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The complete comaximal decomposition in residuated lattices
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Abstract. In this paper, we introduce the concept of pseudo-irreducible ideals in residuated lattices and
obtain its relationship with important concepts such as prime ideals and maximal ideals in residuated
lattices. We then use this concept to define and study complete comaximal decomposition in residuated
lattices. Specifically, we characterize residuated lattices in which proper ideals can be expressed as the
intersection of pairwise comaximal of finitely many pseudo-irreducible ideals.

1. Introduction

The concept of residuated lattices was first introduced by M. Ward and R.P. Dilworth ([19]) in 1939 as
a generalization of the ideal of rings. Residuated lattices have interesting algebraic properties and include
some important classes of algebras such as MV-algebras, MTL-algebras, BL-algebras.
Residuated lattices play an important role in fuzzy logic theory. They provide an algebraic framework for
fuzzy logic and reasoning. From a logical point of view, ideals correspond to sets of provable formulae. The
notion of ideal has been introduced in many algebraic structures such as lattices, MV-algebras, Bl-algebras
and residuated lattices. In BL-algebras, MTL-algebras or residuated lattices the focus has been on filters
or deductive systems. However, in rings, MV-algebras and lattice implication algebras, the ideal is in the
center position. By definition, ideals in MV-algebras are kernels of homomorphisms ([4]). In residuated
lattices the notion of an ideal was introduced as a natural generalization of that of ideal in MV-algebras
and the relation between filters and ideals was discussed (see [1], [15]). An ideal is a dual of a filter in some
special logical algebras such as lattice implication algebras but in nonregular residuated lattices the dual of
filters is quite differently.
In 2013, C. Lele et al. ([14]) constructed some examples to show that, unlike in MV-algebras, ideals and
filters are dual but behave differently in BL-algebras. In recent years, many researchers have studied ideals
in residuated lattices.
The concept of De Morgan residuated lattice was introduced by Holden in 2018 ([8]). The variety of De
Morgan residuated lattices includes important subvarieties of residuated lattices such as Boolean algebras,
MV-algebras, BL-algebras, Stonean residuated lattices, MTL-algebras and involution residuated lattices.
He study prime ideals and some special cases of prime ideals in De Morgan residuated.
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In the literature of BL-algebras and residuated lattices, there has been a growing interest in prime and
maximal filters, stable topology on the set of prime and maximal filters, and pure filters. For instance,
in 2003, Leustean ([16]) explored the prime and maximal spectra of BL-algebras and and considered the
reticulation of them from a filter theory perspective. Haveshki et al. ([7]) developed a topology on BL-
algebras induced by uniformity, grounded in filter theory. Also, in 2009, Eslami and Haghani ([5]) examined
stable topology and F-topology on the set of all prime filters in a BL-algebra, demonstrating that the set of
all prime filters endowed with stable topology forms a compact space that is not T0. They further defined
and analyzed pure filters in a BL-algebra through the lens of stable topology. In 2021, Bus, neag and Piciu
([2]) explored another variant of topology on the set of all prime filters of a residuated lattice, known as the
stable topology, which is coarser than the spectral topology. They introduced the concepts of pure i-filters
within a residuated lattice and the notion of normal residuated lattices, studying their properties in depth.
Also, Holdon and Borumand Saeid ([9]) investigated the regularity within residuated lattices from a filter
theory perspective, providing valuable insights into this area.
In 2021, the notion of minimal prime ideals was introduced in residuated lattices and related properties
were investigated. Also, new equivalent characterizations and properties for prime and maximal ideals
were obtained and the relation between these ideals and minimal prime ideals was discussed for De
Morgan residuated lattices ([18]). Then, Holdon and Borumand Saeid ([12]) explored various connections
between obstinate ideals and other types of ideals in a residuated lattice, such as Boolean, primary, prime,
implicative, maximal, and ⊙-prime ideals. Also in 2022, the notion of pure ideals was introduced and
investigated in residuated lattices, and using these ideals the related spectral topologies were studied ([17]).
In this paper, we introduce the notion of pseudo-irreducible ideals of residuated lattices and investigate
some related results, we show that every prime ideal is a pseudo-irreducible ideal but the converse is not
true. We characterize the pseudo-irreducible ideals in De Morgan residuated lattices. Then, we introduce
the notion of radical of an ideal residuated lattice and obtain the relation between pseudo irreduciblity
of an ideal and its radical. Finally, we introduce the concept of a (complete) comaximal decomposition
of an ideal of a residuated lattice. We prove that if a complete comaximal decomposition exists, then it
is unique. If every proper ideal of L has the complete comaximal decomposition, then we say it has the
complete comaximal decomposition property (for short, it has the CCD property). We find the necessary
and sufficient conditions for a residuated lattice to have CCD property. Moreover, we prove that an MTL-
algebra has CCD property if and only if every closed subset of its spectrum has finitely many connected
components.

In [2], the authors investigate the relationship between ideals and filters. Since filters correspond
one-to-one with congruence relations on a residuated lattice, and we can define a congruence relation
on a De Morgan residuated lattice using an ideal such that any two distinct ideals correspond to different
congruences, we can consider ideals as special cases of filters in the context of quotient De Morgan residuated
lattices.

Moreover, the quotient of a De Morgan residuated lattice by an ideal is an involution residuated lattice.
By focusing on ideals instead of filters, we can highlight specific properties of a residuated lattice. For
instance, when working with ideals, we can characterize De Morgan residuated lattices with Noetherian
Max-spectrum; however, the results obtained when working with filters are entirely different.

This distinction motivates us to define pseudo-irreducible ideals instead of pseudo-irreducible filters
when stating certain specialized results in this paper.

2. Preliminaries

In this section, we review some definitions and results which will be used throughout this paper.

Definition 2.1. ([6]) A residuated lattice is an algebra (L,∧,∨,⊙,→, 0, 1) of type (2, 2, 2, 2, 0, 0) satisfying the
following axioms:
(RL1) (L,∧,∨) is a bounded lattice (the partial order is denoted by ≤).
(RL2) (L,⊙, 1) is a commutative monoid.
(RL3) For every x, y, z ∈ L, x ⊙ z ≤ y if and only if z ≤ x→ y (residuation).



E. Rostami, S. Ghorbani / Filomat 39:3 (2025), 847–859 849

If L is a residuated lattice, then for x, y ∈ L we define
x∗ := x→ 0 and x ⊕ y := (x∗ ⊙ y∗)∗ = x∗ → y∗∗ = y∗ → x∗∗.

The operation ⊕ will be called strong addition. For x ∈ L, we define 0x := 0 and nx := (n − 1)x ⊕ x for n ⩾ 1.
For more information see [8] and [18]. In the following proposition, we collect some main properties of
residuated lattices.

Proposition 2.2. ([6]) Let L be a residuated lattice and x, y, z ∈ L. Then we have the following statements:
(1) x ≤ y if and only if x→ y = 1.
(2) If x ≤ y, then y∗ ≤ x∗.
(3) x ⊙ x∗ = 0.
(4) x→ (y→ z) = y→ (x→ z) = (x ⊙ y)→ z.
(5) (x ∨ y)∗ = x∗ ∧ y∗.
(6) x ⊕ 0 = x∗∗, x ⊕ 1 = 1, x ⊕ x∗ = 1.
(7) x ⊕ y = y ⊕ x.
(8) x, y ≤ x ⊕ y.
(9) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z.
(10)If x ≤ y, then x ⊕ z ≤ y ⊕ z.
(11) x ≤ x∗∗, x∗∗∗ = x∗.
(12) x ∧ (y ⊕ z) ≤ (x∗∗ ∧ y∗∗) ⊕ (x∗∗ ∧ z∗∗).

Definition 2.3. ([8], [18]) A residuated lattice L is called
(1) De Morgan residuated lattice, if (x ∧ y)∗ = x∗ ∨ y∗ for all x, y ∈ L.
(2)Involution residuated lattice, if x∗∗ = x for all x ∈ L.
(3) MTL-algebra, if (x→ y) ∨ (y→ x) = 1 for all x, y ∈ L.
(4) Stonean, if x∗ ∨ x∗∗ = 1 for all x ∈ L.

Examples of De Morgan residuated lattices are Boolean algebras, MV-algebras, BL-algebras and MTL-
algebras.

Definition 2.4. ([8], [18]) A nonempty subset I of a residuated lattice L is called an ideal of L if the following
conditions hold:
(I1) If x ≤ y and y ∈ I, then x ∈ I.
(I2) If x, y ∈ I, then x ⊕ y ∈ I.

We denote by I(L) the set of all ideals of L. Every ideal is a lattice ideal in the lattice (L,∧,∨, 0, 1), but the
converse is not true. Moreover, the intersection of any set of ideals becomes an ideal. An ideal I is called
proper if I , L. For a nonempty subset S of L, we set (S] :=

⋂
{I ∈ I(L) | S ⊆ I} that is called the ideal of L

generated by S and for x ∈ L we set (x] the ideal of L generated by {x}. An ideal is called principal if it is of the
form (x] for some x ∈ L. Also, for I ∈ I(L) and x ∈ L, we set I(x) := (I∪{x}]. The lattice (I(L),⊆) is distributive,
complete and algebraic where the compact elements are the principal ideals of L. Also, for I, J ∈ I(L) we
have I∨ J = (I∪ J] and for a family {Ii}i∈A of ideals of L we have ∧i∈AIi = ∩i∈AIi, see [11] for more information.

Proposition 2.5. ([8], [18]) Let S be a nonempty subset of a residuated lattice L, x, y ∈ L and I, J ∈ I(L). Then
(1) (S] = {x ∈ L | x ≤ s1 ⊕ · · · ⊕ sn for some n ⩾ 1 and s1, ..., sn ∈ S}.
(2) (x] = {z ∈ L | z ≤ nx for some n ⩾ 1}.
(3) I(x) = {z ∈ L | z ≤ i ⊕ nx for some i ∈ I and n ⩾ 1}.
(4) I(x ∧ y) ⊆ I(x) ∩ I(y) = I(x∗∗ ∧ y∗) and I(x) = I(x∗∗).
(5) If L is a De Morgan residuated lattice, then I(x ∧ y) = I(x) ∩ I(y) and (x] ∩ (y] = (x ∧ y].
(6) (x] ∨ (y] = (x ⊕ y], (x] ∩ (y] = (x∗∗ ∧ y∗] and (x] = (x∗∗].
(7) I ∨ J = (I ∪ J] = {x ∈ L | x ≤ i ⊕ j for some i ∈ I and j ∈ J}.
(8) x ∈ I if and only if x∗∗ ∈ I.
(9) If x ≤ y, then I(x) ⊆ I(y).
(10) I(x) ∨ I(y) = I(x ∨ y) = I(x ⊕ y).
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If I is an ideal of a residuated lattice L, then the binary relation θI on L defined by (x, y) ∈ θI if and only
if x∗ ⊙ y ∈ I and x ⊙ y∗ ∈ I is an equivalence relation on L.

We recall that θI is a congruence on the reduct (L,∨,⊙,→, 0, 1) of the residuated lattice L. For x ∈ L, we

denote by
x
I

the class of x concerning to θI and the quotient set L
θI

by L
I .

Proposition 2.6. ([8]) Let I be an ideal of a De Morgan residuated lattice L. Then θI is a congruence on L and

(
L
I
,∧,∨,⊙,→, 0, 1) is an involution residuated lattice by natural actions induced from L.

For a nonempty subset X of a De Morgan residuated lattice L we set X/I := { xI | x ∈ X}. Clearly, for x ∈ L;
x
I =

1
I if and only if x∗ ∈ I, and x

I =
0
I if and only if x ∈ I.

While the concept of prime ideals has been defined in various ways in different papers, we will be using
the definition provided in [8, Page 451] in this paper. Recall a proper ideal P ∈ I(L) is called prime if for
x, y ∈ L, x ∧ y ∈ P implies either x ∈ P or y ∈ P. We denote by Spec(L) the set of all prime ideals of L. Also,
a proper ideal P ∈ I(L) is called ∩-prime if P is a prime element in (I(L),⊆), that is, for I, J ∈ I(L) if I ∩ J ⊆ P
then we have either I ⊆ P or J ⊆ P.

Theorem 2.7. ([8]) Let P be a proper ideal if a De Morgan residuated lattice L. Then P is prime iff P is ∩-prime.

Proposition 2.8. ([8]) Let L be a De Morgan residuated lattice, I ∈ I(L) and a < I. Then we have the following:
(1) There is a prime ideal P such that I ⊆ P and a < P.
(2) I is the intersection of all prime ideals which contain I.

Proposition 2.9. ([8], [18]) Let P be a proper ideal of an MTL-algebra L. Then the following are equivalent:

1. P is a prime ideal.
2. For every x, y ∈ L, we have either x ⊙ y∗ ∈ P or x∗ ⊙ y ∈ P.
3. L

P is a chain.

A proper ideal M ∈ I(L) is called maximal if M is not strictly contained in a proper ideal of L. We denote
by MaxI(L) the set of all maximal ideals of L. Clearly, every proper ideal is contained in a maximal ideal.

Proposition 2.10. ([18]) Let M be a proper ideal of a residuated lattice L. Then the following are equivalent:
(1) M ∈MaxI(L).
(2) For any x <M, there exist d ∈M, n ⩾ 1 such that d ⊕ (nx) = 1.
(3) For any x ∈ L, x <M if and only if (nx)∗ ∈M for some n ⩾ 1.

Proposition 2.11. ([8], [18]) Every maximal ideal of a De Morgan residuated lattice is prime.

For every subset X of a residuated lattice L we set V(X) := {P ∈ Spec(L) | X ⊆ P}, and for each x ∈ L we
denote V(x) by V((x]). The family {V(X)}X⊆L satisfies the axioms for closed sets for a topology over Spec(L).

Also, we denote Spec(L) \ V(X) by D(X) (for each x ∈ L we denote D(x) by D((x])), that is, D(X) = {P ∈
Spec(L) | X ⊈ P}. Thus, the family {D(X)}X⊆L satisfies the axioms for open sets for a topology over Spec(L).
By Proposition 2.11, every maximal ideal of a De Morgan residuated lattice is prime. Thus, we can consider
MaxI(L) as a subspace of Spec(L) in a De Morgan residuated lattice. For a De Morgan residuated lattice L
and X ⊆ L we set VMax(X) := V(X)∩MaxI(L) and DMax(X) := D(X)∩MaxI(L). Then the family {VMax(X)}X⊆L
({DMax(X)}X⊆L) satisfies the axioms for closed (open) sets for a topology over MaxI(L), for more information
see [11] and [18, Propositions 37, 38 and 41].

Let L be a residuated lattice. For I, J ∈ I(L), we set I→ J := {x ∈ L | (x] ∩ I ⊆ J}.

Lemma 2.12. ([11], [18]) Let L be a residuated lattice and I, J ∈ I(L). Then we have the following:
(1) I→ J ∈ I(L).
(2) I ∩ J ⊆ K if and only if I ⊆ J→ K, that is, J→ K = sup{I ∈ I(L) | I ∩ J ⊆ K}.
(3) I→ I = L, L→ I = I.
(4) (I ∨ J)→ K = (I→ K) ∩ (I→ J).
(5) K→ (I ∩ J) = (K→ I) ∩ (K→ J).
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3. Pseudo-irreducible ideals

In this section, we introduce the notion of pseudo-irreducible ideals of residuated lattices and investigate
some of their properties.

Definition 3.1. A proper ideal I of a residuated lattice L is called pseudo-irreducible, whenever for J,K ∈ I(L), if
I = J ∩ K and J ∨ K = L, then either J = L or K = L.

Example 3.2. Let A = {0, a, b, c, 1} such that 0 < a, b < c < 1 and a, b are incomparable.

1

c

a b

0

Consider the operations ⊙ and→ given by the following tables:

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then (L,∧,∨,⊙,→, 0, 1) is a residuated lattice ([8]). We have I(L) = {{0}, {0, a}, {0, b},L}.

1. It is easy to see that {0, a} and {0, b} are pseudo-irreducible ideals of L.
2. {0} is not a pseudo-irreducible ideal because {0} = {0, a} ∩ {0, b} and {0, a} ∨ {0, b} = L, but {0, a} , L and
{0, b} , L.

3. It is easy to verify that {0, a} and {0, b} are prime ideals of L and since a∗∗ ∧ b∗∗ = 0 with a, b , 0, then {0} is not
a prime ideal of L. Thus, Spec(L) = MaxI(L) = {{0, a}, {0, b}} and the topological spaces Spec(L) and MaxI(L)
are discrete in this case.

Lemma 3.3. Every maximal ideal of a residuated lattice is ∩-prime.

Proof. Let M be a maximal ideal of a residuated lattice L and I and J be two ideals of L with I ∨ J ⊆ M. If
I ⊈M and J ⊈M, then I∨M = L and J∨M = L, and so M = (I∩ J)∨M = (I∨M)∩ (J∨M) = L, a contradiction.
Hence, we have either I ⊆M or J ⊆M, actually, M is a prime element in (I(L),⊆), that is, it is ∩-prime.

Proposition 3.4. Let L be a residuated lattice. Then we have the following statements.

1. Every prime ideal is a pseudo-irreducible ideal.
2. Every ∩-prime ideal is a pseudo-irreducible ideal.
3. Every maximal ideal is a pseudo-irreducible ideal.
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Proof. (1) Let I be a prime ideal of L such that I = J ∩ K and J ∨ K = L for some J,K ∈ I(L). Thus there exist
a ∈ J and b ∈ K such that a ⊕ b = 1. Hence, a ∧ b ∈ J ∩ K = I. Now since I is prime we have either a ∈ I or
b ∈ I. Assume that a ∈ I. Hence, a ∈ K, and so 1 = a ⊕ b ∈ K. Thus, K = L, and so I is a pseudo-irreducible
ideal..

(2) Let I be a ∩-prime ideal of L such that I = J ∩ K and J ∨ K = L for some J,K ∈ I(L). Then either J ⊆ I
or K ⊆ I. So we have either J ⊆ K or K ⊆ J. By assumption, we have L = J ∨ K = (J ∪ K]. Hence, we have
either L = (J] = J or L = (K] = K, and so I is a pseudo-irreducible ideal.

(3) The proof is straightforward by (1) and Lemma 3.3.

We now consider residuated lattices whose proper ideals are pseudo-irreducible.

Proposition 3.5. A residuated lattice L is local (that is, has only one maximal ideal) if and only if every proper ideal
of L is a pseudo-irreducible ideal.

Proof. ⇒). Let M be the unique maximal ideal of L and I be a proper ideal of L. Assume that there exist two
ideals J and K of L such that I = J ∩ K and J ∨ K = L. Then we have either J ⊈M or K ⊈M. Hence, we have
either J = L or K = L. Therefore, I is a pseudo-irreducible ideal of L.
⇐). Let every proper ideal of L be a pseudo-irreducible ideal and M and N be two distinct maximal

ideals. Set I := M ∩ N. Now since M ∨ N = L and I , L, we have either M = L or N = L, which is a
contradiction.

The following example shows that pseudo-irreducible ideals of a residuated lattice is not prime in
general.

Example 3.6. Let C be the MV-algebra described in [3, p. 474]. Consider the subalgebra A := {(x, y) ∈ C × C |
ord(z) = ord(y) = ∞ or ord(z), ord(y) ⪇ ∞} of C × C. Then A is a local MV-algebra that has two minimal prime
ideals, see [1, p. 341] for more information. Since A has two minimal prime ideals, the zero ideal is not prime, but by
Proposition 3.5 since A is local, every proper ideal is pseudo-irreducible. Hence, the zero ideal is a pseudo-irreducible
ideal that is not prime. Thus, in MV-algebra and so in BL-algebras, MTL-algebras and De Morgan residuated lattice
the concept of pseudo-irreducible ideal and (maximal) prime ideal is not equal in general.

Remark 3.7. In the above example, | MaxI(C × C) |= 1 and Spec(C × C) , MaxI(C × C). Clearly, the topolgy on
Spec(C × C) is not discrete.

Theorem 3.8. Let I be an ideal of a residuated lattice L such that for each x, y ∈ L, x ∧ y ∈ I and x ⊕ y = 1 imply
either x ∈ I or y ∈ I. Then I is pseudo-irreducible.

Proof. Suppose that J,K ∈ I(L) such that I = J ∩ K and J ∨ K = L. Since 1 ∈ L = J ∩ K, we have 1 ≤ j ⊕ k for
some j ∈ J and k ∈ K. So j ∧ k ∈ J ∩ K = I. By assumption, we have either j ∈ I or k ∈ I. Without loss of
generality, suppose that j ∈ I. Since I ⊆ K, we have j ∈ K. We obtain that j ⊕ k ∈ K. Therefore, 1 ∈ K and so
K = L.

The converse of Theorem 3.8 is not true in general.

Example 3.9. Let L = {0, a, b, c, d, e, f ,m, 1} with 0 < a < c < m < 1, 0 < a < e < m < 1, 0 < b < c < m < 1, 0 <
b < f < m < 1, 0 < d < f < m < 1, 0 < d < e < m < 1 and elements {a, b}, {a, f }, {a, d}, {b, d}, {b, e}, {d, c}, {c, e},
{c, f }, and {e, f } are pairwise incomparable.
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1

m

c e f

a b d

0

Consider the operations ⊙ and→ given by the following tables (see [13, Page. 252]):

⊙ 0 a b c d e f m 1
0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 a
b 0 0 0 0 0 0 0 0 b
c 0 0 0 0 0 0 0 0 c
d 0 0 0 0 0 0 0 0 d
e 0 0 0 0 0 0 0 0 e
f 0 0 0 0 0 0 0 0 f

m 0 0 0 0 0 0 0 0 m
1 0 a b c d e f m 1

→ 0 a b c d e f m 1
0 1 1 1 1 1 1 1 1 1
a m 1 m 1 m 1 m 1 1
b m m 1 1 m m 1 1 1
c m m m 1 m m m 1 1
d m m m m 1 1 1 1 1
e m m m m m 1 m 1 1
f m m m m m m 1 1 1

m m m m m m m m 1 1
1 a b c d e f m 1 1

Consider the ideal I := {0}. Clearly I is the only proper ideal and so is the only maximal ideal. Hence, I is a
pseudo-irreducible ideal by Proposition 3.4, but we have a ∧ b ∈ I, a ⊕ b = 1, a < I and b < I, see [11, Example 3] for
more information.

We recall that a residuated lattice is indecomposable if L � L1×L2 implies either L1 or L2 is trivial, where
L1 and L2 are two residuated lattices and L1 × L2 is their direct product. A nontrivial residuated lattice L is
indecomposable if and only if B(L) = {0, 1}.

Now we want to characterize pseudo-irreducible ideals in De Morgam lattices.

Theorem 3.10. The following statements are equivalent for an ideal I of a De Morgan residuated lattice L:

1. For x, y ∈ L, x ∧ y ∈ I and x ⊕ y = 1 imply either x ∈ I or y ∈ I.
2. I is pseudo-irreducible.
3. L

I is an indecomposable residuated lattice.
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4. V(I) is connected as a subspace of Spec(L).

Proof. (1)⇒ (2). By Theorem 3.8.
(2) ⇒ (1). Suppose that x ∧ y ∈ I and x ⊕ y = 1 for some x, y ∈ L. By Proposition 2.5, we have

I = I(x ∧ y) = I(x) ∩ I(y). Using Proposition 2.5, we obtain I(x) ∨ I(y) = I(x ∨ y) = I(x ⊕ y) = I(1) = L. By
assumption, we have either I(x) = L or I(y) = L. Suppose that I(x) = L. Then y ∈ L = I(x). Since y ∈ I(y),
then y ∈ I(x) ∩ I(y) = I. Similarly, if I(y) = L, then we have x ∈ I.

(1) ⇒ (3). We want to prove that B( L
I ) = { 0I ,

1
I }, equivalently, L

I is indecomposable. Let x
I ∈ B( L

I )
be arbitrary. Then x

I ∧
x∗
I =

x
I ∧ ( x

I )∗ = 0
I and x

I ∨
x∗
I =

1
I . Form x

I ∨
x∗
I =

1
I we have x∨x∗

I = 1
I , and so

(x ∨ x∗)∗ = x∗ ∧ x∗∗ ∈ I by Proposition 2.2. Also, we have x∗ ⊕ x∗∗ = (x∗∗ ⊙ x∗∗∗)∗ = (x∗∗ ⊙ x∗)∗ = 0∗ = 1. Thus, we
obtain that x∗ ∈ I or x∗∗ ∈ I. If x∗ ∈ I, then x

I =
1
I . Now if x∗∗ ∈ I, then x∗∗

I =
0
I . By Proposition 2.6 since L

I is an
involution residuated lattice, then x

I =
x∗∗
I =

0
I . Hence B( L

I ) = { 0I ,
1
I }.

(3) ⇒ (2). Suppose that L
I is indecomposable but I is not a pseudo-irreducible ideal. Then there exist

J,K ∈ I(L) such that I = J ∩ K, J ∨ K = L, J , L and K , L. Define φ : L
I →

L
J ×

L
K by φ( x

I ) = ( x
J ,

x
K ). It is easy

to see that φ is a homomorphism. Now we prove that φ is onto. Since 1 ∈ L = J ∨ K, there exist a ∈ J and
b ∈ K such that a ⊕ b = 1 by Proposition 2.5. We have 1

J =
a⊕b

J =
a
J ⊕

b
J =

0
J ⊕

b
J =

b∗∗
J =

b
J by Proposition

2.6. Similarly, we can show that a
K =

1
K . Now, let ( x

J ,
y
K ) ∈ L

J ×
L
K be arbitrary. It is straightforward to

prove that φ( (a⊕x)∧(b⊕y)
I ) = ( x

J ,
y
K ), and hence φ is onto. Now suppose that φ( x

I ) = φ( y
I ). It is easy to see that

x∗ ⊙ y ∈ J ∩ K = I and x ⊙ y∗ ∈ J ∩ K = I. Hence x
I =

y
I , that is, φ is one to one.

Since J , L and K , L, we have L
J and L

K are nontrivial residuated lattices. Therefore, L
I is decomposable,

which is a contradiction.
(3)⇔ (4). Prime ideals of L

I are exactly of the form P
I := { xI | x ∈ P}, where P is a prime ideal of L containing

I. Hence, V(I) is homeomorphic to Spec( L
I ). Thus by [18, Theorems 44 and 45], L

I is indecomposable if and
only if B( L

I ) = { 0I ,
1
I } if and only if Spec( L

I ) is connected if and only if V(I) is connected as a subspace of
Spec(L).

Remark 3.11. Let I be a pseudo-irreducible ideal of a Stonean residuated lattice L. Then by [10, Theorem 5], L
I

is a Boolean residuated lattice. Also by Theorem 3.10, L
I must be indecomposable. Thus, L

I = {
0
I ,

1
I } and so by

[10, Theorems 4 and 6], I is prime and maximal. Therefore by Proposition 3.4, the concepts maximal, prime and
pseudo-irreducible are equivalent for a proper ideal of an Stonean residuated lattice L.

We end this section with the following proposition that will be used in Section 5 for ideal decomposition.

Proposition 3.12. Let I and J be pseudo-irreducible ideals of a residuated lattice L. Then I∨ J , L if and only if I∩ J
is a pseudo-irreducible ideal.

Proof. ⇒). Suppose that K1,K2 ∈ I(L) such that I ∩ J = K1 ∩ K2 and K1 ∨ K2 = L. Then (I ∨ K1) ∩ (I ∨ K2) =
I ∨ (K1 ∩ K2) = I and (I ∨ K1) ∨ (I ∨ K2) = I ∨ (K1 ∨ K2) = L. Since I is a pseudo-irreducible ideal, we have either
I ∨ K1 = L or I ∨ K2 = L. Similarly, we can prove either J ∨ K1 = L or J ∨ K2 = L. By assumption, I ∨ J , L, so
there exists a maximal ideal M of L such that I ∨ J ⊆ M. Hence I, J ⊆ M. Now since K1 ∩ K2 ⊆ I ∩ J ⊆ M, we have
either K1 ⊆ M or K2 ⊆ M by Lemma 3.3. Suppose that K1 ⊆ M. Then I, J,K1 ⊆ M. Thus, we have I ∨ K2 = L and
J ∨ K2 = L, and we have L = (I ∨ K2) ∩ (J ∨ K2) = (K2 ∩ K2) ∨ (I ∩ J) ∨ (I ∩ K2) ∨ (J ∩ K2) ≤ K2. Thus, K2 = L.
⇐). It is clear since pseudo-irreducible ideals are proper.

4. Radical of an ideal and its pseudo-irreducibility

In this section, we recall the definition of the radical of an ideal of a residuated lattice and then we
consider its pseudo-irreducibility. We begin with the following definition.

Definition 4.1. Let I be a proper ideal of a residuated lattice L. The intersection of all maximal ideals of L which
contain I is called the radical of I, and it is denoted by Rad(F). If I = L, then we put Rad(I) = L.
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Example 4.2. If L is a local residuated lattice with the unique maximal ideal M that is not zero, then for each proper
ideal I of L we have, Rad(I) =M. In particular, Rad({0}) =M , {0}.

In the following proposition we state some properties of radical of ideals.

Proposition 4.3. Let I, J be ideals of a residuated lattice L. Then we have the following statements:

1. Rad(I) ∈ I(L).
2. I ⊆ Rad(I).
3. If I ∈MaxI(L), then Rad(I) = I.
4. If I ⊆ J, then Rad(I) ⊆ Rad(J).
5. Rad(I) = L if and only if I = L
6. Rad(I) ∩ Rad(J) = Rad(I ∩ J).
7. I ∨ Rad(J) ⊆ Rad(I ∨ J).
8. Rad(Rad(I)) = Rad(I).
9. Rad(I→ J) ⊆ I→ Rad(J).

10. I ∨ J = L if and only if Rad(I) ∨ Rad(J) = L.
11. Rad(Rad(I)→ Rad(J)) = Rad(I)→ Rad(J).

Proof. By Definition 4.1, the proof of (1)-(4) is clear.
(5). Let Rad(I) = L. If I , L, then there exists M ∈MaxI(L) such that I ⊆M. Hence, Rad(I) ⊆M ⊊ L, which is

a contradiction. The converse is obvious.
(6). By (1), we have Rad(I)∩Rad(J) ⊇ Rad(I∩ J). Now let M be a maximal ideal of L containing I∩ J. By Lemma

3.3 we have either I ⊆M or J ⊆M. Thus Rad(I) ∩ Rad(J) ⊆ Rad(I ∩ J), and so Rad(I) ∩ Rad(J) = Rad(I ∩ J).
(7). By (1) and (4) we have I ⊆ I ∨ J ⊆ Rad(I ∨ J) and Rad(J) ⊆ Rad(I ∨ J). Hence, I ∨ Rad(J) ⊆ Rad(I ∨ J).
(8). By part (1) and then part (4), we have Rad(I) ⊆ Rad(Rad(I)). Conversely, suppose that x ∈ Rad(Rad(I)).

Then x ∈M for all M ∈MaxI(L) containing Rad(I). Now, let N ∈MaxI(L) containing I be arbitrary. Then Rad(I) ⊆
Rad(N) = N. Thus x ∈ N. Hence, x ∈ Rad(I), that is, Rad(Rad(I)) ⊆ Rad(I). Therefore Rad(Rad(I)) = Rad(I).

(9). Since I ∩ (I → J) ⊆ I ⊆ Rad(I), we have Rad(I ∩ (I → J)) ⊆ Rad(I) ⊆ Rad(Rad(I)) by part(4). So
Rad(I) ∩ Rad(I → J) ⊆ Rad(I) by parts (6) and (8). We obtain I ∩ Rad(I → J) ⊆ Rad(I) by part (1). Hence
Rad(I→ J) ⊆ I→ Rad(J) by Lemma 2.12.

(10). Let I ∨ J = L. Using part (1), we get L = I ∨ J ⊆ Rad(I) ∨ Rad(J). Conversely, suppose that
Rad(I) ∨ Rad(J) = L but I ∨ J , L. Then I ∨ J is a proper ideal of L. So there exists a maximal ideal M such that
I ∨ J ⊆M. Thus I, J ⊆M. We obtain that L = Rad(I) ∨ Rad(J) ⊆M, that is, M = L which is a contradiction.

(11). Using parts (2), (8) and (9), we obtain
Rad(I)→ Rad(J) ⊆ Rad(Rad(I)→ Rad(J)) ⊆ Rad(I)→ Rad(Rad(J)) = Rad(I)→ Rad(J).

The following proposition characterizes the radical of an ideal in an MTL-algebra.

Proposition 4.4. Let I be a proper ideal of an MTL-algebra L. Then

Rad(I) = {x ∈ L | x ⊙ (nx)∗∗ ∈ I for all n ∈ N}.

Proof. Suppose that x ∈ Rad(I) and there exists k ∈ N such that x ⊙ (kx)∗∗ < I. By Proposition 2.8, there exists a
prime ideal P such that I ⊆ P and x ⊙ (kx)∗∗ < P. Since P is a prime ideal of an MTL-algebra, then x∗ ⊙ (kx)∗ ∈ P
by Proposition 2.9. Let M be a maximal ideal with P ⊆ M. Thus, x∗ ⊙ (kx)∗ ∈ M. If we can prove that x < M, then
x < Rad(I) and we have a contradiction. Hence assume that x ∈M. Then kx ∈M. Now by Proposition 2.2, we have

x∗ → (kx ⊕ ((kx)∗ ⊙ x∗)) = x∗ → ((kx)∗ → ((kx)∗ ⊙ x∗)∗∗) = ((kx)∗ ⊙ x∗)→ (((kx)∗ ⊙ x∗)∗∗) = 1.

Thus, x∗ ≤ (kx ⊕ ((kx)∗ ⊙ x∗)) ∈M. Hence, x∗ ∈M, and so 1 = x ⊕ x∗ ∈M, a contradiction.
Conversely, let x ⊙ (nx)∗∗ ∈ I for all n ∈ N and x < Rad(I). Then there exists a maximal ideal M such that I ⊆M

and x <M. By Proposition 2.10, there exists k ∈ N such that (kx)∗ ∈M. Since (kx)∗∗ ⊙ x ∈ I ⊆M, as above argument
we have x ∈M, which is a contradiction.



E. Rostami, S. Ghorbani / Filomat 39:3 (2025), 847–859 856

In general, Rad( ) does not commute with infinite intersection.

Proposition 4.5. Let {Ii}i∈I be a family of ideals of an MTL-algebra L. Then Rad(
⋂

i∈I Ii) =
⋂

i∈I Rad(Ii).

Proof. Suppose that x ∈
⋂

i∈I Rad(Ii). Then x ∈ Rad(Ii) for all i ∈ I. By Proposition 4.4, we get that x∗∗ ⊙ (nx) ∈ Ii
for all n ∈ N and for all i ∈ I. Thus x ⊙ (nx)∗∗ ∈

⋂
i∈I Ii for all n ∈ N. We obtain x ∈ Rad(

⋂
i∈I Ii), that is,

Rad(
⋂

i∈I Ii) ⊇
⋂

i∈I Rad(Ii). The reverse inclusion is true in general.

Recall that two ideals I and J of L are comaximal if I ∨ J = L, and a family {Ii}i∈A of ideals of L is pairwise
comaximal if for every i , j in A, Ii ∨ I j = L.

Proposition 4.6. For a residuated lattice L let I1, I2, ..., In be n proper pairwise comaximal ideals and J1, J2, ..., Jn be
n ideals such that Ii ⊆ Ji for 1 ≤ i ≤ n. If ∩n

i=1Ii = ∩
n
i=1 Ji, then Ii = Ji for all for 1 ≤ i ≤ n.

Proof. Since I(L) is distributive, we have I1 ∨ (∩n
i=2Ii) = ∩n

i=2(I1 ∨ Ii) = ∩n
i=2L = L. Then there exist a ∈ I1 and

b ∈ ∩n
i=2Ii such that 1 = a ⊕ b. Now, let x ∈ J1 be arbitrary. Then x∗∗ ∧ b∗∗ ∈ J1 ∩ (∩n

i=2Ii) ⊆ ∩n
i=1 Ji = ∩

n
i=1Ii ⊆ I1.

Also, x∗∗ ∧ a∗∗ ∈ I1. By Proposition 2.2, we have x = x ∧ 1 = x ∧ (a ⊕ b) ≤ (x∗∗ ∧ a∗∗) ⊕ (x∗∗ ∧ b∗∗) ∈ I1 and so a ∈ I1.
Therefore I1 = J1. Similarly, we can prove Ii = Ji for i = 2, ...,n.

Lemma 4.7. Let I be an ideal of a residuated lattice L such that Rad(I) = I1 ∩ I2, where I1, I2 are proper comaximal
ideals of L. Then Rad(Ii) = Ii for i = 1, 2.

Proof. We have I1 ∩ I2 = Rad(I) = Rad(Rad(I)) = Rad(I1) ∩ Rad(I2), Rad(I1) ∨ Rad(I1) = L and Ii ⊆ Rad(Ii) for
i = 1, 2. Using proposition 4.6, we get Rad(Ii) = Ii for i = 1, 2.

Theorem 4.8. Let I be an ideal of an MTL-algebra L such that Rad(I) = I1 ∩ I2 where I1, I2 are proper comaximal
ideals of L, then there exist proper comaximal ideals J1 and J2 such that I = J1 ∩ J2 and Rad(Ji) = Rad(Ii) = Ii for
i = 1, 2.

Proof. Since I1 ∨ I2 = L, there exist a ∈ I1 and b ∈ I2 such that 1 = a ⊕ b and we have a ∧ b ∈ I1 ∩ I2 = Rad(I).
Let P be an arbitrary prime ideal of L such that I ⊆ P. Then either a∗ ⊙ b ∈ P or a ⊙ b∗ ∈ P by Proposition 2.9.
There exists a maximal ideal M such that P ⊆ M. So Rad(I) ⊆ M. Thus a ∧ b ∈ M. By proposition 2.11, M
is prime and so we have either a ∈ M or b ∈ M, note that both cases do not occur together since a ⊕ b = 1.
Also, we have either a ⊙ b∗ ∈M or a∗ ⊙ b ∈M since P ⊆M. We have two cases:

Case 1: If a ∈ M. Since a ⊙ b∗ ≤ a, we have a ⊙ b∗ ∈ M. We will prove that a∗ ⊙ b < M. Suppose that
a∗ ⊙ b ∈M. Then by Proposition 2.2 we have

b→ (a ⊕ (a∗ ⊙ b)) = b→ (a∗ → (a∗ ⊙ b)∗∗) = (a∗ ⊙ b)→ ((a∗ ⊙ b)∗∗) = 1.

Thus b ≤ (a ⊕ (a∗ ⊙ b)) ∈M and so b ∈M, which is a contradiction.
Case 2: If a <M. So b ∈M and then a∗ ⊙ b ∈M. Similar to Case 1, we can show that a ⊙ b∗ <M.

We conclude that either (a ⊙ b∗ ∈ P and a∗ ⊙ b < P) or (a∗ ⊙ b ∈ P and a ⊙ b∗ < P). Put A := {P ∈ Spec(L) |
a ⊙ b∗ ∈ P, I ⊆ P}, B := {P ∈ Spec(L) | a∗ ⊙ b ∈ P, I ⊆ P}, J1 :=

⋂
A and J2 :=

⋂
B. By Proposition 2.8, it is clear

that I = (
⋂

A) ∩ (
⋂

B) = J1 ∩ J1.
If J1 ∨ J2 , L, then there exists a maximal ideal M such that J1 ∨ J2 ⊆ M. We obtain that a ⊙ b∗ ∈ M and

a∗ ⊙ b ∈ M, which is a contradiction. Thus J1 ∨ J2 = L and so Rad(J1) ∨ Rad(J2) = L. It is clear that Ji ⊆ Ii.
We get Rad(Ji) ⊆ Rad(Ii). Also, we have Rad(J1) ∩ Rad(J2) = Rad(I) = Rad(Rad(I)) = Rad(I1) ∩ Rad(I2).
Applying Proposition 4.6, we obtain Rad(Ji) = Rad(Ii). Hence Rad(Ji) = Ii by Lemma 4.7.

Theorem 4.9. Let I be an ideal of an MTL-algebra L such that I = I1 ∩ · · · ∩ In where I1, I2, ..., In be n proper pairwise
comaximal ideals of L. Then every ideal J of L with Rad(I) = Rad(J) can be written uniquely as J = J1 ∩ · · · ∩ Jn for
some pairwise comaximal elements J1, ..., Jn such that Rad(Ii) = Rad(Ji) for 1 ≤ i ≤ n.
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Proof. By Proposition 4.3, we have Rad(I) = Rad(I1)∩· · ·∩Rad(In) = Rad(J). Using Theorem 4.8 and an inductive
argument, we can prove that J = J1∩· · ·∩Jn for some pairwise comaximal elements J1, ..., Jn such that Rad(Ii) = Rad(Ji)
for 1 ≤ i ≤ n. We will prove the uniqueness. Let J = J1 ∩ · · · ∩ Jn and J = J′1 ∩ · · · ∩ J′n be two decompositions with
desired property. Put Ki := Ji ∩ J′i for each 1 ≤ i ≤ n. By Proposition 4.3, Rad(Ki) = Rad(Ji) = Rad(J′i ). Hence,
K′i s are pairwise comaximal, and so J = K1 ∩ · · · ∩ Kn is another desired decomposition, and since Ki ⊆ Ji ∩ J′i by
Proposition 4.6, we have Ji = Ki = J′i .

Proposition 4.10. Let I, J be ideals of an MTL-algebra L such that I ⊆ J ⊆ Rad(I). Then I is a pseudo-irreducible
ideal if and only if J is a pseudo-irreducible ideal.

Proof. Suppose that I is a pseudo-irreducible ideal but J is not a pseudo-irreducible ideal. Then there exist proper
comaximal ideals J1, J2 such that J = J1∩J2. Since I ⊆ J ⊆ Rad(I), we have Rad(I) ⊆ Rad(J) ⊆ Rad(Rad(I)) = Rad(I)
by Proposition 4.3. We obtain Rad(I) = Rad(J) = Rad(J1) ∩ Rad(J2), Rad(J1) ∨ Rad(J2) = L and Rad(Ji) , L by
Proposition 4.3. Using Theorem 4.8, there exist proper ideals I1 and I2 such that I = I1 ∩ I2 and I1 ∨ I2 = L, which is
a contradiction by pseudo-irreducibility of ideal I. Now if J is pseudo-irreducible, then I is also pseudo-irreducible by
an easy argument as above and the fact that Rad(I) = Rad(J) .

5. Complete comaximal decomposition

In this section, we consider residuated lattices whose proper ideals can be written as an intersection of
pairwise comaximal of finitely many pseudo-irreducible ideals. We start with the following definition.

Definition 5.1. Suppose I is a proper ideal of a residuated lattice L. We say that:

1. I has a comaximal decomposition if I can be written as I = I1 ∩ · · · ∩ In of ideals of L such that I′i s are pairwise
comaximal.

2. I has a complete comaximal decomposition, whenever either I is pseudo-irreducible or has a comaximal decom-
position in which each of its factors is pseudo-irreducible.

Example 5.2. Suppose a residuated lattice L has at least two maximal ideals M and N. Put I :=M∩N. In this case,
M ∩ N is a complete comaximal decomposition for I. Also, I is not pseudo-irreducible because M ∨ N = L, M , L
and N , L.

In the following theorem, we show that a complete comaximal decomposition is unique if it exists.
Hence, we can speak of the complete comaximal decomposition for an ideal I, if such a decomposition exists
for I.

Theorem 5.3 (Uniqueness decomposition). Suppose I is an ideal of a residuated lattice L that has a complete
maximal decomposition. In this case, this compete comaximal decomposition is unique.

Proof. Suppose I = I1 ∩ · · · ∩ In and I = J1 ∩ · · · ∩ Jm are two complete comaximal decompositions for I. For each
i ∈ {1, ...,n} and j ∈ {1, ...,m} put Ki j := Ii ∨ J j. Clearly, K′i js are pairwise comaximal and for each i ∈ {1, ...,n} since
I(L) is distributive, we have

Ii ⊆ Ki1 ∩ · · · ∩ Kim = (Ii ∨ J1) ∩ · · · ∩ (Ii ∨ Jm) = Ii ∨ (J1 ∩ · · · ∩ Jm) = Ii ∨ I = Ii.

As a result Ii = Ki1 ∩ · · · ∩ Kim and since Ii is pseudo-irreducible and K′i js are pairwise comaximal, we have there
exists ji ∈ {1, ...,m} such that Ii = Ki ji and for every j ∈ {1, ...,m} \ { ji}, Ki j = L. Similarly, for each j ∈ {1, ...,m}
there exists i j ∈ {1, ...,n} such that J j = Ki j j and for every i ∈ {1, ...,n} \ {i j}, Ki j = L. Hence, there is a one-to-
one correspondence between two sets {I1, ..., In} and {J1, ..., Jm}, and the corresponding ideals are equal. Therefore,
regardless of the order of factors in decompositions of I, the number and factors are unique.

Remark 5.4. According to Proposition 3.12, if an ideal I can be expressed as I = I1 ∩ · · · ∩ In, where I′i s are
pseudo-irreducible, then we can find the complete comaximal decomposition for I.
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Definition 5.5. We say that a residuated lattice L has the complete comaximal decomposition property (for short, it
has the CCD property) if every proper ideal of L has the complete comaximal decomposition.

Example 5.6. (1) By Proposition 3.5, every local (e.g., chain) residuated lattice has the CCD property.
(2) Let M be an infinite MV-algebra. Since x ⊕ y = x ∨ y and x ⊙ y = x ∧ y for each x, y ∈ M, every proper ideal of
M is prime. Thus, for each 1 , x ∈ M, the ideal (x] is prime and so | Spec(M) |= ∞ and | MaxI(M) |= 1. Hence, by
Proposition 3.5 M is a residuated lattice with infinitely many prime ideals that has the CCD property.

Now we want to obtain equivalent conditions for a residuated lattice with the CCD property. For
this recall that a topological space X is called Noetherian if every ascending chain of open subsets of X is
stationary.

Theorem 5.7. Let L be a residuated lattice. Then following are equivalent:

1. L has the CCD property.
2. For every subset {Mi}i∈A of MaxI(L), except for a finite number of elements of A, for each j ∈ A we have⋂

j,i∈A Mi ⊆M j.
3. For every infinite subset {Mi}i∈A of MaxI(L) there exists j ∈ A such that

⋂
j,i∈A Mi ⊆M j.

4. MaxI(L) is a Noetherian topological space.

Proof. (1) ⇒ (2). It is sufficient to prove the statement for infinite set index set A. Hence, suppose that
{Mi}i∈A is an infinite subset of MaxI(L) and Put I := ∩i∈IMi. By assumption and Theorem 5.3, the pseudo-
irreducible factors in the complete comaximal decomposition of I are unique. Now suppose there are an
infinite subset B of A such that for every j ∈ B we have

⋂
j,i∈A Mi ⊈ M j. Suppose j ∈ B is fixed. Then we

have (
⋂

j,i∈A Mi)∨M j = 1. Set J :=
⋂

j,i∈A Mi. By assumption J has the complete comaximal decomposition,
named, J = J1 ∩ · · · ∩ Jn. Now, since every maximal ideal is also pseudo-irreducible, I = M ∩ J1 ∩ · · · ∩ Jn is
the complete comaximal decomposition for I. Therefore, for each j ∈ B, M j a pseudo-irreducible factor in
the complete comaximal decomposition of I, and this is a contradiction.

(2)⇒ (3) It is clear.
(3)⇒ (4) On the contrary, assume that MaxI(L) is not a Noetherian topological space. In this case, there

is a chain DMax(I1) ⫋ DMax(I2) ⫋ · · · ⫋ DMax(In) ⫋ · · · of open sets of MaxI(L). Thus, for every 2 ⩽ i there
exists

Mi ∈ DMax(Ii) \DMax(Ii−1).

Now let 2 ⩽ j be fixed and set I := M1 ∩ · · · ∩M j−1 ∩ I j. If I ⊆ M j, then by Lemma 3.3 either I j ⩽ M j or
Mi ⊆ M j for at least one i ≨ j both of which are contradiction. So I ⊈ M j. Now if i ∈ {2, 3, ...} \ { j}, Then we
consider two cases. If i ≨ j, then I ⊆ Mi and if j ≨ i, then according to the choice Mi and the definition of I
we have I ⊆Mi. Hence, I ⊆

⋂
j,i∈A Mi. So

⋂
j,i∈A Mi ⊈M j, which is a contradiction

(4) ⇒ (1) Suppose the statement (1) is not true. In this case, there is a proper ideal I of L that does not
have the complete comaximal decomposition. So I is not pseudo-irreducible and therefore there are ideals
I1 and J1 of L such that I = I1 ∩ I1 and I1 ∨ I1 = L. If I1 and J1 have the complete comaximal decomposition,
then I also have a complete comaximal decomposition according to Remark 5.4, which is a contradiction.
So either I1 or J1 does not have the complete comaximal decomposition. Without loss of generality, we
assume that J1 does not have the complete comaximal decomposition. Therefore, there are proper ideals I2
and J2 of L such that J1 = I2∩ J2 and I2∨ J2 = L. By continuing the same process, we can obtain the following
comaximal decompositions for I.

I = I1 ∩ J1 = I1 ∩ I2 ∩ J2 = I1 ∩ I2 ∩ I3 ∩ J3 = · · · .

Now for every i ∈ {1, 2, ...}, there exists a maximal ideal Mi of L such that Ii ⩽ Mi. According to the
construction of Ii, we have

Mi ∨ (
⋂

j,i Mi). ⩾ Ii ∨ (I1 ∩ · · · ∩ Ii−1 ∩ Ji) = L.
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Hence for every i ∈ {1, 2, ...}, we have Mi ∨ (
⋂

j,i Mi) = L. Consequently, for each i ∈ {1, 2, ...}, we have
Mi ∈ DMax(

⋂
j⩾i+1 M j) \DMax(

⋂
j⩾i M j). Therefore, we have the following non-stationary ascending chain of

open subsets of MaxI(L) that is a contradiction

DMax(
⋂

j⩾1 M j) ⫋ DMaxa(
⋂

j⩾2 M j) ⫋ · · · ⫋ DMax(
⋂

j⩾n M j) ⫋ · · · ,

which is a contradiction.

Corollary 5.8. (1) Every finite residuated lattice has the CCD property.
(2) Every residuated lattice that has a finite number of maximal ideals also has the CCD property.

Theorem 5.9. Let L be an MTL-algebra. Then equivalent conditions of Theorem 5.7 are equivalent to the fact that
every closed subset of Spec(L) has finitely many connected components.

Proof. ⇒). Let C be a closed subset of Spec(L). Thus, there is an ideal I of L such that C = V(I). Let
I = ∩n

i=1Ii be the complete comaximal decomposition of I. Since I1, I2, ..., In are pairwise comaximal, we have
V(I) = ∪n

i=1V(Ii) is a disjoint union of connected closed subsets of Spec(L) by Theorem 3.10. Now let C be
a connected component of V(I). Thus C = ∪n

i=1(C ∩ V(Ii)). Now since C ∩ V(I1),C ∩ V(I2), ...,C ∩ V(In) are
n pairwise disjoint closed subsets of V(I) which cover C, there is 1 ≤ i ≤ n such that C = C ∩ V(Ii) and
C ∩ V(I j) = ∅ for each j ∈ {1, 2, ...,n} \ {i}. Thus C ⊆ V(Ii). By Theorem 3.10, V(Ii) is connected. Hence,
C = V(Ii) and so C has finitely many connected components.
⇐). Let I be a proper ideal of L and let C1,C2, ...,Cm be all connected components of V(I). Hence by

Theorem 3.10 for each i = 1, ...,n, there exists a pseudo-irreducible ideal Ii such that Ci = V(Ii) and since C′i s
are disjoint, we have I′i s are pairwise comaximal. Now by Proposition 2.8, we have

I =
⋂

V(I) =
⋂n

i=1 V(Ii) = I1 ∩ · · · ∩ In,

and we are done.

References

[1] L. P. Belluce, A. D. Nola, S. Sessa, The Prime Spectrum of an MV-Algebra, MLQ Math. Log. Q. 40(3) (1994), 331–346.
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