to prove that

lim
q→1−

dn

dxn

(
ln q

1 − qk+x
− ln q

)
= (−1)n+1 n!

(k + x)n+1 .

To this end, we use the formula for the n-th derivative of a composite function:

dn f
(
1 (x)

)
dxn =

n∑
j=1

1
j!

f ( j) (1 (x)
)

h j (x) ,

where

h j (x) =
j−1∑
i=0

(−1)i
(

j
i

)
1i (x)

dn

dxn 1
j−i (x) ,

see [15, No. 0.430.1]. Let f
(
y
)
= 1/

(
1 − y

)
and 1 (x) = qk+x. Then

f (n) (y) = n!(
1 − y

)n+1 ,
dn

dxn 1
j−i (x) =

dn

dxn q( j−i)(k+x) = q( j−i)(k+x) ( j − i
)n lnn q,

h j (x) =
j−1∑
i=0

(−1)i
(

j
i

)
qi(k+x)q( j−i)(k+x) ( j − i

)n lnn q =
(
lnn q

)
q j(k+x) j!S

(
n, j

)
,

where

S
(
n, j

)
=

1
j!

j∑
i=0

(−1) j−i
(

j
i

)
in

is the Stirling number of the second kind (see [10, p. 624]), and then,

dn

dxn

ln q
1 − qk+x

=

n∑
j=1

 1
j!

j!
(
ln q

)n+1(
1 − qk+x) j+1

q j(k+x) j!S
(
n, j

)
=

(
ln q

1 − qk+x

)n+1 n∑
j=1

[(
1 − qk+x

)n− j
q j(k+x) j!S

(
n, j

)]

: =

(
ln q

1 − qk+x

)n+1 n∑
j=1

F j,n
(
k + x; q

)
.

Clearly, for 1 ≤ j ≤ n − 1, F j,n
(
k + x; q

)
tends to zero when q→ 1−, and therefore,

lim
q→1−

dn

dxn

(
ln q

1 − qk+x
− ln q

)
= lim

q→1−

(
ln q

1 − qk+x

)n+1

Fn,n
(
k + x; q

)
=

(−1)n+1

(k + x)n+1 n!S (n,n) =
(−1)n+1 n!

(k + x)n+1 ,

where we have used the identity S (n,n) = 1 (see [10, p. 624]).
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For q > 1, by (2) we have

ψ(n)
q (x) =

(
lnΓq (x)

)(n+1)
=

1
2

((x − 1) (x − 2))(n+1) ln q + ψ(n)
1/q (x)→ ψ(n) (x) ,

as q→ 1+, thereby completing the proof.
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