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Abstract. We investigate the complete convergence and complete q-th moment convergence for weighted
sums of coordinatewise negatively associated random vectors taking values in a real separable Hilbert space
without assumption of identical distribution. The results obtained in the paper generalize and improve
some known ones.

1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins [10] as follows: a sequence
{Xn,n ⩾ 1} of random variables converges completely to a constant C if for all ε > 0,

∞∑
n=1

P(|Xn − C| > ε) < ∞.

In view of the Borel-Cantelli lemma, this implies that Xn → C almost surely. The converse is true if
{Xn,n ⩾ 1} is independent. Hsu and Robbins proved that the sequence of arithmetic means of independent,
identically distributed (i.i.d.) random variables converges completely to the expected value of the variables,
provided their variance is finite. The necessity was proved by Erdös [6, 7]. The result of Hsu, Robbins and
Erdös is a fundamental theorem in probability theory and was later generalized and extended during a
process which led to the now classical paper by Baum and Katz [3].

The concept of complete moment convergence was introduced by Chow [5] as follows: let {Xn,n ⩾ 1}
be a sequence of random variables and an > 0, bn > 0, q > 0. If

∞∑
n=1

anE
(
(b−1

n |Xn| − ε)+
)q
< ∞ for every ε > 0,
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where x+ = max{0, x}, then {Xn,n ⩾ 1} is said to be complete q-th moment convergence. As we know,
the complete q-th moment convergence implies the complete convergence. Moreover, the complete q-th
moment convergence can describe the convergence rate of a sequence of random variables more exactly
than the complete convergence.

The concept of negative association for random variables was introduced by Alam and Saxena [1] and
carefully studied by Joag-Dev and Proschan [14]. A finite family {Yi, 1 ⩽ i ⩽ n} of random variables is said
to be negatively associated (NA) if for any disjoint subsets A, B of {1, 2, ...,n} and any real coordinatewise
nondecreasing functions f on R|A|, 1 on R|B|,

Cov
(

f (Yi, i ∈ A), 1(Y j, j ∈ B)
)
⩽ 0

whenever the covariance exists, where |A| denotes the cardinality of A. An infinite family of random
variables is NA if every finite subfamily is NA.

Afterwards, the concept of negative association was extended to finite dimensional random vectors and
to Hilbert space valued random vectors (for details see Zhang [23], Ko et al. [17]). Let H be a real separable
Hilbert space with the norm ∥ · ∥ generated by an inner product ⟨·, ·⟩, let {e j, j ⩾ 1} be an orthonormal basis in
H, let X be an H-valued random vector, and ⟨X, e j⟩ will be denoted by X( j). In [13], the authors introduced
the concept of coordinatewise negative association for H-valued random vectors which is more general
than the concept of negative association of Ko et al. [17].

Definition 1.1 ([13], Definition 1.3). A sequence {Xn,n ⩾ 1} of H-valued random vectors is said to be
coordinatewise negatively associated (CNA) if for each j ⩾ 1, the sequence {X( j)

n ,n ⩾ 1} of random variables is
NA.

Our results are related to the following two theorems. The first one is a part of the main results of Baum
and Katz (for details see [3, Theorem 1 and Theorem 2]).

Theorem 1.2. Let α be a real number (1/2 < α ⩽ 1), let β be a fixed number that can only take the value 0 or 1, and
let {Xn,n ⩾ 1} be a sequence of i.i.d. mean zero random variables with the n-th partial sum Sn (n ⩾ 1). Then the
following statements are equivalent:

E(|X1|
1/α (log+ |X1|)β) < ∞; (1)

∞∑
n=1

(log+ n)β

n
P(|Sn| > εnα) < ∞ for every ε > 0, (2)

here and afterwards the logarithms are to the base 2, log+ x = log(max{2, x}).

Note that the equivalence ((1)⇔(2)) was proved by Spitzer [19] for the case of β = 0 and α = 1. Obviously,
the condition

∞∑
n=1

(log+ n)β

n
P(max

1⩽k⩽n
|Sk| > εnα) < ∞ for every ε > 0 (3)

implies (2). The criterion (3) is more interesting than (2). As in Bai et al. [2], the criterion (3) implies
Sn/nα → 0 a.s. In [11], the author extended Theorem 1.2 to random vectors taking values in a real separable
Hilbert space as follows.

Theorem 1.3 ([11], Theorems 3.1 and 3.3). Let α be a positive real number (1/2 < α < 1), let β be a fixed number
that can only take the value 0 or 1, and let {Xn,n ⩾ 1} be a sequence of H-valued CNA mean zero random vectors
with the n-th partial sum Sn (n ⩾ 1). Suppose that {Xn,n ⩾ 1} is coordinatewise weakly upper bounded by a random
vector X. Then the condition

∞∑
j=1

E
(
|X( j)
|
1/α (log+ |X

( j)
|)β
)
< ∞ (4)
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implies

∞∑
n=1

(log+ n)β

n
P
(

max
1⩽k⩽n

∥Sk∥ > εnα
)
< ∞ for every ε > 0. (5)

In the present paper, we study Theorem 1.3 for weighted sums of CNA random vectors in Hilbert spaces,
where 1/2 < α ⩽ 1 and β is any nonnegative real number. We also investigate the complete q-th moment
convergence for weighted sums of CNA random vectors without assumption of identical distribution.

Let us note that our results still hold if the function x 7→ (log+(x))β is replaced by a slowly varying
function at infinity defined on [0,∞). For more details about some properties and applications of slowly
varying functions, the reader may refer to [8, 18, 20, 22].

Throughout this paper, the symbol C will denote a generic positive constant which is not necessarily
the same one in each appearance. The logarithms are to the base 2, for x ∈ R, log(max{2; x}) will be denoted
by log+ x.

Inspired by the work of Gut [9], we introduce two concepts of stochastic domination for random vectors
in Hilbert spaces. Let {X,Xn,n ⩾ 1} be a sequence of H-valued random vectors. We consider the following
inequalities

sup
n⩾1

∞∑
j=1

P(|X( j)
n | > t) ⩽ C

∞∑
j=1

P(|X( j)
| > t); (6)

sup
n⩾1

1
n

n∑
k=1

∞∑
j=1

P(|X( j)
k | > t) ⩽ C

∞∑
j=1

P(|X( j)
| > t). (7)

If there exists a positive constant C such that (6) (respectively, (7)) is satisfied for every t ⩾ 0, then the
sequence {Xn,n ⩾ 1} is said to be stochastically dominated (respectively, weakly mean dominated) by X. It is
well known that (6) and (7) are, of course, automatic with X = X1 and C = 1 if {Xn,n ⩾ 1} is a sequence
of identically distributed random vectors. If X dominates the sequence {Xn,n ⩾ 1} in the stochastically
dominated sense, then it also dominates the sequence {Xn,n ⩾ 1} in the weakly mean dominated sense. For
more details about stochastically dominating random variables, one can refer to Gut [9] and Thanh [21].

2. Preliminary lemmas

In this section, we give the following lemmas which will be used to prove our main results.

Lemma 2.1 ([13], Lemma 1.7). Let {Xn,n ⩾ 1} be a sequence of H-valued CNA random vectors with EXn = 0 and
E∥Xn∥

2 < ∞ for all n ⩾ 1. Then, we have

E
(

max
1⩽k⩽n

∥∥∥∥ k∑
l=1

Xl

∥∥∥∥2) ⩽ C
n∑

k=1

E∥Xk∥
2 for all n ⩾ 1.

The techniques used in the proofs of the following two lemmas can be founded in Gut [9, Lemma 2.1].

Lemma 2.2. Let p be a positive real number, and let {Xn,n ⩾ 1} be a sequence of random vectors which are
stochastically dominated by a random vector X. Then for all t ∈ R,

(i) sup
n⩾1

∞∑
j=1

E
(
|X( j)

n |
p I(|X( j)

n | > t)
)
⩽ C

∞∑
j=1

E
(
|X( j)
|
p I(|X( j)

| > t)
)
;

(ii) sup
n⩾1

∞∑
j=1

E
(
|X( j)

n |
p I(|X( j)

n | ⩽ t)
)
⩽ C

∞∑
j=1

(
E(|X( j)

|
p I(|X( j)

| ⩽ t)) + tp P(|X( j)
| > t)

)
.
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Lemma 2.3. Let p be a positive real number, and let {Xn,n ⩾ 1} be a sequence of random vectors which are weakly
mean dominated by a random vector X. Then for all t ∈ R,

(i) sup
n⩾1

1
n

n∑
k=1

∞∑
j=1

E
(
|X( j)

k |
p I(|X( j)

k | > t)
)
⩽ C

∞∑
j=1

E
(
|X( j)
|
p I(|X( j)

| > t)
)
;

(ii) sup
n⩾1

1
n

n∑
k=1

∞∑
j=1

E
(
|X( j)

k |
p I(|X( j)

k | ⩽ t)
)
⩽ C

∞∑
j=1

(
E(|X( j)

|
p I(|X( j)

| ⩽ t)) + tp P(|X( j)
| > t)

)
.

The proof of the next lemma is, except for details, the same as the proof of Lemma 2.3 in [12] and will
be omitted.

Lemma 2.4. Let α, β, γ be real numbers (α > 0, β ⩾ 0, γ ⩾ 0), and let X be a random vector satisfying (4). Then

(i)
∞∑
j=1

∞∑
n=1

(log+ n)β

nαγ
E
(
|X( j)
|
γ I(|X( j)

| > nα)
)
< ∞ if αγ < 1;

(ii)
∞∑
j=1

∞∑
n=1

(log+ n)β

nαγ
E
(
|X( j)
|
γ I(|X( j)

| ⩽ nα)
)
< ∞ if αγ > 1.

Lemma 2.5. Let α, β, γ, q be real numbers (q > 0, 0 < α < 1/q, β ⩾ 0, γ ⩾ 0), and let X be a random vector satisfying
(4). Then

(i)
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq

∞∫
nαq

1
tγ/q
E
(
|X( j)
|
γ I(|X( j)

| > t1/q)
)

dt < ∞ if αγ < 1;

(ii)
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq

∞∫
nαq

1
tγ/q
E
(
|X( j)
|
γ I(|X( j)

| ⩽ t1/q)
)

dt < ∞ if αγ > 1.

Proof. The proofs of the above statements are quite similar, so we will only give that of statement (ii). It
is well known that 1(x) = x−αq (log+ x)β is a regularly varying function of index ρ = −αq > −1. Then by
Remark A.5 in [15] and Lemma 2.4, we obtain the following estimations

∞∑
j=1

∞∑
n=1

(log+ n)β

nαq

∞∫
nαq

1
tγ/q
E
(
|X( j)
|
γ I(|X( j)

| ⩽ t1/q)
)

dt

⩽
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq

∞∑
k=n

∫ (k+1)αq

kαq

1
kαγ
E
(
|X( j)
|
γ I(|X( j)

| ⩽ (k + 1)α)
)

dt

⩽ C
∞∑
j=1

∞∑
k=1

1
kαγ−αq+1 E

(
|X( j)
|
γ I(|X( j)

| ⩽ (k + 1)α)
) k∑

n=1

(log+ n)β

nαq

⩽ C
∞∑
j=1

∞∑
k=1

(log+ k)β

kαγ
E
(
|X( j)
|
γ I(|X( j)

| ⩽ (k + 1)α)
)

⩽ C
∞∑
j=1

∞∑
k=2

(
log+ k)

)β
kαγ

E
(
|X( j)
|
γ I(|X( j)

| ⩽ kα)
)
< ∞.

Thus, the proof is completed.
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Lemma 2.6 ([11], Lemma 2.4). Let α be a positive real number, and let X be an H-valued random vector such that∑
∞

j=1E|X( j)
|
1/α < ∞. Then

∞∑
j=1

E
(
|X( j)
|
1/α I(|X( j)

|
1/α > n)

)
→ 0 as n→∞.

3. Main Results

With the preliminaries accounted for, the main results may now be established. In the following theorem,
we obtain the complete convergence and complete q-th moment convergence for weighted sums of CNA
random vectors taking values in a real separable Hilbert space without assumption of identical distribution.

Theorem 3.1. Let α, β, q be real numbers (1/2 < α < 1, 0 < q < 1/α, β ⩾ 0), let {ani,n ⩾ 1, 1 ⩽ i ⩽ n} be an array
of constants such that

n∑
i=1

a2
ni ⩽ C nδ for all n ⩾ 1, for some δ ⩾ 1,

and let {Xn,n ⩾ 1} be a sequence of H-valued CNA mean zero random vectors. Suppose that {Xn,n ⩾ 1} is
stochastically dominated by a random vector X. Then the condition (4) implies

∞∑
n=1

(log+ n)β

nδ
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > εnα) < ∞ for every ε > 0; (8)

∞∑
n=1

(log+ n)β

nαq+δ E
((

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ − εnα)+)q < ∞ for every ε > 0. (9)

Proof. Since ani = a+ni − a−ni, without loss of generality, we can assume that ani ⩾ 0 for all n ⩾ 1, 1 ⩽ i ⩽ n. For
each n ⩾ 1, t ∈ R, set

Y( j)
n (t) = X( j)

n I(|X
( j)
n | ⩽ t) + t I(X( j)

n > t) − t I(X( j)
n < −t);

Z( j)
n (t) = X( j)

n − Y( j)
n (t), j ⩾ 1; Zn(t) =

∞∑
j=1

Z( j)
n (t) e j; Yn(t) =

∞∑
j=1

Y( j)
n (t) e j.

Then for every ε > 0,

∞∑
n=1

(log+ n)β

nδ
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > εnα)
⩽
∞∑

n=1

(log+ n)β

nδ
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

(
aniYi(nα) − E(aniYi(nα))

)∥∥∥∥ > εnα/2)
+

∞∑
n=1

(log+ n)β

nδ
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

(
aniZi(nα) − E(aniZi(nα))

)∥∥∥∥ > εnα/2)
= I1 + I2.

It is well known that {Y( j)
k (nα), k ⩾ 1} is NA for all j ⩾ 1 and n ⩾ 1, and so {ankYk(nα), k ⩾ 1} is CNA for all

n ⩾ 1. By the Markov inequality, Lemmas 2.1, 2.2 and 2.4, we have

I1 ⩽ C
∞∑

n=1

(log+ n)β

n2α+δ
E
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

(
aniYi(nα) − E(aniYi(nα))

)∥∥∥∥)2
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⩽ C
∞∑

n=1

(log+ n)β

n2α+δ

n∑
k=1

a2
nk E∥Yk(nα) − EYk(nα)∥2

⩽ C
∞∑

n=1

(log+ n)β

n2α+δ

n∑
k=1

a2
nk E∥Yk(nα)∥2

= C
∞∑
j=1

∞∑
n=1

(log+ n)β

nδ

n∑
k=1

a2
nk P(|X( j)

k | > nα)

+ C
∞∑
j=1

∞∑
n=1

(log+ n)β

n2α+δ

n∑
k=1

a2
nk E
(
(X( j)

k )2I(|X( j)
k | ⩽ nα)

)
⩽ C

∞∑
j=1

∞∑
n=1

(log+ n)β P(|X( j)
| > nα)

+ C
∞∑
j=1

∞∑
n=1

(log+ n)β

n2α E
(
(X( j))2I(|X( j)

| ⩽ nα)
)
< ∞,

and

I2 ⩽ C
∞∑

n=1

(log+ n)β

nα+δ
E
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

(
aniZi(nα) − E(aniZi(nα))

)∥∥∥∥)
⩽ C

∞∑
n=1

(log+ n)β

nα+δ

n∑
k=1

E∥ankZk(nα)∥

⩽ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nα+δ

n∑
k=1

|ank|E|X
( j)
k I(|X

( j)
k | > nα)|

+ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nδ

n∑
k=1

|ank|P(|X( j)
k | > nα)

⩽ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nα+(δ−1)/2
E|X( j) I(|X( j)

| > nα)|

+ C
∞∑
j=1

∞∑
n=1

(log+ n)β

n(δ−1)/2
P(|X( j)

| > nα) < ∞.

Therefore (8) holds.
On the other hand, it follows from (8) that

∞∑
n=1

(log+ n)β

nαq+δ E
((

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ − εnα)+)q
⩽
∞∑

n=1

(log+ n)β

nαq+δ

∫ nαq

0
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > εnα) dt

+

∞∑
n=1

(log+ n)β

nαq+δ

∫
∞

nαq
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > t1/q
)

dt

⩽
∞∑

n=1

(log+ n)β

nδ
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > εnα)
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+

∞∑
n=1

(log+ n)β

nαq+δ

∫
∞

nαq
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

(
aniYi(t1/q) − E(aniYi(t1/q))

)∥∥∥∥ > t1/q/2
)

dt

+

∞∑
n=1

(log+ n)β

nαq+δ

∫
∞

nαq
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

ani

(
(Xi − Yi(t1/q)) − E(Xi − Yi(t1/q))

)∥∥∥∥ > t1/q/2
)

dt

= C + I3 + I4.

By the Markov inequality, Lemmas 2.1, 2.2 and 2.5, we have

I3 ⩽ C
∞∑

n=1

(log+ n)β

nαq+δ

∫
∞

nαq

1
t2/q E

(
max
1⩽k⩽n

∥∥∥∥ k∑
i=1

(
aniYi(t1/q) − E(aniYi(t1/q))

)∥∥∥∥)2 dt

⩽ C
∞∑

n=1

(log+ n)β

nαq+δ

∫
∞

nαq

1
t2/q

n∑
k=1

a2
nk E∥Yk(t1/q) − EYk(t1/q)∥2 dt

⩽ C
∞∑

n=1

(log+ n)β

nαq+δ

∫
∞

nαq

1
t2/q

n∑
k=1

a2
nk E∥Yk(t1/q)∥2 dt

= C
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq+δ

∫
∞

nαq

1
t2/q

n∑
k=1

a2
nk E
(
X( j)

k I(|X
( j)
k | ⩽ t1/q)

)2
dt

+ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq+δ

∫
∞

nαq

n∑
k=1

a2
nk P(|X( j)

k | > t1/q) dt

⩽ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq

∫
∞

nαq

1
t2/q E

(
X( j) I(|X( j)

| ⩽ t1/q)
)2

dt

+ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq

∫
∞

nαq
P(|X( j)

| > t1/q) dt < ∞,

and

I4 ⩽ C
∞∑

n=1

(log+ n)β

nαq+δ

∫
∞

nαq

1
t1/q

n∑
k=1

|ank|E∥Xk − Yk(t1/q)∥ dt

⩽ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq+δ

∫
∞

nαq

1
t1/q

n∑
k=1

|ank|E|X
( j)
k I(|X

( j)
k | > t1/q)| dt

+ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq+δ

∫
∞

nαq

n∑
k=1

|ank|P(|X( j)
n | > t1/q) dt

⩽ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq+(δ−1)/2

∫
∞

nαq

1
t1/q E|X

( j) I(|X( j)
| > t1/q)| dt

+ C
∞∑
j=1

∞∑
n=1

(log+ n)β

nαq+(δ−1)/2

∫
∞

nαq
P(|X( j)

| > t1/q) dt < ∞.

From the above arguments, we obtain (9).

Remark 3.2. Under the assumptions of Theorem 3.1, (4) implies (8). However, the reverse is not true in
general. In the special case when β = 0, δ = 1 and ani = 1 (n ⩾ 1, 1 ⩽ i ⩽ n), it was shown in [11, Example
3.2] that (8) is strictly weaker than (4).
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Remark 3.3. Suppose that α, β, δ, q be nonnegative real numbers (q > 0), {ani,n ⩾ 1, 1 ⩽ i ⩽ n} be an array of
constants, {Xn,n ⩾ 1} be a sequence of H-valued random vectors. Then for every ε > 0,

∞∑
n=1

(log+ n)β

nδ
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > εnα)
=

∞∑
n=1

(log+ n)β

nδ
P
(( 1

nα
max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ − ε/2)+ > ε/2)
⩽ C

∞∑
n=1

(log+ n)β

nαq+δ E
((

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ − εnα/2)+)q.
It is sufficient to show that (9) implies (8). Furthermore,

∞∑
n=1

(log+ n)β

nαq+δ E
((

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ − εnα)+)q
=

∞∑
n=1

(log+ n)β

nδ

∫
∞

0
P
(( 1

nα
max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ − ε)+ > x1/q
)

dx

⩾
∞∑

n=1

(log+ n)β

nδ

∫
∞

εq
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > (ε + x1/q)nα
)

dx

=

∞∑
n=1

(log+ n)β

nδ

∫
∞

(2ε)q

( t1/q
− ε

t1/q

)q−1
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > t1/qnα
)

dt

⩾ C
∫
∞

(2ε)q

∞∑
n=1

(log+ n)β

nδ
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > t1/qnα
)

dt.

The above arguments ensure that (9) implies the following form of complete integral convergence (see also
Proposition 1.1 of Chen and Wang [4])∫

∞

ε

∞∑
n=1

(log+ n)β

nδ
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > t1/qnα
)

dt < ∞ for every ε > 0.

In the following theorem, the complete convergence in Theorem 3.1 will be established for the case
α = 1. It is interesting to observe that we cannot prove Theorem 3.4 by using the same method as in the
proof of Theorem 3.1, and vice versa.

Theorem 3.4. Let β be a nonnegative real number, let {ani,n ⩾ 1, 1 ⩽ i ⩽ n} be an array of constants such that
n∑

i=1

a2
ni ⩽ C n for all n ⩾ 1, (10)

and let {Xn,n ⩾ 1} be a sequence of H-valued CNA mean zero random vectors. Suppose that {Xn,n ⩾ 1} is
stochastically dominated by a random vector X. Then the condition

∞∑
j=1

E
(
|X( j)
| (log+ |X

( j)
|)β
)
< ∞ (11)

implies

∞∑
n=1

(log+ n)β

n
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > εn) < ∞ for every ε > 0. (12)
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Proof. Without loss of generality, assume that ani ⩾ 0 for all n ⩾ 1, 1 ⩽ i ⩽ n. For each n ⩾ 1, j ⩾ 1, t ∈ R, we
define Y( j)

n (t) and Yn(t) as in the proof of Theorem 3.1. Then for every ε > 0,

∞∑
n=1

(log+ n)β

n
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > εn)
⩽
∞∑

n=1

(log+ n)β

n

∞∑
j=1

n∑
k=1

P(|X( j)
k | > n)

+

∞∑
n=1

(log+ n)β

n
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniYi(n)
∥∥∥∥ > εn)

⩽ C
∞∑
j=1

∞∑
n=1

(log+ n)β P(|X( j)
| > n)

+

∞∑
n=1

(log+ n)β

n
P
(1
n

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

E(aniYi(n))
∥∥∥∥ > ε/2)

+

∞∑
n=1

(log+ n)β

n
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

(
aniYi(n) − E(aniYi(n))

)∥∥∥∥ > εn/2)
= C + J1 + J2.

We now prove that J1n = o(1), where

J1n =
1
n

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

E(aniYi(n))
∥∥∥∥.

Indeed, by the mean zero assumption, Lemma 2.2 and Lemma 2.6,

J1n ⩽
1
n

max
1⩽k⩽n

∞∑
j=1

∣∣∣∣ k∑
i=1

aniE
(
X( j)

i I(|X( j)
i | ⩽ n)

)∣∣∣∣ + ∞∑
j=1

n∑
k=1

|ank|P
(
|X( j)

k | > n
)

⩽
C
n

∞∑
j=1

n∑
k=1

|ank|E
(
|X( j)

k |I(|X
( j)
k | > n)

)
⩽ C

∞∑
j=1

E
(
|X( j)
| I(|X( j)

| > n)
)
→ 0 as n→∞.

Then there exists a positive integer n0 such that J1n ⩽ ε/2 for all n > n0, and so

J1 =

n0∑
n=1

(log+ n)β

n
P(J1n > ε/2) +

∞∑
n=n0+1

(log+ n)β

n
P(J1n > ε/2)

=

n0∑
n=1

(log+ n)β

n
P(J1n > ε/2) < ∞.

We next show that J2 < ∞. By the Markov inequality, Lemmas 2.1, 2.2 and 2.4, we have

J2 ⩽ C
∞∑

n=1

(log+ n)β

n3 E
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

(
aniYi(n) − E(aniYi(n))

)∥∥∥∥)2
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⩽ C
∞∑

n=1

(log+ n)β

n3

n∑
k=1

a2
nk E∥Yk(n) − EYk(n)∥2

⩽ C
∞∑
j=1

∞∑
n=1

(log+ n)β

n3

n∑
k=1

a2
nk E
(
Y( j)

k (n)
)2

⩽ C
∞∑
j=1

∞∑
n=1

(log+ n)β P(|X( j)
| > n)

+ C
∞∑
j=1

∞∑
n=1

(log+ n)β

n2 E
(
(X( j))2I(|X( j)

| ⩽ n)
)
< ∞.

Therefore (12) holds.

The following corollary follows immediately from Theorem 3.1 and Theorem 3.4.

Corollary 3.5. Let α, β be real numbers (1/2 < α ⩽ 1, β ⩾ 0), let {ani,n ⩾ 1, 1 ⩽ i ⩽ n} be an array of constants
satisfying (10), and let {Xn,n ⩾ 1} be a sequence of H-valued CNA mean zero random vectors. Suppose that
{Xn,n ⩾ 1} is stochastically dominated by a random vector X. Then the condition (4) implies

∞∑
n=1

(log+ n)β

n
P
(

max
1⩽k⩽n

∥∥∥∥ k∑
i=1

aniXi

∥∥∥∥ > εnα) < ∞ for every ε > 0.

In the following theorem, we obtain the complete convergence and complete q-th moment convergence
for CNA random vectors which are weakly mean dominated by a random vector X. The first assertion of
Theorem 3.6 is a generalization and improvement of Theorem 1.3. In the special case when q = 1, β is a
fixed number that can only take the value 0 or 1, and {Xn,n ⩾ 1} is coordinatewise weakly upper bounded
by a random vector X, the second assertion was proved by in [16, Theorem 3.1 and Theorem 3.3]. Ko [16,
Theorem 3.3] also proved the second assertion of Theorem 3.6 for the case q = 1, α = 1, β = 1, and {Xn,n ⩾ 1}
is coordinatewise weakly upper bounded by a random vector X. The key tool for proving this result is
Lemma 2.5 in [16]. Let us note that there is a misprint in the proof of [16, Lemma 2.5]. For example, the
estimation

∑m
n=1 n−α log n ⩽ C m1−α log m (m ⩾ 1) in [16, equation (2.11)] fails for α = 1.

Theorem 3.6. Let α, β, q be real numbers (α > 1/2, 0 < q < 1/α, β ⩾ 0), and let {Xn,n ⩾ 1} be a sequence of
H-valued CNA mean zero random vectors with the n-th partial sum Sn (n ⩾ 1). Suppose that {Xn,n ⩾ 1} is weakly
mean dominated by a random vector X.

(i) If α ⩽ 1, then the condition (4) implies (5);
(ii) If α < 1, then the condition (4) implies

∞∑
n=1

(log+ n)β

nαq+1 E
((

max
1⩽k⩽n

∥Sk∥ − εnα
)+)q
< ∞ for every ε > 0.

Proof. We can prove the above theorem by using Lemma 2.3 and the same techniques as in the proof of
Theorem 3.4 and the second assertion of Theorem 3.1.

To end the paper, we present an example to show that the conditions of the theorems above are satisfied.

Example 3.7. Let α, β, γ be real numbers (1/2 < α ⩽ 1, β ⩾ 0, γ > α), and let ani = 1 for all n ⩾ 1, 1 ⩽ i ⩽ n.
We consider the space ℓ2 consisting of square summable real sequences x = {xk, k ⩾ 1} with norm ∥x∥ =(∑
∞

k=1 x2
k

)1/2
. Let {Xn,n ⩾ 1} be a sequence of ℓ2-valued i.i.d. random vectors with P

(
X( j)

1 = ± j−γ
)
= 1/2 for
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all j ⩾ 1. Then we have

∞∑
j=1

E
(
|X( j)

1 |
1/α (log+ |X

( j)
1 |)
β
)
=

∞∑
j=1

E
(
( j−γ)1/α (log+( j−γ))β

)
=

∞∑
j=1

E( j−γ)1/α =

∞∑
j=1

1
jγ/α
< ∞,

and therefore the conditions (4) and (11) are satisfied.
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