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Abstract. The G-convergence of sequences is a general method of convergence of sequences in topological
spaces. The operations related to G-methods in topological spaces have been studied. In this paper,
we discuss G-quotient spaces, which are a class of generalized quotient spaces, and obtain the relationship
between G-quotient topology and the largest topology of the range that makes the mapping be G-continuous.
These results can be applied to statistical convergence and ideal convergence in topological spaces.

1. Introduction

Various types of convergence of sequences in topological spaces can be defined, which mostly came
from research with application backgrounds, and have already achieved rich results. The following method
of G-convergence is general [5].

Let X be a set, s(X) denote the set of all X-valued sequences, i.e., x ∈ s(X) if and only if x = {xn}n∈N is a
sequence with each xn ∈ X. A method on X is a function G : cG(X) → X defined on a subset cG(X) of s(X)
[11, Definition 1.1]. A sequence x = {xn}n∈N in X is said to be G-convergent to l ∈ X if x ∈ cG(X) and G(x) = l.
Therefore, the usual convergence of sequences [8], statistical convergence [7], and ideal convergence [9] are
special cases of G-convergence.

The essential connection between G-methods and topological spaces is established by the concept of
G-open sets. From this, we can define G-continuity and spaces determined by G-convergence, and discuss
the mutual relationship between spaces and mappings with the help of relevant continuity [3, 11]. The
G-method has become an effective and general method for studying convergence and continuity in general
topology [1].

The operation of topological spaces is the fundamental form of studying topology [8]. The subspaces
and product spaces defined by G-methods have obtained some basic results [11, 13, 14, 16, 17, 19]. Although
the quotient mappings defined by G-methods have also been discussed in several papers, there has been
little research on related quotient topologies [4, 11, 12].

A G-open set is a type of generalized open sets [11]. We can try to discuss G-quotient topologies from
the perspective of generalized quotient spaces. On the other hand, the quotient topology is the largest
topology of the range that makes the mapping be surjective and continuous [8], thus the following problem
is natural.
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Problem 1.1. [10, Question 1.4] How to characterize the largest topology of the range that makes the mapping
preserve G-convergence or be G-continuous?

It is easy to see that suppose that G is a method of sets X and Y, then a mapping f : X→ Y is G-continuous
(resp., preserves G-convergence) if and only if the discrete topology is the largest topology of Y that makes
f be G-continuous (resp., preserve G-convergence). The answer to Problem 1.1 is so simple, because the
concept of a method on a set is independent of the one of a topology on the set. In order to better analogize
to quotient topology, we need to add some relations between methods and topologies when Problem 1.1
is discussed. If G is the usual convergence, statistical convergence, or ideal convergence in a topological
space, then every open set in this space is a G-open set. This paper requires that every open subset of a
topological space is always G-open in the space.

The above problem has the following partial answer for ideal convergence.

Theorem 1.2. ([10, Theorem 5.8]) Let (X, τ) be an I-topological space, f : X → Y be a surjective mapping and
(Y, τ f ,I) be an I-sequential space. Then τ f ,I is the largest topology of the set Y that makes f : (X, τ) → Y be
I-continuous.

In this paper, we give some examples showing that the topology of G-quotient spaces is not the topology
required by Problem 1.1, and obtain a necessary and sufficient condition to Problem 1.1 for G-continuity in
a positive answer, which is a generalization of Theorem 1.2.

2. Generalized quotient spaces

A class µ ⊂ expX is called a generalized topology [6] on X when ∅ ∈ µ and the union of every family of
members of µ is again a member of µ. A pair (X, µ), where X is a non-empty set and µ is a generalized
topology on it, is said to be a generalized topological space [6]. Every element of µ is called a generalized
open set in X. Let us say that a function f : (X, µX) → (Y, µY) between generalized topological spaces is
(µX, µY)-continuous [6] if f−1(V) ∈ µX whenever V ∈ µY. Evidently, every topology is a generalized topology.
However, a continuous mapping is not always generalized continuous [6].

Given a generalized topological space (X, µX), and π : X→ Y a surjective mapping, it is easy to see that

µπ = {V ⊂ Y : π−1(V) ∈ µX}

is a generalized topology on Y. The family µπ is called the generalized quotient topology [2] induced on Y by
π, the pair (Y, µπ) is called the generalized quotient space [2] of X, and the mapping π is called a generalized
quotient mapping [2].

It is easy to see that the generalized quotient topology µπ is the largest generalized topology µY on
Y that makes the mapping π be (µX, µY)-continuous [2]. Recently, generalized topological spaces with a
hereditary class were studied [15].

Let G : cG(X) → X be a method on a set X and A ⊂ X. The set A is called a G-closed subset of X if,
whenever x ∈ s(A) ∩ cG(X), then G(x) ∈ A [11, Definition 2.1]; A is called a G-open subset of X if X \ A is
G-closed in X [11, Definition 3.1]. Open sets in a topological space are not always G-open [11, Example
2.13]. The family of all G-open subsets of X is a generalized topology on X [11, Proposition 3.2]. For a
method G, we require that the open sets are always G-open sets in this paper.

Definition 2.1. Let G be a method of sets X and Y. Given a mapping f : X → Y, f is called G-continuous if
f−1(U) is a G-open subset of X whenever U is G-open in Y; f is called preserving G-convergence if f (x) ∈ cG(Y)
and G( f (x)) = f (G(x)) for each x ∈ cG(X).

The definition of G-continuity is given in the form of continuity in topological spaces or generalized con-
tinuity in generalized topological spaces. It is well-known that every mapping preserving G-convergence
is G-continuous [11, Theorem 7.3], but the converse statement is not true, see Example 2.3. For a G-method,
G-continuity is initially defined by preserving G-convergence [5, 11, 18].
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Definition 2.2. Suppose that G is a method of sets X and Y, and a mapping f : X → Y is surjective. f is
called a G-quotient mapping [4, Definition 3.1] if for each U ⊂ Y, the set f−1(U) is G-open in X if and only if U
is G-open in Y, where the space Y is called a G-quotient space induced by the mapping f and the method G.

Example 2.3. There exist a method G of sets X and Y, and a G-quotient mapping f : X→ Y which does not
preserve G-convergence.

Let X be the set Z of all integers. Put

cG(X) = {x = {xn}n∈N ∈ s(X) : there exist m ∈N and ax ∈ X such that
xn = xn−1 + ax for each n > m}.

Define G : cG(X)→ X by G(x) = ax for each x ∈ cG(X). Then G is a method on X. It is easy to see that if A is
a G-closed subset in X then A = ∅ or 0 ∈ A.

Put Y = {0, 1}with the method G. Then

cG(Y) = {{yn}n∈N ∈ s(Y) : there exists m ∈N such that yn = yn+1 for each n > m},

and G(y) = 0 for each y ∈ cG(Y). Then the family of all G-open subsets of Y is {∅, {1},Y}, which is denoted
by τY,G.

A mapping f : X→ Y is defined as follows: f (x) = 0 if and only if x = 2k, k ∈ Z. Then f−1(0) = {2k : k ∈
Z} is not G-open in X, and f−1(1) = {2k − 1 : k ∈ Z} is G-open in X.

(1) f : X→ Y is a G-quotient mapping.
It is easy to check that a subset U of Y is G-open in Y if and only if f−1(U) is G-open in X. This implies

that f is G-quotient.
(2) f : X→ Y does not preserve G-convergence.
Put x = {n}n∈N ∈ s(X). Then x ∈ cG(X), G(x) = 1, and f (x) = {1, 0, 1, 0, · · · } < cG(Y). Thus f does not

preserve G-convergence.
(3) τY,G is the largest topology of the set Y that makes f : X→ Y be G-continuous.
Let τX,G be the topology of X generated by all G-open subsets of X as a subbase. The set Y is endowed

with the topology τY,G. It follows from (1) that f : (X, τX,G)→ (Y, τY,G) is G-continuous. Since f−1({0}) is not
G-open in X, the family τY,G is the largest topology of the set Y that makes f : (X, τX,G)→ Y be G-continuous.

Why is the discrete topology not the largest topology of the set Y that makes f : X→ Y be G-continuous?
Since we require each open set of Y to be a G-open set, if the discrete topology is the topology, then every
subset of Y must be G-open, which is a contradiction.

(4) Changing the topologies of the spaces X and Y.
Regardless of whether the sets X and Y are endowed with topologies or not, under the given method G on

X and Y, the mapping f : X→ Y is always a G-quotient mapping which does not preserve G-convergence.
If the sets X and Y are given appropriate topologies, since we require that the open sets are always G-open,
the topologies τX, τY of the sets X and Y satisfy τX ⊂ τX,G, τY ⊂ τY,G, respectively.

Let f : X → Y be a G-quotient mapping for a method G of topological spaces X and Y. Example 2.3
shows that the topology of Y may not necessarily be the largest topology that makes f be G-continuous?
Example 2.4 provides another example about it.

Example 2.4. There exists a G-quotient mapping f : X → Y such that f preserves G-convergence and the
topology of Y is not the largest topology of Y that makes f preserve G-convergence or be G-continuous.

Let X be a topological space with topology τ and Y a set as Y = X. Then define a G-method on X and
therefore on Y with G(x) = x1 for any sequence x = {xn}n∈N ∈ s(X). Then all subsets of X and Y are G-closed,
thus they are G-open. Hence for any topology σ on Y a surjective mapping f : (X, τ)→ (Y, σ) is a G-quotient
mapping and preserves G-convergence, but the greatest topology on Y such that f is G-continuous is the
discrete topology on Y which might differ σ. It is obvious that all open subsets of X and Y are G-open.

Therefore, in order to provide a positive answer to Problem 1.1, we need to attach certain conditions to
the topology of G-quotient spaces.
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3. The main results

In this section, we seek a partial answer to Problem 1.1 for G-continuity. This problem involves the
topology generated by all G-open sets in topological spaces.

Suppose that G is a method of sets X and Y. Let f : X→ Y be a surjective mapping. Put

µG = {U ⊂ X : U is G-open in X},

µG, f = {V ⊂ Y : f−1(V) is G-open in X}.

Then µG, µG, f are generalized topologies on X, Y, respectively. The family µG, f is the largest generalized
topology on Y that makes f : (X, µG) → (Y, µG, f ) be G-continuous. Problem 1.1 is to characterize topology
rather than generalized topology.

Let f : X→ (Y, τY) be G-continuous, where τY is a topology on Y. If V ∈ τY, then V is G-open in Y, thus
f−1(V) ∈ µG, f ; i.e., τY ⊂ µG, f . Therefore, we can consider the topology of Y generated by µG, f .

Definition 3.1. Let G be a method of a set X.
(1) The topology of the set X generated by all G-open subsets as a subbase is called a G-open topology

induced by the method G, which is denoted by τG.
(2) The topological space (X, τG) is called a G-open topological space, which is denoted by XG.
(3) X is called a G-topological space [11, Definition 6.1] if the family of all G-open subsets of X is closed

under finite intersections.

A topological space (X, τ) with a method G is called a G-sequential space if τG ⊂ τ [11, Definition 5.1]. It
follows from τ ⊂ τG that X is G-sequential if and only if τ = τG. The following result is a partial answer to
Problem 1.1, which shows some conditions for answering Problem 1.1 positively.

Theorem 3.2. The following are equivalent for a topological space (X, τ) and a method G of X.
(1) Spaces X and XG have the same G-open subsets.
(2) The identity id : X→ XG is a G-quotient mapping.
(3) The identity id : X→ XG is a G-continuous mapping.
(4) X is a G-topological space and XG is a G-sequential space.
(5) τG is the largest topology µ of the set X that makes id : (X, τ)→ (X, µ) be G-continuous.

Proof. The implications (1)⇒ (2)⇒ (3) are obvious.
(3)⇒ (5). Suppose that id : X → XG is G-continuous. If id : (X, τ)→ (X, µ) is G-continuous and U ∈ µ,

then U is G-open in the space (X, µ). Since id : (X, τ)→ (X, µ) is G-continuous, the set U is G-open in (X, τ),
i.e., U ∈ τG, and thus µ ⊂ τG. This implies that (5) is true.

(5)⇒ (4). We can assume that id : (X, τ)→ XG is G-continuous. If A and B are G-open subsets in (X, τ),
then A and B are open in the space XG, thus A∩ B is also open in XG, therefore A∩ B is G-open in XG. Since
id : (X, τ) → XG is G-continuous, the set A ∩ B is G-open in the space (X, τ). Hence, the family of G-open
subsets of (X, τ) is closed under finite intersections, and it implies that (X, τ) is a G-topological space.

If V is a G-open subset of the space XG, it follows from id : (X, τ) → XG being G-continuous that V is
G-open in (X, τ), thus V ∈ τG, i.e., V is open in XG. This shows that XG is a G-sequential space.

(4) ⇒ (1). Suppose that X is a G-topological space and XG is a G-sequential space. Obviously, every
G-open subset of X is G-open in XG. If U is a G-open subset of XG, it follows from XG being G-sequential
that U is open in XG. Thus, U can be represented as a finite intersection of G-open subsets in X. Since X
is a G-topological space, the set U is G-open in X. Therefore, the spaces X and XG have the same G-open
subsets.

The following result is a generalization of [12, Theorem 3.2], which was proved under the assumption
G being a subsequential method. A method G : cG(X) → X is called subsequential [11, Definition 1.1] if,
whenever x ∈ cG(X) is G-convergent to l ∈ X, there exists a subsequence x′ of x such that x′ is the usual
convergent sequence in the space X with lim x′ = l. If G is a subsequential method on X, then every open
set of X is G-open [11, Lemma 2.11].
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Corollary 3.3. Let G be a method of a set X. If τ, µ are the topologies of X with τG ⊂ µ, then the spaces (X, τ) and
(X, µ) have the same G-open subsets if and only if µ = τG, (X, τ) is a G-topological space and (X, µ) is a G-sequential
space.

Proof. The sufficiency is true by Theorem 3.2. Next, we will show the necessary.
Suppose that the spaces (X, τ) and (X, µ) have the same G-open subsets. Since τG ⊂ µ and µ ⊂ µG = τG,

we have that µ = τG. Thus the spaces X and XG have the same G-open subsets. By Theorem 3.2, the space
(X, τ) is a G-topological space and the space (X, µ) is a G-sequential space.

Next, we will further consider extending the identity in Theorem 3.2 to a mapping.

Definition 3.4. Suppose that X and Y are sets, f : X → Y is a surjective mapping and G is a method on X.
The family τ f ,G = {U ⊂ Y : f−1(U) ∈ τG} is a topology of Y, and is called a G-open topology induced by the
method G and the mapping f .

The following is the main result in this paper, in which the assumption of G-topological spaces is also a
necessary condition under identity mappings by Theorem 3.2.

Theorem 3.5. Let G be a method on sets X and Y. Suppose that (X, τ) is a G-topological space and f : X → Y is a
surjective mapping, then the following are equivalent.

(1) (Y, τ f ,G) is a G-sequential space.
(2) f : (X, τ)→ (Y, τ f ,G) is a G-quotient mapping.
(3) f : (X, τ)→ (Y, τ f ,G) is a G-continuous mapping.
(4) τ f ,G is the largest topology of Y that makes f : (X, τ)→ Y be G-continuous.

Proof. (1)⇒ (2). Suppose that (Y, τ f ,G) is a G-sequential space. Let U be a G-open subset of the space Y. It
follows from Y being G-sequential that the set U is open in Y, i.e., U ∈ τ f ,G, thus f−1(U) ∈ τG. Since X is a
G-topological space, we have that f−1(U) is G-open in the space X. Hence, f is G-continuous. On the other
hand, let U be a subset of the space Y such that f−1(U) is G-open in X. Then U ∈ τ f ,G, and thus U is G-open
in the space Y. Therefore, f is a G-quotient mapping.

(2)⇒ (3). It is obvious.
(3) ⇒ (4). Suppose that f : (X, τ) → (Y, τ f ,G) is G-continuous. Let ν be a topology of the set Y such

that f : (X, τ) → (Y, ν) is G-continuous. If V ∈ ν, then V is G-open in Y, thus f−1(V) is G-open in X, and
so V ∈ τ f ,G. Hence, ν ⊂ τ f ,G. On the other hand, the mapping f : (X, τ) → (Y, τ f ,G) is G-continuous. This
implies that τ f ,G is the largest topology of Y that makes f : (X, τ)→ Y be G-continuous.

(4) ⇒ (1). Suppose that τ f ,G is the largest topology of Y that makes f : (X, τ) → Y be G-continuous.
Then the mapping f : (X, τ) → (Y, τ f ,G) is G-continuous. If V is a G-open subset of the space (Y, τ f ,G), then
f−1(V) is a G-open subset of the space (X, τ), thus V ∈ τ f ,G, i.e., V is open in (Y, τ f ,G). Therefore, the space
(Y, τ f ,G) is G-sequential.

The following result is a generalization of [10, Theorem 5.8].

Corollary 3.6. Let G be a method on sets X and Y. Suppose that (X, τ) is a G-topological space and f : X → Y is a
surjective mapping. If (Y, τ f ,G) is a G-sequential space, then the following are equivalent for a topology µ of the set Y.

(1) µ is the largest topology that makes f : (X, τ)→ (Y, µ) be G-continuous.
(2) µ = τ f ,G.
(3) f : (X, τ)→ (Y, µ) is a G-quotient mapping and (Y, µ) is a G-sequential space.

Proof. Since (Y, τ f ,G) be a G-sequential space, it follows from Theorem 3.5 that (1) ⇔ (2) ⇒ (3). Next,
we will show that (3) ⇒ (1), which does not need to assume that (Y, τ f ,G) is G-sequential. Suppose that
f : (X, τ) → (Y, µ) is a G-quotient mapping and (Y, µ) is a G-sequential space. Let f : (X, τ) → (Y, ν) be
G-continuous, where ν is a topology of Y. If V ∈ ν, then V is G-open in the space (Y, ν), and thus f−1(V)
is G-open in the space (X, τ). Since f : (X, τ) → (Y, µ) is a G-quotient mapping, we have that the set V is
G-open in (Y, µ). And since (Y, µ) is a G-sequential space, we obtain that V ∈ µ. This implies that ν ⊂ µ.



F. Liu et al. / Filomat 39:4 (2025), 1219–1225 1224

It follows from that f : (X, τ) → (Y, µ) is G-continuous that the family µ is the largest topology that makes
f : (X, τ)→ (Y, µ) be G-continuous.

The above corollary is also a generalization of Theorem 1.2. Let us recall the related concepts of ideal
convergence. An ideal on N is a family of subsets of N which is closed under the operations of taking
finite unions and subsets of its elements. Let I be an ideal onN and X be a topological space. A sequence
{xn}n∈N in X is said to be I-convergent to a point x ∈ X provided for any neighborhood U of x, we have the
set {n ∈ N : xn < U} ∈ I [9]. Since ideal convergence is a special kind of G-convergence, the concepts and
results of G-convergence are all applicable to ideal convergence [10, 11, 20], in which every open subset is
G-open, i.e., I-open.

The usual convergence of sequences in topological spaces can be extended to statistical convergence [7],
and statistical convergence can be extended to ideal convergence onN [9]. Thus, the results in this paper
can be applied to statistical convergence and ideal convergence in topological spaces.

The following example shows “G-quotient” in part (3) of Corollary 3.6 cannot be weakened to “G-
contunuous”.

Example 3.7. There exists a non-G-quotient mapping preserving G-convergence f : X→ Y such that
(1) X is a G-topological space;
(2) Y is a G-sequential space;
(3) the topology of Y is not the largest topology of Y that makes f preserve G-convergence or be

G-continuous.

Let X = {0} ∪
⋃

i∈N Xi, where each Xi = {1/i} ∪ {1/i + 1/k : k ∈ N, k ≥ i2}. The set X is endowed with the
discrete topology τ. Let G be the usual convergence method. Then every subset of X is G-open. Thus X is
a G-topological space.

Let Y be the set X endowed with the following topology µ [8].
(a) Each point of the form 1/i + 1/ j is isolated.
(b) Each neighborhood of each point of the form 1/i contains a set of the form {1/i} ∪ {1/i + 1/k : k ≥ j},

where each j ≥ i2.
(c) Each neighborhood of the point 0 contains a set obtained from Y by removing a finite number of Yi’s

and a finite number of points of the form 1/i + 1/ j in all the remaining Yi’s.
Then Y is a G-sequential space [8]. Let f : X → Y be the identity. Then f preserves G-convergence,

thus it is G-continuous. If f is G-quotient, then every subset of Y is G-open, thus every subset of Y is open,
because Y is G-sequential. Hence, Y is discrete, which is a contradiction. This implies that the mapping f
is not G-quotient.

It is easy to see that τ f ,G is the discrete topology of the set Y. The topology µ of Y is not the largest
topology of Y that makes f preserve G-convergence or be G-continuous.

4. Conclusions

In this paper, we discuss the topology of G-quotient spaces, and study the following problem [10, a
part of Question 1.4]: how to characterize the largest topology of the range that makes the mapping be
G-continuous?

In general, the discrete topology is the largest topology of a G-quotient space that makes the mapping
be G-continuous. Suppose that every open subset of a topological space is always G-open in the space,
we introduce the G-open topologies τG and τ f ,G, and obtain the following result: Let G be a method on
sets X and Y. Suppose that (X, τ) is a G-topological space and f : X → Y is a surjective mapping, then
f : (X, τ) → (Y, τ f ,G) is a G-quotient mapping if and only if τ f ,G is the largest topology of Y that makes
f : (X, τ)→ Y be G-continuous.

We will continue to study the following question [10, another part of Question 1.4]: how to characterize
the largest topology of the range that makes the mapping preserve G-convergence?
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Finally, in this paper we assume that G is a method of sets X and Y. As a more detailed discussion, we
can further assume that G1 and G2 are methods of sets X and Y, respectively, and study some properties of
(G1,G2)-quotient spaces [4]. Here, we will not continue to discuss this topic.
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