
Filomat 39:4 (2025), 1085–1092
https://doi.org/10.2298/FIL2504085B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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The spectral rank and Drazin inverse in J-semisimple
and torsion-free rings
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Abstract. In a recent paper [1], Brits, Schulz and the second-named author introduced and studied the
spectral rank in the setting of J-semisimple and torsion-free rings. In the present paper, we investigate the
relationship between this spectral rank and Drazin invertibility in J-semisimple and torsion-free rings and
prove generalizations of results established in [5]. Some open problems are also mentioned.

1. Introduction and Preliminaries

Throughout this paper, R will denote an associative ring with additive identity 0 and multiplicative
identity 1, whose group of units and Jacobson radical will be indicated by U(R) and rad(R), respectively.
By ([8], Lemma 4.3),

rad(R) = {x ∈ R | 1 + yx ∈ U(R) for all y ∈ R}.

In [3], Aupetit and Mouton introduced a generalization of the notion of rank in the context of complex
unital Banach algebras. We recall that the (spectral) rank of an element a of a complex unital Banach algebra
A is defined as

rank(a) := sup
x∈A

#σ′(xa),

where σ′(a) represents the nonzero spectrum of a, and the notation #K denotes the (possibly infinite) number
of distinct elements in the set K. Recently (see [1]), the concept of the spectral rank was further extended
to the setting of rings. In particular, it was shown in [1, Theorem 4.14] that the algebraic rank (as defined
by Stopar in [11]) and the spectral rank coincide (on the socle elements) in J-semisimple and torsion-free
rings, where a ring R is said to be J-semisimple if rad(R) = {0} and torsion-free if for all t ∈ Z and a ∈ R, the

2020 Mathematics Subject Classification. Primary 16U90; Secondary 16W99, 16N60, 16D25.
Keywords. J-semisimple rings, socle, spectral rank, Drazin inverse.
Received: 24 June 2024; Accepted: 02 December 2024
Communicated by Dragan S. Djordjević
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condition ta = 0 implies that either t = 0 or a = 0. Alternatively, torsion-free rings can be characterized as
rings that do not contain any cyclic additive subgroups of finite order. The spectral rank of an element a ∈ R,
as introduced in [1], is defined as

rankσR(a) := sup
x∈R

#{t ∈ Z | 1 + txa <U(R)}.

Whenever the ring R is clear from the context we will simply write rankσ(a). It is easy to show that the
inequality

rankσ(ab) ≤ min{rankσ(a), rankσ(b)}

holds for all a, b ∈ R. This implies that rankσ(a) = rankσ(1) for all a ∈ U(R); i.e. the spectral ranks of
units agree with the spectral rank of the multiplicative identity. We refer the reader to [1] for a more
comprehensive study of the spectral rank in rings.

Moving on to the concept of the left (respectively, right) socle of a ring R. As defined in [8], it is the sum of
all minimal left (respectively, right) ideals of R, which in fact form a two-sided ideal of R. In the case where
R lacks minimal left (respectively, right) ideals, its left (respectively, right) socle is {0}. Note that, in general,
the left and right socles of a ring may not coincide. By [8, Lemma 11.9], they will coincide whenever R is
semiprime, i.e. the condition aRa = {0} implies that a = 0 for all a ∈ R. In this case, we simply refer to it as
the socle of R and denote it by soc(R). It is a well known fact that every J-semisimple ring is semiprime.

Following [1], an element a ∈ R is said to be left (respectively, right) semipotent if every nonzero left
(respectively, right) ideal of R contained in Ra (respectively, aR) contains a nonzero idempotent, i.e. an
element e satisfying e2 = e. For our purposes, as was done in [1], we shall focus on left semipotent
elements and refer to them simply as semipotent. Moreover, [1, Theorem 4.14] establishes that the socle of a
J-semisimple and torsion-free ring R consists of all semipotent elements a satisfying rankσ(a) < ∞, i.e.

soc(R) = {a ∈ R | rankσ(a) < ∞ and a is semipotent}.

In 1958, Drazin introduced pseudo-inverses in associative rings and semigroups, as documented in [7].
This pioneering work paved the way for the study of Drazin invertible elements, which are defined as
follows:

Definition 1.1. [7, p.507] An element a ∈ R is said to be Drazin invertible if there exists some b ∈ R and a positive
integer k such that the following conditions hold:

(i) ab = ba,
(ii) bab = b,

(iii) akba = ak.

The unique element b [10, p.55], satisfying conditions (i)-(iii), is referred to as the Drazin inverse of a. As
a customary notation, we denote the Drazin inverse of a Drazin invertible element a by aD, and call the
smallest positive integer k for which condition (iii) holds the Drazin index of a. In the case where k = 1, a is
called group invertible, and its group inverse will be denoted by a1. Examples of group invertible elements
include the units (with group inverses given by their multiplicative inverses) and the idempotents (with
group inverses given by themselves). The sets of all group invertible and Drazin invertible elements of R
will be denoted by G(R) and D(R), respectively. In general, the strict containments U(R) ⊆ G(R) ⊆ D(R)
hold. We further point out that, for any a ∈ D(R), aD

∈ G(R), with its group inverse given by a2aD. This
fact will be used throughout the paper without specific reference. For recent and interesting developments
regarding the Drazin inverse, see [9], [13], [6] and [12].

In [5], Brits, Lindeboom, and Raubenheimer investigated the relationship between the spectral rank
(introduced by Aupetit and Mouton) and the Drazin index of elements belonging to the socle of a complex
unital semisimple Banach algebra A. Their study yielded intriguing results, two of them are stated next,
which we will generalize to the setting of J-semisimple and torsion-free rings in the present paper.
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(i) If a ∈ soc(A) with a Drazin inverse aD, then a ∈ G(A) if and only if rank(a) = rank(aD). [5, Theorem 2.3]
(ii) If a ∈ soc(A), then a ∈ G(A) if and only if rank(a) = rank(ak) for each k ∈N. [5, Theorem 2.4]

Note the application of the inclusion soc(A) ⊆ D(A), established in [4, Theorem 9] for a complex unital
semisimple Banach algebra A, in (i) and (ii) above. The authors do not know whether such containment
holds true in general J-semisimple (and torsion-free) rings. However, we point out next that in the case of
commutative J-semisimple rings, every element of the socle is Drazin invertible (in fact group invertible).
This is not a new fact in the setting of Banach algebras, since it is an immediate consequence of [4, Theorem
11], whose proof is not applicable to the setting of rings as it relies on spectral-theoretic arguments.

We recall that an element a ∈ R is said to be quasinilpotent if 1− ax ∈ U(R) for all x ∈ R commuting with a.
It is well known that the set of all quasinilpotent elements (which generally contains the Jacobson radical)
coincides with rad(R) whenever R is a commutative ring.

Proposition 1.2. Let R be a commutative J-semisimple ring. Then soc(A) ⊆ G(A) = D(A).

Proof. Let a ∈ soc(A). By [11, Theorem 4.10], a is unit regular, i.e. there exists b ∈ U(R) such that a = aba.
Utilizing the fact that A is commutative, one can show that a ∈ G(A) with a1 = bab, establishing the inclusion.
To prove the identity, assume that a ∈ D(A). Then there exists a positive integer k such that akaDa = ak,
which is equivalent to a − aaDa being nilpotent. Since every nilpotent element is quasinilpotent, and hence
in rad(R) = {0}, we have that a = aaDa, from which we conclude that a ∈ G(A).

In the case of an arbitrary J-semisimple ring R, we introduce the setSD(R) as the intersection of the socle
and the set of Drazin invertible elements of R, i.e. SD(R) := soc(R)∩D(R), which is generally non-empty as
(for instance) 0 ∈ soc(R) is Drazin invertible.

We now recall the following results from [1] which will prove useful to us.

Lemma 1.3 ([1], Lemma 3.7). Let e be an idempotent in R. Then eRe is a ring with multiplicative identity e.
Moreover, for any a ∈ R, we have that

1 + ae ∈ U(R) ⇐⇒ e + eae ∈ U(eRe).

Furthermore, if R is J-semisimple, then eRe is J-semisimlpe.

Lemma 1.4 ([1], Lemma 3.10). Let e be a nonzero idempotent in R. Then rankσeRe(eae) = rankσR(eae) for each a ∈ R.

We introduce some further terminology and notation, so let R be a J-semisimple and torsion-free ring.
For a ∈ soc(R), we consider the set

E(a) := {x ∈ R | #{t ∈ Z | 1 + txa <U(R)} = rankσ(a)}.

Note that, by [1, Theorem 4.14], E(a) is nonempty set for each a ∈ soc(R). Moreover, it is easily seen that
E(0) = R. We shall call an element a ∈ soc(R) maximal finite-rank if 1 ∈ E(a), i.e. rankσ(a) = #{t ∈ Z | 1 + ta <
U(R)}.

2. Main results

This section is devoted to generalizations of results in [5] by Brits, Lindeboom and Raubenheimer in the
setting of Banach algebras to the context of J-semisimple and torsion-free rings.

We start by pointing out the well known core-nilpotent decomposition of Drazin invertible elements in
rings, which will be useful in establishing the two results that follows.

Lemma 2.1 ([10], p.56). (core-nilpotent decomposition) Let R be a ring. If a ∈ D(R), then a can be uniquely
decomposed as a sum of a group invertible element and a nilpotent element which commute and whose product is zero.
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The group invertible element in Lemma 2.1 is given by aaDa (which has group inverse aD) and is called the
core of a, while the nilpotent element a− aaDa (which has nilpotency index the Drazin index of a) is referred
to as the nilpotent part of a.

As an immediate consequence of the core-nilpotent decomposition, we have that the core of a maximal
finite-rank element is also maximal finite-rank.

Proposition 2.2. Let R be a J-semisimple and torsion-free ring and a ∈ SD(R). If a is maximal finite-rank, then so is
aaDa and

rankσ(a) = rankσ(aaDa).

Proof. Suppose that a ∈ SD(R) is maximal finite-rank and let e := aaD. For each t ∈ Z, consider α := 1 + tea
and β := 1 + t(1 − e)a. Then

αβ = 1 + tea + t(1 − e)a,

and hence 1 + tea + t(1 − e)a < U(R) if and only if either α < U(R) or β < U(R). In view of Lemma 2.1 (and
the remark thereafter) and the fact that (1 − e)a is nilpotent (and hence quasinilpotent), it now follows that

rankσ(a) = #{t ∈ Z | 1 + ta <U(R)}
= #{t ∈ Z | 1 + t[ea + (1 − e)a] <U(R)}
= #
[
{t ∈ Z |α <U(R)} ∪ {t ∈ Z | β <U(R)}

]
= # [{t ∈ Z |α <U(R)} ∪ ∅]
≤ rankσ(ea)
≤ rankσ(a),

which shows that rankσ(a) = rankσ(ea) = #{t ∈ Z | α <U(R)}, i.e. ea ∈ SD(R) is maximal finite-rank.

Next we give a basic fact about Drazin invertible elements of rings. Its proof is a mere copy of the proof
of [5, Lemma 2.5] but uses the core-nilpotent decomposition of Drazin invertible elements in rings.

Lemma 2.3. Let R be a ring. If a ∈ D(R), then the Drazin index of a, say k, is the least nonnegative integer such
that ak

∈ G(R).

Proof. Let a ∈ D(R) with Drazin index k. Then it is easily seen that ak
∈ G(R) with group inverse (aD)k.

Suppose that j is another integer strictly smaller than k satisfying a j
∈ G(R). Utilizing Lemma 2.1 and the

fact that aaD (and hence also 1 − aaD) is an idempotent, we have that

a j = (aaDa + a − aaDa) j = (aaDa) j + a j(1 − aaD).

Hence a j(1 − aaD) = 0 since a j
∈ G(R). But this contradicts our assumption that k is the least nonnegative

integer satisfying ak = akaDa. Consequently, the result follows.

The following lemma is crucial for proving Theorem 2.5 and is derived from the proof of [1, Propositon
3.4]. It’s worth noting that while not explicitly established in that particular proof, the argument originates
from it, requiring only a minor adjustment.

Lemma 2.4. Let R be a J-semisimple and torsion-free ring and a1, a2 ∈ soc(R). Then there exist x1 ∈ E(a1) and
x2 ∈ E(a2) such that

{t ∈ Z | 1 + tx1a1 <U(R)} ∩ {t ∈ Z | 1 + tx2a2 <U(R)} = ∅.

Proof. Let a1, a2 ∈ soc(R). Then there exist y1, y2 ∈ R such that

rankσ(a1) = #{t ∈ Z | 1 + ty1a1 <U(R)}
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and

rankσ(a2) = #{t ∈ Z | 1 + ty2a2 <U(R)}.

Let m be the largest integer t ∈ Z for which 1 + ty2a2 < U(R). Now, choose an integer s such that s > m
and

m − s < min{t ∈ Z | 1 + ty1a1 <U(R)}. (1)

With this choice of s, we have that 1 + sy2a2 ∈ U(R). Notice also that, for t ∈ Z, the condition

1 + t(1 + sy2a2)−1y2a2 <U(R)

is equivalent to

1 + (s + t)y2a2 <U(R)

since (1 + sy2a2)(1 + t(1 + sy2a2)−1y2a2) = 1 + (s + t)y2a2.
From (1) and this equivalence, it then follows that the sets

{t ∈ Z | 1 + ty1a1 <U(R)}

and

{t ∈ Z | 1 + t(1 + sy2a2)−1y2a2 <U(R)}

are disjoint, and that

rankσ(a2) = #{t ∈ Z | 1 + t(1 + sy2a2)−1y2a2 <U(R)}.

By choosing x1 = y1 ∈ E(a1) and x2 = (1 + sy2a2)−1y2 ∈ E(a2), we have established our result.

By refining the techniques in ([5], Theorem 2.3), where ([2], Exercise 9, p.66) - not applicable to our setting
- were utilized, we give next a necessary and sufficient condition for elements of SD(R) to be group
invertible, which is that the spectral ranks of the elements and their Drazin inverses must coincide. This
result generalizes Theorem 2.3 in [5] to the setting of J-semisimple and torsion-free rings.

Theorem 2.5. Let R be a J-semisimple and torsion-free ring and a ∈ SD(R). Then a ∈ G(R) if and only if
rankσ(a) = rankσ(aD).

Proof. We begin with the forward implication, so suppose that a ∈ G(R) with group inverse aD. Then

rankσ(a) = rankσ(a2aD) ≤ rankσ(aD) = rankσ(a(aD)2) ≤ rankσ(a),

establishing the identity rankσ(a) = rankσ(aD).
For the reverse implication, suppose that rankσ(a) = rankσ(aD). We proceed to prove the identity

a = a2aD, from which it will follow that a ∈ G(R). Now observe that aD and aaDa, which belong to G(R), are
both invertible in the J-semisimple ring eRe (with multiplicative identity the idempotent e := aaD). Hence

rankσ(a) = rankσ(aD) = rankσ(aaDa) = rankσ(aaD).

By Lemma 2.4, for ea, (1 − e)a ∈ soc(R), there exist x ∈ E(ea) and y ∈ E((1 − e)a) such that the sets

{t ∈ Z | 1 + txea <U(R)} (= {t ∈ Z | 1 + teaxe <U(R)})

and

{t ∈ Z | 1 + ty(1 − e)a <U(R)} (= {t ∈ Z | 1 + t(1 − e)ay(1 − e) <U(R)})
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are disjoint (where the parts between brackets follow from the well known Jacobson’s Lemma).
Let α := eaxe and β := (1 − e)ay(1 − e). Observe that

(1 + tα)(1 + tβ) = 1 + tα + tβ

for all t ∈ Z, since e(1 − e) = 0. Hence 1 + tα + tβ <U(R) if and only if either 1 + tα <U(R) or 1 + tβ <U(R).
It now follows that

rankσ(a) + rankσ((1 − aaD)a)
= rankσ(aaDa) + rankσ((1 − aaD)a)
= rankσ(ea) + rankσ((1 − e)a)
= #{t ∈ Z | 1 + txea <U(R)} + #{t ∈ Z | 1 + ty(1 − e)a <U(R)}
= #{t ∈ Z | 1 + tα <U(R)} + #{t ∈ Z | 1 + tβ <U(R)}
= #

[
{t ∈ Z | 1 + tα <U(R)} ∪ {t ∈ Z | 1 + tβ <U(R)}

]
= #{t ∈ Z | 1 + t(α + β) <U(R)}
≤ rankσ(α + β)
= rankσ(a[exe + (1 − e)y(1 − e)])
≤ rankσ(a).

Since the rank is non-negative, we have that rankσ((1−aaD)a) = 0, and hence (1−aaD)a = 0. Consequently,
a ∈ G(R), which completes the proof.

Using Theorem 2.5, we now characterize group invertibility of an element in SD(R) in terms of the
spectral ranks of the elements and their powers. This result generalizes Theorem 2.4 in [5] to the setting of
J-semisimple and torsion-free rings.

Theorem 2.6. Let R be a J-semisimple and torsion-free ring and a ∈ SD(R). Then a ∈ G(R) if and only if
rankσ(a) = rankσ(ak) for each k ∈N.

Proof. To prove the forward implication, suppose that a ∈ G(R). Then, for each k ∈ N, ak
∈ G(R) with

group inverse (a1)k. Let e := aa1. Observe that a, a1, ak and (a1)k are all invertible in the J-semisimple
ring eRe, and hence all of them have rank equal to rankσ(e). From this and Lemma 1.4 we conclude that
rankσ(a) = rankσ(ak) for each k ∈ N. For the reverse implication, suppose that rankσ(a) = rankσ(ak) for
each k ∈ N and that a has Drazin index k1 ∈ N. Using the facts that aD

∈ G(R) and ak1 ∈ G(R) with
(ak1 )1 = (aD)k1 , we have from the first part of the proof that rankσ(aD) = rankσ((aD)k1 ) = rankσ((ak1 )1). In view
of the hypothesis and Theorem 2.5, it now follows that

rankσ(a) = rankσ(ak1 ) = rankσ((ak1 )1) = rankσ(aD).

By utilizing Theorem 2.5 again, we conclude that a ∈ G(R), which completes the proof.

We give two consequences of Theorem 2.6. The first is the left-to-right implication of Theorem 2.7 in [5]
in the setting of J-semisimple and torsion-free rings.

Corollary 2.7. Let R be a J-semisimple and torsion-free ring and a ∈ SD(R). If a has Drazin index k, then k is the
least nonnegative integer satisfying rankσ(ak) = rankσ(ak+1).

Proof. Let a ∈ SD(R) with Drazin index k. From Lemma 2.3 it follows that k is the least nonnegative integer
such that ak

∈ G(R). In view of Theorem 2.6, we have that rankσ(ak) = rankσ(a2k), and hence

rankσ(ak+1) ≤ rankσ(ak) = rankσ(a2k) ≤ rankσ(ak+1),

which establishes the identity rankσ(ak) = rankσ(ak+1).
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An immediate consequence of Corollary 2.7 provides additional insights into an example given by
Askes, Brits, and Schulz (cf. [1, Example 3.13]):

Example 2.8. Consider the (non-commutative) J-semisimple ring R, which is torsion-free and consists of all functions
f : [0, 1] → Mn(C) (with pointwise addition and multiplication), where Mn(C) denotes the set of all n × n matrices
with complex entries, and let 1 ∈ soc(R). Then 1 has Drazin index k if and only if k is the least nonnegative integer
satisfying rankσ(1k) = rankσ(1k+1).

In particular, 1 ∈ G(R) if and only if rankσ(1) = rankσ(12)

Proof. First note that
D(R) = { f ∈ R : f (x) ∈ D(Mn(C)) for all x ∈ [0, 1]} = R

since every square matrix is Drazin invertible. Now let 1 ∈ soc(A). We prove the reverse implication, as
the forward implication is obvious from Corollary 2.7; hence suppose that k is the least nonnegative integer
satisfying rankσ(1k) = rankσ(1k+1), i.e.∑

t∈supp(1)

rankσ(1(t)k) =
∑

t∈supp(1)

rankσ(1(t)k+1),

which gives rankσ(1(t))k = rankσ(1(t)k+1) for all t ∈ [0, 1]. Then the matrix 1(t) (for each t ∈ [0, 1]) is Drazin
invertible with Drazin index k, from which we obtain that 1 has Drazin index k.

Remark 2.9. Though an if and only if statement holds in Example 2.8, the authors do not know whether the converse
statement of Corollary 2.7 is generally true. In fact, we point out that (in [5]) the authors utilized the converse
statement of Theorem 2.7 (whose validity in the context of J-semisimple and torsion-free rings is still unknown) to
establish Corollary 2.7 in the context of unital semisimple Banach algebras.

As a second remark, we point out that Example 2.8 could not have been obtained from ([5], Theorem 2.7)
as the given R is not a Banach algebra (see Example 3.13 in [1]).

Our second corollary of Theorem 2.6, which we give next, is a generalization of ([5], Corollary 2.8) to
the setting of J-semisimple and torsion-free rings.

Corollary 2.10. Let R be a J-semisimple and torsion-free ring and ab, ba ∈ SD(R). If ab ∈ G(R), then ba ∈ G(R) if
and only rankσ(ab) = rankσ(ba).

Proof. Let ab ∈ G(R).
To prove the forward implication, suppose also that ba ∈ G(R). Then by Theorem 2.6 (for k = 2), we

have that

rankσ(ab) = rankσ((ab)2) ≤ rankσ(ba) = rankσ((ba)2) ≤ rankσ(ab),

and hence rankσ(ab) = rankσ(ba).
To prove the reverse implication, suppose that rankσ(ab) = rankσ(ba) and let k ∈N. In view of Theorem

2.6, we have that

rankσ(ba) = rankσ(ab) = rankσ((ab)k) ≤ rankσ((ba)k−1) ≤ rankσ(ba).

Since rankσ(ba) = rankσ((ba)k−1) and k > 1 was arbitrary, using Theorem 2.6 again, it follows that ba ∈ G(R).
This completes the proof.

We conclude with a few open questions.
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3. Open questions

This paper, which is a first attempt at studying the connections between the spectral rank and generalized
inverses in the setting of rings, contains some important open questions which we specify next.

Question 3.1. Do we have identity SD(R) = soc(R) for an arbitrary J-semisimple and torsion-free ring?

Question 3.2. Is it the case that, in a J-semisimple and torsion-free ring R, a ∈ SD(R) has Drazin index k if and only
if k is the least nonnegative integer such that

rankσ(ak) = rankσ(ak+1)?

Recall that the above result holds in unital semisimple Banach algebras. Its proof relies on the rank
structure decomposition of elements belonging to the socle, a tool we do not have in our setting.
Given that this paper aims to build upon and generalize the concepts and results displayed in [5], it is
important to highlight one of its key findings. Specifically, it was demonstrated that if an and a are group
invertible elements of the socle of a unital semisimple Banach algebra A with an → a, then aD

n → aD if
and only if there exists some n0 ∈ N such that rank(an) = rank(a) for all n ≥ n0. However, in the context
of J-semisimple and torsion-free rings, the concept of convergence of sequences is not well-defined. To
address the ensuing question, it is essential to introduce additional structure:

Question 3.3. Let R be a J-semisimple and torsion-free topological ring and suppose that an (for each n ∈ N) and a
are group invertible elements in SD(R) such that an converges to a.
Are the following two statements equivalent?
(i) a1n converges to a1.
(ii) There exists n0 ∈N such that rankσ(an) = rankσ(a) for all n ≥ n0.
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