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The hyperbolic mate of an oval
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Abstract. The hyperbolic mate Ch of an Euclidean oval C is introduced and studied. This new curve in
the Lorentz plane resembles a spacelike curve. Here, we concentrate on the curvature of Ch and provide
various examples.

Introduction

The enormous influence of convexity in practically every area of mathematics is widely known. We
highlight the concept of convex curve by limiting the discussion to geometry, specifically Euclidean plane
geometry. As an illustration, the recent book [1] includes a whole chapter, namely chapter 6, devoted to
this topic.

This brief note attempts to correlate a second curve, Ch, which is thought to be spacelike in the Lorentzian
plane geometry, to a given particular convex curve C, referred to as oval. The support function defining C
serves as the foundation for the full analysis of this pair of curves. More specifically, we concentrate on the
curvature, which is the only differential invariant for both settings.

These are the contents. The differential (and integral) geometry of the ovals is reviewed in the first
part. Our new idea of hyperbolic mate of the given oval C is presented in the next section. It is important to
note that, apart from the pair (C,Ch), there exists another curve P that is naturally connected to the support
function p of G. In fact, we study three curves. We focus on a few cases after calculating the hyperbolic
curvature of Ch and the Euclidean curvature of P. We point out that certain calculations require software,
and we make use of Wolfram Alpha.
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1. The differential geometry of Euclidean ovals

A brief overview of the differential geometry of ovals is given in the first part. The Euclidean vector
space E2 := (R2, ⟨·, ·⟩) is hence the initial setting with the canonical inner product defined as follows:

⟨u, v⟩ = x1y1 + x2y2, u = (x1, x2) ∈ R2, v = (y1, y2) ∈ R2, 0 ≤ ∥u∥2 = ⟨u,u⟩. (1.1)

Fix an open interval I ⊆ R and consider a regular parametrized curve C ⊂ E2 given by the equation:

C : r(t) = (x(t), y(t)), r ∈ C∞, ∥r′(t)∥ > 0, t ∈ I. (1.2)

Remember that C will be referred to as oval if it is closed, simple, and strictly convex. A smooth support
function

p : I = [0,L > 0]→ R

provides it and has the following properties:

p(0) = p(L), p(t) + p′′(t) > 0, t ∈ I (1.3)

through the relations:(
x(t)
y(t)

)
:= R(t) ·

(
p(t)
p′(t)

)
, R(t) :=

(
cos t − sin t
sin t cos t

)
∈ SO(2) = S1, ∥r(t)∥2 = (p(t))2 + (p′(t))2. (1.4)

We remark that the function
t→ ∥r(t)∥

is exactly the first Legendre transformation of the convex function p. Let F (C) = {T,N} be the Frenet frame
of C and

k : I = [0,L]→ R∗+ = (0,+∞)

be its curvature function. Then, it is well known that these main functions are given by:

p(t) := −⟨r(t),N(t)⟩ ≥ −∥r(t)∥, k(t) :=
1

p(t) + p′′(t)
=

1
∥r′(t)∥

> 0, (1.5)

since:

T(t) = (− sin t, cos t) = ieit, N(t) = iT(t) = −eit = (− cos t,− sin t) (1.6)

which means that the Frenet frame is universal for the set of ovals defined on the same interval I.
There are two famous integral relations in the geometry of ovals:

i) the Cauchy formula, [1, p. 233]:

L =
∫ 2π

0
p(t)dt (1.7)

ii) the Blaschke formula for the areaA(C) enclosed by C, [1, p. 234]:

A(C) =
1
2

∫ 2π

0
[(p(t))2

− (p′(t))2]dt ≤
1
2

∫ 2π

0
∥r(t)∥2dt, 4πA(C) ≤ L2 (1.8)

with equality in the isoperimetric inequality (1.8) provided by the circle.
Remarks 1.1 i) The decomposition of the position vector field r in the Frenet basis is:

r(t) = p′(t)T(t) − p(t)N(t). (1.9)
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A plane curve satisfying [4]

k(t) =
1

∥r′(t)∥
,∀t

is called flat-flow curve. Therefore, any oval is a curve of this type, which accounts for the equality with 2π
of its overall curvature.
ii) A notion of oval in the Minkowski plane is defined in [6, p. 116] using the contact of the given curve with
lines.
iii) An important tool in one-dimensional dynamics is the Fermi-Walker derivative. Let X(C) be the set of
vector fields along the curve C. Then the Fermi-Walker derivative is the map ([4, p. 420])

∇
FW : X(C)→ X(C)

given by

∇
FW(X) :=

d
dt

X + ∥r′(·)∥k[⟨X,N⟩T − ⟨X,T⟩N]. (1.10)

The Frenet frame is conserved by Fermi-Walker:

∇
FW(T) = ∇FW(N) = 0.

For our oval C we derive:

∇
FW(r)(t) = r′(t) − ∥r′(t)∥k(t)[p(t)T(t) + p′(t)N(t)] = p′′(t)T(t) − p′(t)N(t). (1.11)

Hence if we denote by r = Rotation(p), then the curve t→ ∇FW(r)(t) is exactly the curve Rotation(p′). □

2. The spacelike mate of an oval

The second setting of this paper is the Lorentz plane R2
1 := (R2, ⟨·, ·⟩L):

⟨u, v⟩L = −u1v1 + u2v2, u = (u1,u2) ∈ R2, v = (v1, v2) ∈ R2, 0 ≤ ∥u∥2L = |⟨u,u⟩L|. (2.1)

The infinitesimal generator of the Lorentz rotations in R2
1 is the linear vector field:

ξL(u) := u2 ∂

∂u1 + u1 ∂

∂u2 , ξL(u) = j · u = j · (u1 + iu2) (2.2)

where (R2, j), j2 = 1, is the two-dimensional paracomplex algebra [3]. The first integrals of ξL are the
functions: fα(x, y) = α(x2

− y2), α ∈ R.

Fix again an open interval I ⊆ R and consider a spacelike parametrized curve Ch ⊂ R
2 given by:

Ch : rh(t) = (xh(t), yh(t)) = xh(t)ī + yh(t) j̄, ī = (1, 0), j̄ = (0, 1), ⟨r′h(t), r′h(t)⟩L > 0, t ∈ I. (2.3)

The Frenet apparatus of the curve Ch is provided by:
Th(t) =

r′h(t)
∥r′h(t)∥L

, Nh(t) = j · Th(t) = 1
∥r′h(t)∥L

(y′h(t), x′h(t)),
⟨Th(t),Th(t)⟩L = 1 = −⟨Nh(t),Nh(t)⟩L
kL(t) = 1

∥r′h(t)∥L
⟨T′h(t),Nh(t)⟩L = 1

∥r′h(t)∥3L
⟨r′′h (t), jr′h(t)⟩L

kL(t) = 1
∥r′h(t)∥3L

[x′h(t)y′′h (t) − y′h(t)x′′h (t)].

(2.4)

Thus, along Ch, Th is a unit spacelike vector field and along Ch, Nh is a unit timelike vector field. We can
use a 2 × 2 determinant to express the curvature function:

kL(t) =
1

∥r′h(t)∥3L
det

(
x′h(t) y′h(t)
x′′h (t) y′′h (t)

)
(2.5)
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and the difference to the Euclidean curvature consists in the ratio in front of this determinant; in the
Euclidean case is the Euclidean norm ∥r′h(t)∥−3. The Frenet equations can be unified by means of the column

matrix Fh(t) =
(

Th
Nh

)
(t) as:

d
dt
Fh(t) = −∥r′h(t)∥LkL(t)R′L (0)Fh(t), R′L(0) ∈ so(1, 1) (2.6)

with the Lorentz rotation RL(t) ∈ SO(1, 1) given by the symmetric matrices:

RL(t) :=
(

cosh t sinh t
sinh t cosh t

)
, t ∈ R, R−1

L (t) :=
(

cosh t − sinh t
− sinh t cosh t

)
. (2.7)

The Lorentz rotated curve
jC : r j(t) := j · rh(t) = (yh(t), xh(t))

is a timelike curve since
< r′j(t), r

′

j(t) >L= − < r′h(t), r′h(t) >L .

The hyperbolic Fermi-Walker derivative for our spacelike curve is:

∇
FW
h (X) :=

d
dt

X − ∥r′(·)∥LkL[⟨X,Nh⟩LTh − ⟨X,Th⟩LNh] (2.8)

such that
∇

FW
h (Th) = ∇FW

h (Nh) = 0.

Owing to the growing curiosity about the geometry of curves in the Lorentz plane (see, for example, [6]
and [7]), this brief study establishes the hyperbolic mate for the given oval C:

Definition 2.1 The curve Ch is the h-mate of C if its parametrization satisfies:

rh(t) =
(

xh
yh

)
(t) := RL(t)

(
p
p′

)
(t) =

(
p(t) cosh t + p′(t) sinh t
p′(t) cosh t + p(t) sinh t

)
, t ∈ I = [0,L]. (2.9)

Since the derivative of rh is:

r′h(t) =
(
2p′(t) cosh t +

sinh t
k(t)

, 2p′(t) sinh t +
cosh t

k(t)

)
(2.10)

it results:

∥r′h(t)∥2L =
1

k2(t)
− 4(p′(t))2. (2.11)

We will restrict our study to a spacelike Ch provided:

(p + p′′)2 > (2p′)2. (2.12)

It results immediately:

⟨rh(t),Th(t)⟩L =
p′(t)(p′′(t) − p(t))√

(p(t) + p′′(t))2 − (2p′(t))2
, ⟨rh(t),Nh(t)⟩L =

2(p′(t))2
− p(t)(p(t) + p′′(t))√

(p(t) + p′′(t))2 − (2p′(t))2
. (2.13)

Remark 2.2 Using the methodology of [5], we note that C and Ch can be considered as the Euclidean
and hyperbolic deformations, respectively, of the curve

t→ P(t) = (p(t), p′(t)).
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The geometric meaning of the condition (2.12) is that the vector

P(t) + j · P′(t) = (p(t) + p′′(t), 2p′(t))

is timelike.
It is important to note that the timelike vectors Nh(t) and P(t) + j · P′(t) have a strictly positive first

component since the criterion (2.12) implies that they are both positive. There is a unique non-negative
number θ for two positive timelike vectors −→x , −→y such that:

< −→x ,−→y >L= ∥ j
−→x ∥L∥ j

−→y ∥L coshθ,

θ is known as the timelike angle between them. The timelike angle for the pair (Nh(t), P(t)+ j ·P′(t)) is precisely
θ(t) = t. □

Our main theoretical finding is a lengthy but simple computation of the curvature of the spacelike Ch:

Theorem 2.3 i) If p is not a constant then the curve P is a regular one having the Euclidean curvature:

kP(t) =
p′(t)p′′′(t) − (p′′(t))2

[(p′(t))2 + (p′′(t))2]
3
2

. (2.14)

ii) Suppose that the h-mate Ch of the oval C is spacelike. Then its curvature is:

kL(t) =
2p′(t)(3p′(t) + p′′′(t)) − (p(t) + p′′(t))(p(t) + 3p′′(t))

[(p(t) + p′′(t))2 − (2p′(t))2]
3
2

. (2.15)

The inequality (2.12) yields a upper bound:

kL(t) <
2[(p′(t))2 + p′(t)p′′′(t) − p′′(t)(p(t) + p′′(t))]

[(p(t) + p′′(t))2 − (2p′(t))2]
3
2

. (2.16)

The decomposition of the vector field rh in the hyperbolic Frenet frame is:

rh(t) =
p′(t)(p′′(t) − p(t))

∥r′h(t)∥L
Th(t) +

p(t)(p′′(t) + p(t)) − 2(p′(t))2

∥r′h(t)∥L
Nh(t). (2.17)

We focus now on some concrete examples.

Examples 2.4 The circle C(O,R > 0) of Euclidean plane geometry is the oval provided by the constant
support function p ≡ R. Its h-mate is the (part of) equilateral hyperbola He(R) as integral curve of ξL:

He(R) : x2
− y2 = R2, kL ≡ −

1
R = −

1
∥r′h(t)∥L

< 0,
Th(t) = (sinh t, cosh t) = spacelike, Nh(t) = 1

R rh(t) = (cosh t, sinh t), t ∈ [0,L(C) = 2πR]
(RL(u) ◦ rh)(t) = rh(t + u) = (RL(t) ◦ rh)(u), ∇FW

h (rh)(t) = (R + 1)(sinh t, cosh t).
(2.18)

The Euclidean length of this arc of He(R) is:

L(He(R)|[0,L(C)]) = R
∫ 2πR

0

√
cosh(2t)dt (2.19)

and for R = 1 this value is approximately 378.051. The parametrization by arc-length of the complete He(R)
is:

re(s) = R
(
cosh

s
R
, sinh

s
R

)
, s ∈ R. (2.20)
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We note that:
i) the equilateral hyperbola He(R) is called pseudo-circle [6, p. 110] and is denoted H1(−R),
ii) for the initial oval C of the first section we have the formula:

x(t)2
− y(t)2 = −∥r(t)∥2L = [(p(t))2

− (p′(t))2] cos 2t − 2p(t)p′(t) sin 2t. (2.21)

□

Example 2.5 Fix the smooth real function p(t) := r − cos 3t; hence

p(t) = p(t + 2π).

In [2, p. 23], it is proved that if r > 8 then p is the support function of an oval C. With the derivatives:

p′(t) = 3 sin 3t, p′′(t) = 9 cos 3t, p′′′(t) = −27 sin 3t (2.22)

it results in the following curvatures:

kP(t) =
−3

[(sin 3t)2 + 9(cos 3t)2]
3
2

< 0, k(t) =
1

r + 8 cos 3t
, kL(t) = −

108 + r2 + 34r cos 3t + 100(cos 3t)2

[(r + 8 cos 3t)2 − 36(sin 3t)2]
3
2

(2.23)

with kL computed on the sub-interval of [0, 2π] provided by the condition (2.12) which reads as:

(r + 8 cos 3t)2 > (6 sin 3t)2.

The Cauchy and the Blaschke formulae provide the following:

L(C) = 2πr, A(C) = π(r2
− 4) > 60π. (2.24)

For example, if r = 9 then:

kL(t) =
−2[95 + 153 cos 3t + 50(cos 3t)2]

[(9 + 8 cos 3t)2 − 36(sin 3t)2]
3
2

, A(C) = 77π. (2.25)

The integral of the curvature of the oval C(r = 9) is:∫ 2π

0

dt
9 + 8 cos 3t

=
2π
√

17
≃ 1.5239 < 2π. (2.26)

□

Example 2.6 For α ∈ [1,+∞), the 2π-periodic function pα : [0, 2π]→ R∗+ such as

pα(t) :=
1
α

√
α4 cos2 t + sin2 t

is the support function of an ellipse since:

pα(t) + p′′α (t) =
α3

(α4 cos2 t + sin2 t)
3
2

> 0. (2.27)

The condition (2.12) restricts t to the values satisfying:

| sin 2t(α4 cos2 t + sin2 t)| <
α4

α4 − 1
. (2.28)

□
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