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Abstract. In this paper, we study some geometric properties of relativistic magneto-fluid spacetime
admitting Einstein soliton. Here, we expose the nature of soliton when a relativistic magneto-fluid spacetime
andW2-flat relativistic magneto-fluid spacetime and Q-flat relativistic magneto-fluid spacetime satisfying
Einstein field equation. Also we explore magneto-fluid warped product spacetimes that admits magneto-
fluid generalized Robertson-Walker spacetimes and magneto-fluid standard static spacetimes in terms of
Einstein soliton. Finally, we discuss some results on different types of magneto-fluid spacetimes admitting
Einstein soliton.

1. Introduction

In recent years, the Ricci flow have been an engrossing research topic in the area of differential geometry.
The concept of Ricci flow was first introduced by Hamilton and then developed especially to answer
Thurston’s geometric conjecture. A Ricci soliton can be considered as a fixed point of Hamilton’s Ricci
flow (see [17] for further details) and a natural generalization of the Einstein metric (i.e., the Ricci tensor
denoted by Ric is a constant multiple of the pseudo-Riemannian metric 1), defined on a pseudo-Riemannian
manifold (M, 1) by

1
2
LV1 + Ric = Ω1,

where LV denotes the Lie-derivative in the direction of V ∈ X(M), Ric is the Ricci tensor of 1 and Ω is a
constant. The Ricci soliton is said to be shrinking, steady, and expanding according to Ω is negative, zero,
and positive, respectively. Otherwise, it will be called as indefinite. A Ricci soliton is trivial if V is either
zero or Killing on M. In [33] Pigoli et al. considered the soliton constant Ω to be a smooth function on
M and Ricci soliton becomes Ricci almost soliton. After that, Barros et al. studied Ricci almost soliton in
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[9, 10]. In a recent paper [15], Cho-Kimura generalized the notion of Ricci soliton to η-Ricci soliton and
Calin-Crasmareanu studied this concept in Hopf hypersurfaces of complex space forms in [14].

In 2016, Einstein soliton was introduced to the literature by G. Catino and L. Mazzieri (see [12]) which
generates self-similar solutions to the Einstein flow, i.e,

∂1

∂t
= −2

(
S −
R

2
1

)
, (1)

where S is Ricci tensor, 1 is Riemannian metric and R is the scalar curvature.
The equation of the Einstein soliton [7, 36] is given by,

LW1 + 2S + (2Ω − R)1 = 0, (2)

where LW is the Lie derivative along the vector field W, S is the Ricci tensor, R is the scalar curvature of the
Riemannian metric 1, and Ω is a real constant.

Furthermore, it is said to be expanding, steady or shrinking according as Ω ⪌ 0 respectively.

In [1], authors demonstrated that a spacetime can be characterized in terms of its Ricci soliton. Venkatesha
et al. [42] also examined Ricci solitons on perfect fluid space time. Several authors (see [2, 8, 13]) inves-
tigated spacetime with some Ricci soliton extensively in different ways. Very recently, some authors in
(see [19–26, 34, 35]), have studied Ricci soliton and Einstein soliton and their generalizations on contact
and complex manifolds. Also many authors have been investigated the spacetime with the use of different
techniques (see more details [3, 38]). The aim of the current research article is to investigate the solitonic
attributes of relativistic magneto-fluid spacetime (MFS) if its metric is Einstein soliton. Here, we explore
the nature of the soliton if the relativistic magneto-fluid spacetime (MFS) satisfying Einstein field equation
(EFE). We also demonstrate magneto fluid generalized Robertson-Walker spacetimes and magneto-fluid
standard static spacetimes admitting Einstein soliton. With the help of this geometric analysis, we can
find out some physical accomplishments like general relativity, relativistic fluids models and try to scru-
tinize how the spacetime manifold becomes magnetized when certain magnetic properties are present in
connection with solitonic nature.

2. Geometrical behavior of magneto-fluid spacetime(MFS)

In a magneto-fluid spacetime, the magnetic energy momentum tensor (EMT in short) T is of the
following form [30, 31, 41],

T (U,V) = p1(U,V) + (ρ + p)η(U)η(V) + µ
{
H
[
η(U)η(V) +

1
2
1(U,V)

]
− γ(U)γ(V)

}
, (3)

where ρ defines magneto-fluid density, p denotes the pressure, µ defines magnetic permeability, γ is the
magnetic flux and H connotes the strength of magnetic field such that η(U) = 1(U, ξ) and 1(V, ζ) = γ(V) are
two non-zero 1-form. Also, ξ is a unit time-like vector field 1(ξ, ξ) = −1 and ζ is a unit space-like vector
field 1(ζ, ζ) = 1. Therefore, ξ and ζ are orthogonal vector fields carrying out the underlying magneto-fluid
spacetime.
Moreover, EMT of electromagnetism in addition to the scalar field theory is considered as an example of
EMT. Einstein’s gravitational equation with cosmological constant is given by [31, 41],

S(U,V) +
[
λ −
R

2

]
1(U,V) = κT (U,V), (4)

for any vector fields U,V, where λ refers to cosmological constant, κ remits to gravitational constant (that
is sorted out as 8πG, such that G is a universal gravitational constant), S,R denote for the Ricci tensor and
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scalar curvature of the underlying spacetime, respectively.
Einstein’s equation with cosmological constant is used to yield both S and R for the purpose of having
static universe, using Einstein’s idea. In conformity with the current cosmology theories, it is considered
as a candidate of dark energy which escalate the macrocosm diversification.
Now, in view of the identities (3) and (4), we obtain the Einstein’s field equation (EFE) for a MFS as,

S(U,V) =
[
− λ +

R

2
+ κ
(
p +

µH
2

)]
1(U,V) + κ(µH + p + ρ)η(U)η(V) − µκγ(U)γ(V). (5)

Now, we contract (5) to obtain

R = 4λ − κ[(H − 1)µ + 3p − ρ]. (6)

3. Some results on the MFS admitting the Einstein soliton

We contract the identity (2) and using (6), it yields:

Ω = λ −
κ
4

[(H − 1)µ + 3p − ρ] −
divW

4
, (7)

where divW is the divergence of the vector field W.

This leads to the following:

Theorem 3.1. If a relativistic MFS obeying EFE, admits an Einstein soliton (1,W,Ω), then the soliton is expanding,
steady or shrinking according to λ ⪌ κ

4 [(H − 1)µ + 3p − ρ] + divW
4 .

From this theorem, we can also state,

Corollary 3.2. If a relativistic MFS obeying EFE, admits an Einstein soliton (1,W,Ω), then the vector field W is
solenoidal if and only ifΩ = λ − κ

4 [(H − 1)µ + 3p − ρ]. Also the soliton is expanding, steady or shrinking according
to λ ⪌ κ

4 [(H − 1)µ + 3p − ρ]

Using the property of Lie derivative one can write,

(LW1)(X,Y) = 1(∇XW,Y) + 1(∇YW,X). (8)

Then making the use of (5), (6) and (2), the previous identity reads

1(∇XW,Y) + 1(∇YW,X) = −2
[
Ω − λ + κ

(
p +

µH
2

)]
1(X,Y)

− 2κ(µH + p + ρ)η(X)η(Y) + 2µκγ(X)γ(Y). (9)

for any vector fields X,Y.

Supposeθ is a 1-form, which is metrically equivalent to W and is given byθ(X) = 1(X,W) for an arbitrary
vector field X. Then the exterior derivative dθ of θ can be written as:

2(dθ)(X,Y) = 1(∇XW,Y) − 1(∇YW,X). (10)

As dθ is skew-symmetric, so if we define a tensor field F of type (1,1) by,

(dθ)(X,Y) = 1(X,FY), (11)

then F is skew self-adjoint i.e. 1(X,FY) = −1(FX,Y). So (11) can be written as:

(dθ)(X,Y) = −1(FX,Y) (12)
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In view of (12), (10) provides

1(∇XW,Y) − 1(∇YW,X) = −21(FX,Y). (13)

Now we have two identities (13) and (9) side by side and factoring out Y so we find that,

∇XW = −FX −
[
Ω − λ + κ

(
p +

µH
2

)]
X − κ(µH + p + ρ)η(X)ξ + µκγ(X)ζ. (14)

Substituting the above equation in R(X,Y)W = ∇X∇YW − ∇Y∇XW − ∇[X,Y]W, we have,

R(X,Y)W = (∇YF)X − (∇XF)Y
+ κ(µH + p + ρ)[Yη(X) − Xη(Y)] − µκ[Yγ(X) − Xγ(Y)]. (15)

Noting that dθ is closed, we obtain,

1(X, (∇ZF)Y) + 1(Y, (∇XF)Z) + 1(Z, (∇YF)X) = 0. (16)

We take inner product of (15) with respect to Z, it is acquired that

1(R(X,Y)W,Z) = 1((∇YF)X,Z) − 1((∇XF)Y,Z)
+ κ(µH + p + ρ)[1(Y,Z)η(X) − 1(X,Z)η(Y)]
− µκ[1(Y,Z)γ(X) − 1(X,Z)γ(Y)]. (17)

As F is skew self-adjiont, then ∇XF is also skew self-adjiont. Then using (16), (17) takes the form,

1(R(X,Y)W,Z) = κ(µH + p + ρ)[1(Y,Z)η(X) − 1(X,Z)η(Y)]
− µκ[1(Y,Z)γ(X) − 1(X,Z)γ(Y)] − 1(X, (∇ZF)Y). (18)

Now we set X = Z = ei in the above equation, where {ei} is a local orthonormal frame and summing
over i = 1, 2, 3, 4 to obtain,

S(Y,W) = −3κ(µH + p + ρ)η(Y) + 3µκγ(Y) − (divF)Y, (19)

where divF is the divergence of the tensor field F.
Now, we equate the two identities (5) and (19) to get,

(divF)Y = −κ(µH + p + ρ)(3 + η(W))η(Y) + µκ(3 + γ(W))γ(Y)

−

[
λ −

κ
2

(p − ρ − µ)
]
θ(Y). (20)

We compute the covariant derivative of the squared 1-norm of W by using (14), we have the followings,

∇X∥W∥2 = 21(∇XW,W)

− 21(FX,W) − 2
[
Ω − λ + κ

(
p +

µH
2

)]
1(X,W)

− 2κ(µH + p + ρ)η(X)η(W) + 2µκγ(X)γ(W). (21)

From (5), (6), (2) becomes,

(LW1)(X,W)

= −21(FX,W) − 2
[
Ω − λ + κ

(
p +

µH
2

)]
1(X,W) − 2κ(µH + p + ρ)η(X)η(W) + 2µκγ(X)γ(W). (22)

Utilizing the above equation, (21) takes the form,

∇X∥W∥2 + 21(FX,W) − (LW1)(X,W) = 0. (23)

So we can state the following,
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Theorem 3.3. If a relativistic MFS obeying EFE, admits an Einstein soliton (1,W,Ω), then the vector W and its
metric dual 1-form θ satisfies the relations (20) and (23).

In 1970, G. P. Pokhariyal and R. S. Mishra (see [32]) introduced a new curvature tensor and studied its
properties. This (0,4) type tensor in an n-dimensional Riemannian manifold, denoted asW2, is defined by,

W2(X,Y,Z,P) = R̀(X,Y,Z,P) +
1

n − 1
[1(X,Z)S(Y,P) − 1(Y,Z)S(X,P)], (24)

for all vector fields X,Y,Z,P and R̀(X,Y,Z,P) = 1(R(X,Y)Z,P).

Definition 3.4. A spacetime is said to beW2-flat if itsW2-curvature tensor vanishes identically.

Let us assume that we have aW2-flat relativistic MFS that obeys EFE.
Then from equation (24) and the definition ofW2-flat, we have,

R̀(X,Y,Z,P) = −
1
3

[1(X,Z)S(Y,P) − 1(Y,Z)S(X,P)]. (25)

We substitute X = P = ei in the above equation, where ei’s are a local orthonormal frame, summing over
i = 1, 2, 3, 4 to yield

S(Y,Z) =
R

4
1(Y,Z). (26)

Using (26), (2) takes the form,

(LW1)(Y,Z) + (2Ω −
R

2
)1(Y,Z) = 0. (27)

Now if the vector field W is concircular vector field [16], then we know for any smooth function ν,

∇XW = νX, (28)

for all vector fields X.
Using the property of Lie derivative and (28), one can have,

(LW1)(Y,Z) = 2ν1(Y,Z). (29)

Then with the help of the identities (29) and (27), we achieve,

Ω+ ν =
R

4
. (30)

In light of (5), the previous equation becomes,

Ω = λ −
κ
4

[(H − 1)µ + 3p − ρ] − ν. (31)

This leads to the following,

Theorem 3.5. If a W2-flat relativistic MFS obeying EFE admits an Einstein soliton (1,W,Ω), where W is a
concircular vector field, then the soliton is expanding, steady or shrinking according as λ ⪌ κ

4 [(H− 1)µ+ 3p−ρ]+ ν.

In a recent paper [27], Mantica and Suh introduced a new curvature tensor in an n-dimensional Riemannian
manifold which is denoted by Q and defined as

Q(X,Y)Z = R(X,Y)Z −
ψ

(n − 1)
[1(Y,Z)X − 1(X,Z)Y], (32)

where ψ is an arbitrary scalar function. Such a tensor Q is known as Q-curvature tensor.
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Definition 3.6. A spacetime is said to be Q-flat if its Q-curvature tensor vanishes identically.

Let us assume that (M4, 1) be a relativistic MFS, which is Q-flat. Then taking inner product with U in (32),
we get,

R̀(X,Y,Z,U) =
ψ

3
[1(Y,Z)1(X,U) − 1(X,Z)1(Y,U)]. (33)

We substitute X = U = ei in the above equation and taking summation over 1 ≤ i ≤ 4 and then it yields:

S(Y,Z) = ψ1(Y,Z). (34)

This shows that the spacetime is Einstein.
In view of (2), the above equation takes the form,

(LW1)(Y,Z) + (2ψ + 2Ω − R)1(Y,Z) = 0, (35)

Taking Y = Z = ei in the above equation, summing over 1 ≤ i ≤ 4 and using (6), we get,

Ω = 2λ −
κ
2

[(H − 1)µ + 3p + ρ] − ψ −
divW

4
, (36)

where divW is the divergence of the vector field W.

Hence we have,

Theorem 3.7. If a Q-flat relativistic MFS obeying EFE admits an Einstein soliton (1,W,Ω), then the soliton is
expanding, steady or shrinking according as λ ⪌ κ

4 [(H − 1)µ + 3p − ρ] + ψ
2 +

divW
8 .

4. Magneto-fluid warped product spacetimes(MFWPS)

4.1. Magneto-fluid generalized Robertson-Walker spacetimes
(MFGRWS)

We will recall the definition of a generalized Robertson-Walker spacetimes(GRWS). Let (F, 1F) be an
s-dimensional Riemannian manifold and b : I → (0,∞) be a smooth function. Then the (s + 1)-dimensional
product manifold I ×b F furnished with the metric tensor

1 = −dt2
⊕ b21F

is called a GRWS and is denoted by M = I ×b F where I is an open and connected interval in R and
dt2 is the usual Euclidean metric tensor on I. This structure was introduced to extend Robertson-Walker
spacetimes [39, 40] and have been studied by many authors, such as [18, 28, 29]. From now on, ∂

∂t ∈ X(I) is
denoted by ∂t. The following result can be obtained by [31].

Theorem 4.1. Let M = I×b F be a GRWS with the metric tensor 1 = −dt2
⊕ b21F. If ∂t ∈ X(I) and V,W ∈ X(F), then

1. Ric(∂t, ∂t) = −s
b′′

b
2. Ric(∂t,V) = 0
3. Ric(V,W) = RicF(V,W) +

[
bb′′ + (s − 1)(b′)2

]
1F(V,W)

where s = dim(F).
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Let ξ = ∂t be a unit timelike vector field and ζ be a unit spacelike vector field on a GRWS of the form
M = I ×b F with the metric tensor 1 = −dt2

⊕ b21F.
Denote η(U) = 1(U, ξ) and γ(V) = 1(V, ζ) where U and V are vector on M.
By using Equation 5 and Theorem 4.1, we obtain the followings:

−s
b′′

b
= [−λ +

τ
2
+ κ(p +

µH
2

)] + κ(µH + p + ρ), (37)

since η(∂t) = −1 and γ(∂t) = 0.

0 = [−λ +
τ
2
+ κ(p +

µH
2

)] (38)

since η(V) = 0 and γ(V) = 1(V, ζ).
By combining equations 37 and 38, we have:

−s
b′′

b
= κ(µH + p + ρ). (39)

Moreover,

RicF(V,W) +
[
bb′′ + (s − 1)(b′)2

]
1F(V,W) = −s

b′′

b
− µκb41F(U, ζ)1F(V, ζ), (40)

since η(U) = 0 and η(V) = 0.
Using Theorem 9 of [37] and Theorem 3.5, we can state:

Theorem 4.2. Let M = I ×b F be a GRWS with the metric tensor 1 = −dt2
⊕ b21F. Suppose that (M, 1) has

constant sectional curvature K = −(b′)2. If (M, 1) is a relativistic MFS obeying EFE admits an Einstein soliton
(1,W,Ω), where W is a concircular vector field, then the soliton is expanding, steady or shrinking according as
λ ⪌ κ

4 [(H − 1)µ + 3p − ρ] + ν.

Note that under the hypothesis of the last theorem, Equation 39 takes the following form:

κ(µH + p + ρ) = 0 (41)

and Equation 40 becomes:

RicF(V,W) − 2K1F(V,W) = −s
b′′

b
− µκb41F(U, ζ)1F(V, ζ). (42)

4.2. Magneto-fluid standard static spacetimes
(MFSSS)

Let (F, 1F) be an s-dimensional Riemannian manifold and f : F → (0,∞) be a smooth function. Then
recall that a standard static spacetimes (SSS) can be defined as the (s + 1)-dimensional product manifold
f I × F furnished with the metric tensor

1 = − f 2dt2
⊕ 1F

is called a standard static spacetime and is denoted by M = f I × F where I is an open and connected
subinterval in R and dt2 is the usual Euclidean metric tensor on I.

Remark that SSS can be considered as a generalization of the Einstein static universe (see [4–6, 11]) and
many spacetime models that characterize the universe and the solutions of EFE are known to have this
structure. The next result can be obtained by [31].

Theorem 4.3. Let M = f I × F be a SSS with the metric tensor 1 = − f 2dt2
⊕ 1F. If ∂t ∈ X(I) and V,W ∈ X(F), then
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1. Ric(∂t, ∂t) = f∇F( f )
2. Ric(∂t,V) = 0

3. Ric(V,W) = RicF(V,W) −
1
f

HF
f (V,W)

where s = dim(F).

By using Equation 5 and Theorem 4.3, we obtain the followings:

f∇F( f ) = [−λ +
τ
2
+ κ(p +

µH
2

)] + κ(µH + p + ρ) f 2, (43)

since η(∂t) = 1(∂t, (1/ f )∂t) = − f and γ(∂t) = 0.

0 = [−λ +
τ
2
+ κ(p +

µH
2

)] (44)

since η(V) = 0 and γ(∂t) = 0.
By combining equations 43 and 44, we have:

f∇F( f ) = κ(µH + p + ρ) f 2 (45)

Moreover,

RicF(V,W) −
1
f

H f
F(V,W) = −1F(U, ζ)1F(V, ζ) (46)

since η(U) = 0, η(V) = 0 and γ(U) = 1F(U, ζ).
Using Theorem 11 of [37] and Theorem 3.5, we can state:

Theorem 4.4. Let M = f I × F be a SSS with the metric tensor 1 = − f 2dt2
⊕ 1F. Suppose that (F, 1F) is of flat

curvature satisfying H f
F = −(1/3)∆F( f )1F. If (M, 1) is a relativistic MFS obeying EFE admits an Einstein soliton

(1,W,Ω), where W is a concircular vector field, then the soliton is expanding, steady or shrinking according as
λ ⪌ κ

4 [(H − 1)µ + 3p − ρ] + ν.

Note that under the hypothesis of the last theorem, Equation 45 takes the following form:

κ(µH + p + ρ) = 0 (47)

and Equation 46 becomes:

RicF(V,W) +
∆F( f )

3 f
1F(V,W) = −1F(U, ζ)1F(V, ζ). (48)

5. Some different types of magneto-fluid spacetime (MFS)

In this section we discuss some different types of MFS by changing their EMT and find the results when
the MFS obeying the new formed EFE, admits the Einstein soliton.
Now in the equation of EMT i.e. (3), when we put,
• Case-I: p = 0, we have,

T (U,V) = ρη(U)η(V) + µ
{
H
[
η(U)η(V) +

1
2
1(U,V)

]
− γ(U)γ(V)

}
.

Then using the above equation, (4) gives a new EFE, which is,

S(U,V) =
[
− λ +

R

2
+
κµH

2

]
1(U,V) + κ(µH + ρ)η(U)η(V) − µκγ(U)γ(V).
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Hence by tracing the above equation, we get,

R = 4λ − κ[(H − 1)µ − ρ]. (49)

Now contracting (2) and using (49), we obtain,

Ω = λ −
κ
4

[(H − 1)µ − ρ] −
divW

4
,

where divW is the divergence of the vector field W.
Hence we can state:

Theorem 5.1. If a relativistic pressureless MFS obeying EFE, admits an Einstein soliton (1,W,Ω), then the soliton
is expanding, steady or shrinking according to λ ⪌ κ

4 [(H − 1)µ − ρ] + divW
4 .

• Case-II: p + ρ = 0, we have,

T (U,V) = p1(U,V) + µ
{
H
[
η(U)η(V) +

1
2
1(U,V)

]
− γ(U)γ(V)

}
.

Then using the above equation, (4) gives a new EFE, which is,

S(U,V) =
[
− λ +

R

2
+ κ
(
p +

µH
2

)]
1(U,V) + κµHη(U)η(V) − µκγ(U)γ(V).

Hence by tracing the above equation, we get,

R = 4λ − κ[(H − 1)µ + 4p]. (50)

Now contracting (2) and using (50), we obtain,

Ω = λ −
κ
4

[(H − 1)µ + 4p] −
divW

4
,

where divW is the divergence of the vector field W.

Theorem 5.2. Let a relativistic MFS obeying EFE, admit an Einstein soliton (1,W,Ω). If the sum of the pressure and
density of the fluid is zero, then the soliton is expanding, steady or shrinking according to λ ⪌ κ

4 [(H−1)µ+4p]+ divW
4 .

• Case-III: ρ = 3p, we have,

T (U,V) = p1(U,V) + 4pη(U)η(V) (51)

+ µ
{
H
[
η(U)η(V) +

1
2
1(U,V)

]
− γ(U)γ(V)

}
,

Then using the above equation, (4) gives a new EFE, which is,

S(U,V) =
[
− λ +

R

2
+ κ
(
p +

µH
2

)]
1(U,V) + κ(µH + 4p)η(U)η(V) − µκγ(U)γ(V).

Hence by tracing the above equation, we get,

R = 4λ − (H − 1)κµ. (52)

Now contracting (2) and using (52), we obtain,

Ω = λ −
(H − 1)κµ

4
−

divW
4

,

where divW is the divergence of the vector field W.
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Theorem 5.3. Let a relativistic MFS obeying EFE, admit an Einstein soliton (1,W,Ω). If the density of the fluid is
thrice of the pressure, then the soliton is expanding, steady or shrinking according to λ ⪌ (H−1)κµ

4 + divW
4 .

• Case-IV: µ = 0, we have,

T (U,V) = p1(U,V) + (ρ + p)η(U)η(V),

which is the EMT of perfect fluid [43].
Then using the above equation, (4) gives a new EFE, which is,

S(U,V) =
[
− λ +

R

2
+ κp
]
1(U,V) + κ(p + ρ)η(U)η(V).

Hence by tracing the above equation, we get,

R = 4λ − κ
[
3p − ρ]. (53)

Now contracting (2) and using (53), we obtain,

Ω = λ −
κ
4

[
3p − ρ] −

divW
4

,

where divW is the divergence of the vector field W.

Theorem 5.4. Let a relativistic MFS obeying EFE, admit an Einstein soliton (1,W,Ω). If in the fluid, the magnetic
permeability vanishes, then the spacetime reduces to perfect fluid spacetime and the soliton is expanding, steady or
shrinking according to λ ⪌ κ

4

[
3p − ρ] + divW

4 .
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