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Abstract. Let a ∈ R† ∩ R# in this paper. We give several characterizations for a to be an EP element or an
Hermitian element in terms of reverse order laws of two elements from the given set.

1. Introduction

Let R be a ring with an involution. If a ∈ R, then the Moore-Penrose inverse a† of a is the unique solution
of the system of equations

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa.

Also, let a{i, j, · · · , l} denote the set of elements x which satisfy equations (i), ( j), · · · , (l) from among equations
(1)-(4), and in this case, x is called the {i, j, · · · , l}-inverse of a. An element a ∈ R is group invertible if there is
an x ∈ a{1, 2} that commutes with a, the group inverse of a is unique if it exists and is denoted by a#. We use
R† and R# to denote the set of all Moore-Penrose invertible and group invertible elements in R, respectively.

Recall that in [1, 5] an element a ∈ R is called an EP element if a ∈ R† ∩R# with a† = a#. An element a ∈ R
is called Hermitian (or symmetric) if a = a∗. We use REP and RHer to denote the set of all EP and Hermitian
elements in R, respectively.

As is known to all, if a, b ∈ R−1, then ab ∈ R−1 and

(ab)−1 = b−1a−1.

This equation is called the reverse order law. In 1966, Greville [6] studied the problem when (AB)† = B†A†

holds, where A and B are two complex matrices. Since then, the reverse order law for the generalized
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inverses has been widely investigated, see for example, [7–17]. Later, Mosić and Djordjević [13, 18]
considered the hybrid reverse order law (ab)# = b†a† in rings with involution.

There are many conclusions about characterizations of EP element. For example, Hartwig [2] proved
that if a ∈ R†, then a ∈ REP if and only if aa† = a†a. Patrı́cio and Puystjens [3] characterized EP element by
ideals, they proved that if a ∈ R†, then a ∈ REP if and only if aR = a∗R. Xu et al. [4] characterized EP element
by three equations, that is to say, a ∈ REP if and only if there exists x ∈ R such that

xa2 = a, ax2 = x, (xa)∗ = xa.

In these equivalent characterizations of EP element, most of them are related to a∗, a† and a#. So we
first investigate the Moore-Penrose inverse of the product of two elements in the set {a, a#, (a†)∗, a†, a∗, (a#)∗}
under the condition a ∈ R† ∩ R#, which will improve some conclusions in [19]. And then we give several
characterizations such that a is an EP element by hybrid reverse order laws of the Moore-Penrose inverse
and group inverse of two elements from the set {a, a#, (a†)∗, a†, a∗, (a#)∗}. In addition, we give some new
characterizations of Hermitian element in the third section.

The following notations will be used in this paper:
τa = {a, a#, (a†)∗},
γa = {a†, a∗, (a#)∗},
χa = τa ∪ γa = {a, a#, (a†)∗, a†, a∗, (a#)∗}.

2. Characterizations of EP element by hybrid reverse order laws

In this section, we give expressions for the Moore-Penrose inverse and group inverse of the product of
two elements in χa. And then we characterize EP element by hybrid reverse order laws.

Lemma 2.1. [19] Let a ∈ R† ∩ R#, then
(1) a† ∈ R# with (a†)# = (aa#)∗a(aa#)∗;
(2) a#

∈ R† with (a#)† = a†a3a†.

Lemma 2.2. Let a ∈ R† ∩ R# and w ∈ χa. Then w ∈ R† ∩ R#, and we have the following results:

(1) ww† =

aa†, w ∈ τa,

a†a, w ∈ γa.

(2) w†w =

a†a, w ∈ τa,

aa†, w ∈ γa.

(3) ww# = w#w =

aa#, w ∈ τa,

(aa#)∗, w ∈ γa.

Proof. If a ∈ R† ∩ R#, according to Lemma 2.1 and the definitions of Moore-Penrose inverse and group
inverse, it is easy to verify that

(a#)# = a, (a#)† = a†a3a†.

((a†)∗)# = ((a†)#)∗ = aa#a∗aa#, ((a†)∗)† = a∗.

Thus w ∈ R† ∩ R#, where w ∈ τa.
As we all know, w ∈ R† ∩ R# if and only if w∗ ∈ R† ∩ R#. When w ∈ γa, w∗ ∈ τa, thus w∗ ∈ R† ∩ R#, hence

w ∈ R† ∩ R#.
So we have proved above that if a ∈ R† ∩ R# and w ∈ χa, then w ∈ R† ∩ R#. Next we are going to prove

conclusions (1)-(3) in this paper.
(1). When w ∈ τa:

(i) If w = a, then ww† = aa†.
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(ii) If w = a#, then

ww† = a#(a#)† = a#a†a3a† = (a#)2aa†a3a†

= (a#)2a3a† = aa†.

(ii) If w = (a†)∗, then ww† = (a†)∗((a†)∗)† = (a†)∗a∗ = aa†.
When w ∈ γa:

(i) If w = a†, then ww† = a†(a†)† = a†a.
(ii) If w = a∗, then ww† = a∗(a∗)† = a∗(a†)∗ = a†a.
(ii) If w = (a#)∗, then

ww† = (a#)∗((a#)∗)† = (a#)∗((a#)†)∗ = (a#)∗(a†a3a†)∗ = (a†a3a†a#)∗

= (a†a3a†aa#a#)∗ = (a†a3a#a#)∗ = (a†a)∗ = a†a.

As a consequence, ww† =

aa†, w ∈ τa,

a†a, w ∈ γa.
.

(2). If w ∈ χa, then w∗ ∈ χa. According to (1), we obtain

w†w = w∗(w∗)† =

aa†, w∗ ∈ τa

a†a, w∗ ∈ γa
=

aa†, w ∈ γa,

a†a, w ∈ τa.

(3). When w ∈ τa:
(i) If w = a, then ww# = aa#.
(ii) If w = a#, then ww# = a#(a#)# = a#a = aa#.
(ii) If w = (a†)∗, then

ww# = (a†)∗((a†)∗)# = (a†)∗((a†)#)∗ = (a†)∗((aa#)∗a(aa#)∗)∗

= (a†aa†)∗aa#a∗aa# = (a†)∗a†aaa#a∗aa# = (a†)∗a†aa∗aa#

= (a†)∗a∗aa# = (aa†)∗aa# = aa†aa# = aa#.

When w ∈ γa, w∗ ∈ τa. Thus ww# = (w∗(w∗)#)∗ = (aa#)∗.

Therefore, ww# = w#w =

aa#, w ∈ τa,

(aa#)∗, w ∈ γa.

From Lemma 2.2, we have the following two results, which will be applied repeatedly in the following
paper.

Corollary 2.3. Let a ∈ R† ∩ R# and w ∈ χa. Then a ∈ REP if and only if w ∈ REP.

Proof. w ∈ REP
⇐⇒ ww† = w†w Lemma 2.2

⇐=====⇒

aa† = a†a, w ∈ τa,

a†a = aa†, w ∈ γa.
⇐⇒ a ∈ REP.

Corollary 2.4. Let a ∈ R† ∩ R# and x, y ∈ χa. Then

(1) xx† =

yy†, x, y ∈ τa or x, y ∈ γa,

y†y, x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa.

(2) x†x =

y†y, x, y ∈ τa or x, y ∈ γa,

yy†, x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa.

(3) xx# =

yy#, x, y ∈ τa or x, y ∈ γa,

(yy#)∗, x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa.
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Li and Wei [19, Theorem 2.1] gave expressions for the Moore-Penrose inverse and the group inverse of
product of two elements in χa. Now we are going to show you more concise formulae and the proof.

Theorem 2.5. Let a ∈ R† ∩ R#. If x, y ∈ χa, then xy ∈ R† ∩ R#. And in this case, (1) (xy)† = y†x#xx†.
In particular, (xy)† = y†x#xx† = y†x† when x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa.

(2) (xy)# =

y#x#, x, y ∈ τa or x, y ∈ γa,

y†x†, x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa.

Proof. (1). Since a ∈ R† ∩ R# and x, y ∈ χa, from Lemma 2.2, we know that x, y ∈ R† ∩ R#.
According to Corollary 2.4,

(xy)(y†x#xx†) =

xxx†x#xx†, x, y ∈ τa or x, y ∈ γa

xx†xx#xx†, x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa
= xx† (1)

is symmetric. And

(y†x#xx†)(xy) = y†x#xy =

y†y#yy, x, y ∈ τa or x, y ∈ γa

y†(y#y)∗y, x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa
= y†y

is also symmetric. Thus, y†x#xx† is a {3, 4}-inverse of xy. Furthermore,

(xy)(y†x#xx†)(xy)
(1)
==== xx†xy = xy

and

(y†x#xx†)(xy)(y†x#xx†)
(1)
==== (y†x#xx†)xx† = y†x#xx†

show that y†x#xx† is a {1, 2}-inverse of xy. Hence, (xy)† = y†x#xx†, where x, y ∈ χa.
In particular, when x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa,

(xy)† = y†x#xx† = y†(yy#)∗x† = y†(yy#yy†)∗x† = y†(yy†)∗x† = y†x†.

(2). From the above proof, we know that y†x#xx† is a {1, 2}-inverse of xy, (xy)(y†x#xx†) = xx† and
(y†x#xx†)(xy) = y†y.

According to Corollary 2.4, when x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa, xx† = y†y. Thus (xy)(y†x#xx†) =
(y†x#xx†)(xy). So, (xy)# = y†x#xx† = y†x†.

When x, y ∈ τa or x, y ∈ γa, xx# = yy#. Since (xy)(y#x#) = xxx#x# = xx# and (y#x#)(xy) = y#y#yy = yy#,
we obtain (xy)(y#x#) = (y#x#)(xy). Moreover,

(xy)(y#x#)(xy) = xx#xy = xy, (y#x#)(xy)(y#x#) = y#x#xx# = y#x#,

thus (xy)# = y#x#.

Let a ∈ R†∩R#, from Theorem 2.5 we know that (xy)† = y†x† = (xy)# when x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa,
thus we obtain the following result.

Corollary 2.6. Let a ∈ R† ∩ R#. If x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa, then xy ∈ REP.

If w ∈ τa (resp. w ∈ γa), then w∗ ∈ γa (resp. w ∈ τa). Thus, from Corollary 2.6 and Theorem 2.5 we have
the following conclusion.

Corollary 2.7. Let a ∈ R† ∩ R# and w ∈ χa. Then ww∗,w∗w ∈ REP. And in this case,

(ww∗)† = (ww∗)# = (w∗)†w†,

(w∗w)† = (w∗w)# = w†(w∗)†.
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Many references have considered the characterizations of EP element, we characterize a ∈ REP by hybrid
reverse order laws in the following theorem, which is an interesting conclusion.

Theorem 2.8. Let a ∈ R† ∩ R# and x, y ∈ χa. Then the following conditions are equivalent:
(1) a ∈ REP;
(2) (xy)† = y†x#;
(3) (xy)† = y#x†;
(4) (xy)† = y#x#;
(5) (xy)# = y†x#;
(6) (xy)# = y#x†.

Proof. (1)⇒ (2)(3)(4)(5)(6) by Corollary 2.3 and Theorem 2.5.
Conversely, according to Corollary 2.4 and Theorem 2.5, we show that the condition (1) can be derived

from any one of conditions (2)-(6). If we want to prove that a ∈ REP, we just need to prove that x ∈ REP or
y ∈ REP by Corollary 2.3.

(2) ⇒ (1). Since (xy)† = y†x#xx†, the condition (xy)† = y†x# can be equivalently replaced by y†x#xx† =
y†x#. Pre-multiplying the equality by xy, we have

xyy†x#xx† = xyy†x#,

i.e., xxx†x#xx† = xxx†x#, x, y ∈ τa or x, y ∈ γa,

xx†xx#xx† = xx†xx#, x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa.

Both of these two equations can be simplified to xx† = xx#, thus x ∈ REP.
(3) ⇒ (1). The condition (xy)† = y#x† is equivalent to y†x#xx† = y#x†. Post-multiplying the equality by

xy, we have
y†x#xx†xy = y#x†xy,

i.e., y†y#yy†yy = y#y†yy, x, y ∈ τa or x, y ∈ γa,

y†(yy#)∗yy†y = y#yy†y, x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa.

The equality y†y#yy†yy = y#y†yy can be simplified to y†y = y#y, thus y ∈ REP. For the equality
y†(yy#)∗yy†y = y#yy†y, the left-hand side y†(yy#)∗yy†y = y†yy†(yy#)∗y = y†(yy#yy†)∗y = y†(yy†)∗y = y†y and
the right-hand side y#yy†y = y#y, thus y†y = y#y, which leads to y ∈ REP.

(4)⇒ (1). The assumption (xy)† = y#x# is equivalent to y†x#xx† = y#x#, pre-multiplying the equality by
y, we obtain

yy†x#xx† = yy#x#. (2)

When x, y ∈ τa or x, y ∈ γa, Eq.(2) implies that xx†x#xx† = xx#x#, pre-multiplying the equality by x, we
have xxx†x#xx† = xxx#x#. simplifying this formula yields xx† = xx#. Hence x ∈ REP.

When x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa, Eq. (2) follows that x†xx#xx† = (xx#)∗x#, this is further reduced to
x† = (xx#)∗x#, thus

xx†x† = xx†(xx#)∗x# = (xx#xx†)∗x# = xx†x# = x#.

Furthermore,
xx# = x(xx†x†) = (xxx†x†)xx† = xx#xx† = xx†,

so x ∈ REP.
Since (xy)† = y†x† = (xy)# when x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa by Theorem 2.5, in this case, conditions

(5) and (6) are equivalent to conditions (2) and (3), respectively. Therefore, we only need to show that the
condition (1) can be derived from any one of conditions (5) and (6) when x, y ∈ τa or x, y ∈ γa.
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(5) ⇒ (1). When x, y ∈ τa or x, y ∈ γa, (xy)# = y#x#, thus the condition (xy)# = y†x# is equivalent to
y#x# = y†x#. Post-multiplying the equality by xy, we have y#x#xy = y†x#xy, i.e., y#y#yy = y†y#yy, this yields
y#y = y†y, which shows that y ∈ REP.

(6) ⇒ (1). When x, y ∈ τa or x, y ∈ γa, the hypothesis (xy)# = y#x† is equivalent to y#x# = y#x†. Pre-
multiplying the equality by xy, we have xyy#x# = xyy#x†, i.e., xxx#x# = xxx#x†, this yields xx# = xx†, which
shows that x ∈ REP.

After reading Theorem 2.8, you may ask: whether (xy)# = y†x† and (xy)# = y#x# are also equivalent to
a ∈ REP? The following two results will tell you the answer.

Corollary 2.9. Let a ∈ R† ∩ R# and x, y ∈ τa or x, y ∈ γa. Then the following conditions are equivalent:
(1) a ∈ REP;
(2) xy ∈ REP;
(3) (xy)# = y†x†.

Proof. When x, y ∈ τa or x, y ∈ γa, (xy)† = y†x#xx† and (xy)# = y#x# according to Theorem 2.5.
(1)⇔ (2). Suppose that a ∈ REP, then x, y ∈ REP by Corollary 2.3. Therefore, (xy)† = y†x#xx† = y#x#xx# =

y#x# = (xy)#, thus xy ∈ REP.
Conversely, if xy ∈ REP, then (xy)† = (xy)# = y#x#, so a ∈ REP by Theorem 2.8.
(1)⇔ (3). Assume that a ∈ REP, then x, y ∈ REP by Corollary 2.3. Hence (xy)# = y#x# = y†x†.
Conversely, the condition (xy)# = y†x† is equivalent to y#x# = y†x†, pre-multiplying the equality by y,

we get yy#x# = yy†x†, i.e., xx#x# = xx†x†, which yields x# = xx†x†. Moreover,

xx# = x(xx†x†) = (xxx†x†)xx† = xx#xx† = xx†,

so x ∈ REP. Hence a ∈ REP by Corollary 2.3.

Corollary 2.10. Let a ∈ R† ∩ R#. If x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa, then a ∈ REP if and only if (xy)# = y#x#.

Proof. According to Corollary 2.6, xy ∈ REP When x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa, thus (xy)# = (xy)†.
Therefore, (xy)# = y#x# if and only if (xy)† = y#x#, which is equivalent to the condition a ∈ REP by
Theorem 2.8.

3. Characterizations of Hermitian Element

An element a ∈ R is called Hermitian (or symmetric) if a = a∗. In this section, we characterize Hermitian
element by hybrid reverse order laws.

Lemma 3.1. [4, Theorem 3.9] Suppose that a ∈ R#. Then a ∈ REP if and only if one of the following equivalent
conditions holds:

(1) aR ⊆ a∗R;
(2) a∗R ⊆ aR;
(3) Ra ⊆ Ra∗;
(4) Ra∗ ⊆ Ra.

Lemma 3.2. [5, Theorem 1.4.2] Suppose that a ∈ R†∩R#. Then a ∈ RHer if and only if one of the following equivalent
conditions holds:

(1) aa# = a∗a†;
(2) aa# = a†a∗;
(3) aa∗a† = a.

From the definition of Hermitian element, we immediately get the following lemma.

Lemma 3.3. Let a ∈ R† ∩ R# and w ∈ χa. Then a ∈ RHer if and only if w ∈ RHer.
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Therorem 2.8 give the characterizations of EP element by hybrid reverse order laws. Inspired by it,
we made some changes to hybrid reverse order laws in Therorem 2.8 and found the following interesting
results.

Theorem 3.4. Let a ∈ R† ∩ R# and x, y ∈ χa. Then the following conditions are equivalent:
(1) a ∈ RHer;
(2) (xy)† = (y∗)†x#;
(3) (xy)† = y#(x∗)†;
(4) (xy)† = (y∗)†x†;
(5) (xy)† = y†(x∗)†.

Proof. (1)⇒ (2)(3)(4)(5). Let a ∈ R† ∩ R#. If a ∈ RHer, then a ∈ REP by Lemma 3.1. In this case, x, y ∈ RHer, so
x = x∗ and y = y∗, therefore, conditions (2) and (3) are valid according to Theorem 2.8.

In addition, when a ∈ REP
∩ RHer, x, y ∈ REP

∩ RHer. Thus from Theorem 2.5, we have (xy)† = y†x#xx† =
y†x† = (y∗)†x† = y†(x∗)†, which shows that conditions (4) and (5) are valid.

Conversely, if we want to prove that a ∈ RHer, we just need to prove that x ∈ RHer or y ∈ RHer by
Lemma 3.3.

(2) ⇒ (1). The assumption (xy)† = (y∗)†x# can be equivalently written as y†x#xx† = (y∗)†x#, post-
multiplying the equality by x, we have y†x#xx†x = (y∗)†x#x, i.e.,

y†x#x = (y∗)†x#x. (3)

When x, y ∈ τa or x, y ∈ γa, Eq.(3) is equivalent to y†y#y = (y∗)†y#y, post-multiplying the equality by y
we get y†y#yy = (y∗)†y#yy, it is further reduced to

y†y = (y∗)†y, (4)

taking an involution on it we get y†y = y∗y†. Pre-multiplying the equality by y, we have y = yy∗y†, thus
y ∈ RHer according to Lemma 3.2.

When x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa, Eq.(3) is equivalent to

y†(yy#)∗ = (y∗)†(yy#)∗.

Post-multiplying the equality by y∗ we get

y†(yy#)∗y∗ = (y∗)†(yy#)∗y∗,

which can be simplified to

y†y∗ = yy†. (5)

Hence
y = yy†y = y†y∗y = y∗(y†)∗y†y∗y ∈ y∗R,

which yields that y ∈ REP by Lemma 3.1. Moreover, from Eq.(5) we obtain yy# = yy† = y†y∗, thus y ∈ RHer

according to Lemma 3.2.
(3) ⇒ (1). Since x, y ∈ χa, x∗, y∗ ∈ χa. Suppose that (xy)† = y#(x∗)†, taking an involution on it, we get

(y∗x∗)† = ((x∗)∗)†(y∗)#, from the proof of (2)⇒ (1) we obtain that x∗ ∈ RHer, thus x ∈ RHer.
(4) ⇒ (1) Suppose that (xy)† = (y∗)†x†, then y†x#xx† = (y∗)†x†. Post-multiplying the equality by xy we

have
y†x#xx†xy = (y∗)†x†xy,

i.e.,
y†x#xy = (y∗)†x†xy.
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According to Corollary 2.4, the above equality can be written asy†y#yy = (y∗)†y†yy, x, y ∈ τa or x, y ∈ γa,

y†(yy#)∗y = (y∗)†yy†y, x ∈ τa, y ∈ γa or x ∈ γa, y ∈ τa.

Both of these two equations can be simplified to y†y = (y∗)†y, which is the same as Eq.(4), thus y ∈ RHer by
the proof of (2)⇒ (1).

(5) ⇒ (1). Since x, y ∈ χa, x∗, y∗ ∈ χa. Assume that (xy)† = y†(x∗)†, taking an involution on it, we get
(y∗x∗)† = ((x∗)∗)†(y∗)†, from the proof in (4)⇒ (1) we obtain that x∗ ∈ RHer, so x ∈ RHer.

Theorem 3.5. Let a ∈ R† ∩ R# and x, y ∈ τa or x, y ∈ γa. Then the following conditions are equivalent:
(1) a ∈ RHer;
(2) (xy)# = (y∗)#x#;
(3) (xy)# = y#(x∗)#;
(4) (xy)# = (y∗)#x†;
(5) (xy)# = y†(x∗)#.

Proof. Let a ∈ R† ∩R#, if a ∈ RHer, then a ∈ REP by Lemma 3.1. From Theorem 2.5 we know that (xy)# = y#x#

when x, y ∈ τa or x, y ∈ γa.
(1)⇒ (2)(3)(4)(5). Obviously.
(2)⇒ (1). Suppose that (xy)# = (y∗)#x#, then y#x# = (y∗)#x#. Post-multiplying the equality by x we have

y#x#x = (y∗)#x#x,

which is equivalent to
y#y#y = (y∗)#y#y

when x, y ∈ τa or x, y ∈ γa. The above equality can be further simplified as

y# = (y#)∗y#y, (6)

Thus
y = y#y2 = (y#)∗y#yy2 = (y#)∗y2 = y∗(y#y#)∗y2

∈ y∗R,

which yields y ∈ REP. In this case, Eq.(6) can be written as y† = (y†)∗y†y = (y†)∗, thus y = (y†)† = ((y†)∗)† = y∗

shows that y ∈ RHer.
(3) ⇒ (1). Since x, y ∈ χa, x∗, y∗ ∈ χa. Taking an involution on the hypothesis (xy)# = y#(x∗)#, we get

(y∗x∗)# = ((x∗)∗)#(y∗)#, from the proof in (2)⇒ (1) we obtain that x∗ ∈ RHer, so x ∈ RHer.
(4)⇒ (1). Assume that (xy)# = (y∗)#x†, then y#x# = (y∗)#x†. Post-multiplying the equality by x we have

y#x#x = (y∗)#x†x,

i.e.,
y#y#y = (y∗)#y†y,

where x, y ∈ τa or x, y ∈ γa. the above formula can be simplified as

y# = (y∗)#y†y. (7)

Furthermore,
y = y#y2 = (y∗)#y†yy2 = (y#)∗y†y3 = y∗(y#y#)∗y†y3

∈ y∗R,

so a ∈ REP. Moreover, Eq.(7) can be written as y† = (y†)∗y†y = (y†)∗, Hence y ∈ RHer.
(5) ⇒ (1). Since x, y ∈ χa, x∗, y∗ ∈ χa. Taking an involution on the assumption (xy)# = y†(x∗)# we get

(y∗x∗)# = ((x∗)∗)#(y∗)†. According to the proof of (4)⇒ (1), we obtain that x∗ ∈ RHer, thus x ∈ RHer.
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