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On contractions involving an auxiliary mapping and fixed-point results
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Abstract. For a given metric space (M, d), we introduce two classes of mappings F : M → M satisfying
contractions involving an auxiliary mapping S : M × M → M. For each class, we study the existence
and uniqueness of fixed points. Iterative algorithms converging to the fixed points, as well as the size of
the convergence errors, are also provided. For particular choices of the auxiliary mapping S, we recover
the Banach and Kannan fixed-point theorems. Some examples illustrating the obtained results and an
application to cyclic contractions are given.

1. Introduction

Let (M, d) be a metric space. A mapping F : M → M is called a contraction on (M, d), if there exists
κ ∈ [0, 1) such that d(Fu,Fv) ≤ κd(u, v) for every u, v ∈ M. From Banach’s fixed-point theorem [3], if (M, d)
is complete, then any contraction on (M, d) possesses a unique fixed point, and for all u ∈ M, the Picard
sequence {Fnu} converges to this unique fixed point. This theorem is a fundamental result in analysis, and
has several applications in pure and applied mathematics. In particular, it provides a very powerful and
useful tool to the study of existence and uniqueness of solutions for various kinds of equations such as
integral equations, differential equations, partial differential equations, and evolution equations. For some
works related to the applications of Banach’s fixed-point theorem, we refer to [1, 5, 9, 14, 28]. Clearly, being
continuous, is a necessary condition for a mapping F to be a contraction.

In 1968, Kannan [11] introduced the class of mappings F : (M, d)→ (M, d) satisfying

d(Fu,Fv) ≤ κ [d(u,Fu) + d(v,Fv)] (1)

for all u, v ∈ M, where κ ∈ [0, 1/2) is a constant. Kannan proved that, if (M, d) is a complete metric space
and F satisfies (1), then F possesses a unique fixed point, and for all u ∈ M, the Picard sequence {Fnu}
converges to this unique fixed point. Unlike the class of contractions, a mapping F satisfying (1) is not
necessarily continuous. Throughout this paper, any mapping F : (M, d) → (M, d) satisfying (1) is called a
Kannan-contraction. The class of Kannan-contractions plays an important role in metrical fixed point theory.
Indeed, apart from the fact that a Kannan-contraction is not necessarily continuous, the Kannan contraction
principle provides a characterization of the metric completeness (see Subrahmanyam [27]), while the Banach
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contraction principle does not (see Conell [6]). Due to these facts, the establishment of generalizations and
extensions of Kannan’s fixed-point theorem attracted a lot of interest. Some contributions related to
Kannan’s fixed-point theorem can be found in [2, 4, 7, 13, 15–17, 19, 23, 24].

In 2003, Kirk et al. [12] introduced the class of cyclic contractions. Namely, let {Ci}
p
i=1 be a family of

nonempty and closed subsets of a metric space (M, d). A cyclic contraction is a mapping F :
⋃p

i=1 Ci →
⋃p

i=1 Ci
satisfying the following conditions:

(i) F(Ci) ⊂ Ci+1 for all 1 ≤ i ≤ p (with Cp+1 = C1).

(ii) There exists κ ∈ [0, 1) such that
d(Fu,Fv) ≤ κd(u, v)

for all (u, v) ∈ Ci × Ci+1 and 1 ≤ i ≤ p.

It was shown in [12]that, if (M, d) is a complete metric space and F :
⋃p

i=1 Ci →
⋃p

i=1 Ci is a cyclic contraction,
then F possesses a unique fixed point in

⋂p
i=1 Ci. The literature includes numerous generalizations and

extensions of this result. For instance, Pǎcurar and Rus [20] studied the class of cyclic φ-contractions. In
[18], Pǎcurar introduced the class of r-cyclic operators with respect to a covering of a metric space and
investigated their behavior under a Banach-type generalized contraction. Other related contributions can
be found in [1, 8, 10, 21, 22, 25, 26].

In this paper, we study the existence and uniqueness of fixed points for two new classes of mappings
F : (M, d) → (M, d) satisfying contractions involving an auxiliary mapping S : M × M → M. The first
family of mappings includes the class of contractions, while the second one includes the class of Kannan-
contractions. Namely, for particular choices of S, we recover the Banach and Kannan fixed-point theorems.
Our obtained results are supported by examples. Next, an application to cyclic contractions involving an
auxiliary mapping is provided.

The rest of the paper includes three sections. In Section 2, we introduce the class of SB-contractions,
which includes for a special choice of S, the class of contractions. A fixed-point theorem is established
for the introduced mappings. We also provide an example where our obtained result can be used, while
Banach’s fixed-point theorem is inapplicable. In Section 3, we introduce the class of SK-contractions, which
includes for a special choice of S, the class of Kannan-contractions. A fixed-point result for SK-contractions
is established. Next, an example supporting our obtained result is given. We also show that in this example,
Kannan’s fixed point theorem is inapplicable. Finally, in Section 4, we apply our results to the study of
fixed points for cyclic contractions involving an auxiliary mapping.

Throughout this paper, the following notations will be used:

• M denotes an arbitrary nonempty set.

• For a given mapping F : M→M and z ∈M, we set

F0z = z, Fn+1z = F(Fnz), n ≥ 0.

We denote by Fix(F), the set of fixed points of F, that is,

Fix(F) = {z ∈M : Fz = z}.

• For a given mapping S : M ×M→M, we denote by Fix(S), the set of fixed points of S, that is,

Fix(S) = {z ∈M : S(z, z) = z}.

2. The class of SB-contractions

In this section, we are concerned with the study of fixed points for the following class of mappings.
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Definition 2.1. Let (M, d) be a metric space and S : M ×M → M be a given mapping. A mapping F : M → M is
called a SB-contraction, if there exists κ ∈ [0, 1) such that

d(Fx,S(Fx,Fy)) + d(Fy,S(Fx,Fy)) ≤ κ
[
d(x,S(x, y)) + d(y,S(x, y))

]
(2)

for every x, y ∈M.

Remark 2.2. Notice that, if S(u, v) = v for all u, v ∈M, then (2) reduces to

d(Fx,Fy) ≤ κd(x, y)

for every x, y ∈M. Then, a contraction is a SB-contraction with S(u, v) = v.

We have the following fixed-point result.

Theorem 2.3. Let (M, d) be a complete metric space and S : M ×M → M be a given mapping. Assume that the
following conditions hold:

(i) F : M→M is a SB-contraction for some κ ∈ [0, 1).

(ii) For all u, v ∈M, we have
lim
n→∞

d(Fnu, v) = 0 =⇒ lim
n→∞

d(F(Fnu),Fv) = 0.

Then,

(I) For all x0 ∈M, the sequence {Fnx0} converges to a fixed point of F.

(II) F admits a unique fixed point x∗ ∈M.

(III) x∗ ∈ Fix(S).

(IV) For all x0 ∈M and n ≥ 0, we have

d(Fnx0, x∗) ≤
κn

1 − κ
[d(x0,S(x0,Fx0)) + d(Fx0,S(x0,Fx0))] .

Proof. (I). Let x0 ∈M and {xn} be the sequence defined by

xn = Fnx0, n ≥ 0.

Using (2) with (x, y) = (x0, x1), we obtain

d(Fx0,S(Fx0,Fx1)) + d(Fx1,S(Fx0,Fx1)) ≤ κ [d(x0,S(x0, x1)) + d(x1,S(x0, x1))] ,

that is,

d(x1,S(x1, x2)) + d(x2,S(x1, x2)) ≤ κ [d(x0,S(x0, x1)) + d(x1,S(x0, x1))] . (3)

Similarly, using (2) with (x, y) = (x1, x2), we obtain

d(Fx1,S(Fx1,Fx2)) + d(Fx2,S(Fx1,Fx2)) ≤ κ [d(x1,S(x1, x2)) + d(x2,S(x1, x2))] ,

that is,

d(x2,S(x2, x3)) + d(x3,S(x2, x3)) ≤ κ [d(x1,S(x1, x2)) + d(x2,S(x1, x2))] . (4)

Then, combining both inequalities (3) and (4), we obtain

d(x2,S(x2, x3)) + d(x3,S(x2, x3)) ≤ κ2 [d(x0,S(x0, x1)) + d(x1,S(x0, x1))] .
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Continuing in the same way, by induction, we obtain

d(xn,S(xn, xn+1)) + d(xn+1,S(xn, xn+1)) ≤ δ0κ
n, n ≥ 0, (5)

where

δ0 = d(x0,S(x0, x1)) + d(x1,S(x0, x1)). (6)

On the other hand, by the triangle inequality, for all n ≥ 0, we have

d(xn, xn+1) ≤ d(xn,S(xn, xn+1)) + d(xn+1,S(xn, xn+1)). (7)

Then, it follows from (5) and (7) that

d(xn, xn+1) ≤ κnδ0, n ≥ 0,

which implies by the triangle inequality that

d(xn, xn+m) ≤
κn

1 − κ
δ0, n ≥ 0, m ≥ 1. (8)

Since κ ∈ [0, 1), we deduce that {xn} is a Cauchy sequence. Then, due to the completeness of (M, d), there
exists x∗ ∈M such that

lim
n→∞

d(Fnx0, x∗) = 0, (9)

which implies by (ii) that
lim
n→∞

d(Fn+1x0,Fx∗) = lim
n→∞

d(F(Fnx0),Fx∗) = 0.

Hence, by the uniqueness of the limit, we obtain that x∗ ∈ Fix(F). This proves part (I).

(II). From (I), we know that Fix(F) , ∅. We now show that F has a unique fixed point. Indeed, suppose that
x, y ∈ Fix(F). Then, by (2), we have

d(x,S(x, y)) + d(y,S(x, y)) ≤ κ
[
d(x,S(x, y)) + d(y,S(x, y))

]
,

which implies (since κ ∈ [0, 1)) that

d(x,S(x, y)) + d(y,S(x, y)) = 0.

Consequently, we obtain

x = S(x, y) = y, (10)

which proves that F admits a unique fixed point. This proves part (II).

(III). From (I) and (II), we deduce that Fix(F) = {x∗}, where x∗ is given by (9). Notice that due to the
uniqueness of the fixed point, x∗ is independent of the choice of x0. Taking x = y = x∗ in (10), we obtain

x∗ = S(x∗, x∗),

which shows that x∗ ∈ Fix(S). This proves part (III).

(IV). Passing to the limit as m→∞ in (8), using (6) and (9), we obtain (IV).
The proof of Theorem 2.3 is then completed.

Remark 2.4. Notice that, if F : (M, d)→ (M, d) is continuous, then F satisfies condition (ii) of Theorem 2.3.
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Remark 2.5. From Remark 2.2, taking S(u, v) = v in Theorem 2.3, we obtain the Banach fixed-point theorem.

An example illustrating Theorem 2.3 is given below.

Example 2.6. Let M = {x1, x2, x3} and S : M ×M→M be the mapping defined by

S(xi, xi) = xi, S(xi, x j) = S(x j, xi), i, j ∈ {1, 2, 3}

and
S(x1, x2) = x1, S(x1, x3) = x2, S(x2, x3) = x1.

Let d be the metric on M defined by

d(xi, x j) =
{

1 if i , j,
0 if i = j. (11)

We consider the mapping F : M→M defined by

Fx1 = x1, Fx2 = x1, Fx3 = x2.

We claim that for all i, j ∈ {1, 2, 3},

d(Fxi,S(Fxi,Fx j)) + d(Fx j,S(Fxi,Fx j)) ≤
1
2

[
d(xi,S(xi, x j)) + d(x j,S(xi, x j))

]
. (12)

Notice that for all i ∈ {1, 2, 3}, we have

d(Fxi,S(Fxi,Fxi)) + d(Fxi,S(Fxi,Fxi)) = d(Fxi,Fxi) + d(Fxi,Fxi)
= 0,

which shows that (12) holds for all i = j ∈ {1, 2, 3}. On the other hand, due to the symmetry of S, we have just to
show that (12) holds for (i, j) ∈ {(1, 2), (1, 3), (2, 3)}.
Case 1: (i, j) = (1, 2). In this case, we have

d(Fxi,S(Fxi,Fx j)) + d(Fx j,S(Fxi,Fx j)) = d(Fx1,S(Fx1,Fx2)) + d(Fx2,S(Fx1,Fx2))
= d(x1,S(x1, x1)) + d(x1,S(x1, x1))
= d(x1, x1) + d(x1, x1)
= 0,

which shows that (12) holds.
Case 2: (i, j) = (1, 3). In this case, we have

d(Fxi,S(Fxi,Fx j)) + d(Fx j,S(Fxi,Fx j))
d(xi,S(xi, x j)) + d(x j,S(xi, x j))

=
d(Fx1,S(Fx1,Fx3)) + d(Fx3,S(Fx1,Fx3))

d(x1,S(x1, x3)) + d(x3,S(x1, x3))

=
d(x1,S(x1, x2)) + d(x2,S(x1, x2))
d(x1,S(x1, x3)) + d(x3,S(x1, x3))

=
d(x1, x1) + d(x2, x1)
d(x1, x2) + d(x3, x2)

=
1
2
,
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which shows that (12) holds.
Case 3: (i, j) = (2, 3). In this case, we have

d(Fxi,S(Fxi,Fx j)) + d(Fx j,S(Fxi,Fx j))
d(xi,S(xi, x j)) + d(x j,S(xi, x j))

=
d(Fx2,S(Fx2,Fx3)) + d(Fx3,S(Fx2,Fx3))

d(x2,S(x2, x3)) + d(x3,S(x2, x3))

=
d(x1,S(x1, x2)) + d(x2,S(x1, x2))
d(x2,S(x2, x3)) + d(x3,S(x2, x3))

=
d(x1, x1) + d(x2, x1)
d(x2, x1) + d(x3, x1)

=
1
2
,

which shows that (12) holds.
Consequently (12) is satisfied for all i, j ∈ {1, 2, 3}, which shows that F is a SB-contraction with κ = 1/2. On the

other hand, we have
Fix(F) = {x1}, S(x1, x1) = x1,

which confirms Theorem 2.3.
We point out that Banach’s fixed-point theorem is not applicable in this case. Indeed, we have

d(Fx1,Fx3)
d(x1, x3)

=
d(x1, x2)
d(x1, x3)

= 1,

which shows that F is not a contraction.

3. The class of SK-contractions

In this section, we introduce the class of SK-contractions, which includes Kannan-contractions.

Definition 3.1. Let (M, d) be a metric space and S : M ×M → M be a given mapping. A mapping F : M → M is
called a SK-contraction, if there exists 0 ≤ κ < 1

2 such that

d(Fx,S(Fx,Fy))+ d(Fy,S(Fx,Fy)) ≤ κ
[
d(x,S(x,Fx)) + d(Fx,S(x,Fx)) + d(y,S(y,Fy)) + d(Fy,S(y,Fy))

]
(13)

for every x, y ∈M.

Remark 3.2. Notice that, if S(u, v) = u for all u, v ∈ M, then (13) reduces to (1). Then, a Kannan-contraction is a
SK-contraction with S(u, v) = u.

We have the following fixed-point result.

Theorem 3.3. Let (M, d) be a complete metric space and S : M ×M → M be a given mapping. Assume that the
following conditions hold:

(i) F : M→M is a SK-contraction for some 0 ≤ κ < 1
2 .

(ii) S(x, x) = x for all x ∈M.

(iii) For all u, v ∈M, we have
lim
n→∞

d(Fnu, v) = 0 =⇒ lim
n→∞

d(F(Fnu),Fv) = 0.

Then

(I) For all x0 ∈M, the sequence {Fnx0} converges to a fixed point of F.
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(II) F admits a unique fixed point x∗ ∈M.

(III) For all x0 ∈M and n ≥ 0, we have

d(Fnx0, x∗) ≤
λn

1 − λ
[d(x0,S(x0,Fx0)) + d(Fx0,S(x0,Fx0))] ,

where λ = κ
1−κ .

Proof. (I). For x0 ∈M, let {xn} ⊂M be the Picard sequence defined by

xn = Fnx0, n ≥ 0.

Using (13) with (x, y) = (x0, x1), we obtain

d(Fx0,S(Fx0,Fx1)) + d(Fx1,S(Fx0,Fx1))
≤ κ [d(x0,S(x0,Fx0)) + d(Fx0,S(x0,Fx0)) + d(x1,S(x1,Fx1)) + d(Fx1,S(x1,Fx1))] ,

that is,

d(x1,S(x1, x2)) + d(x2,S(x1, x2)) ≤ κ [d(x0,S(x0, x1)) + d(x1,S(x0, x1)) + d(x1,S(x1, x2)) + d(x2,S(x1, x2))] ,

which yields

d(x1,S(x1, x2)) + d(x2,S(x1, x2)) ≤ λ [d(x0,S(x0, x1)) + d(x1,S(x0, x1))] . (14)

Similarly, taking (x, y) = (x1, x2) in (13), we obtain

d(Fx1,S(Fx1,Fx2)) + d(Fx2,S(Fx1,Fx2))
≤ κ [d(x1,S(x1,Fx1)) + d(Fx1,S(x1,Fx1)) + d(x2,S(x2,Fx2)) + d(Fx2,S(x2,Fx2))] ,

that is,

d(x2,S(x2, x3)) + d(x3,S(x2, x3)) ≤ κ [d(x1,S(x1, x2)) + d(x2,S(x1, x2)) + d(x2,S(x2, x3)) + d(x3,S(x2, x3))] ,

which implies that

d(x2,S(x2, x3)) + d(x3,S(x2, x3)) ≤ λ [d(x1,S(x1, x2)) + d(x2,S(x1, x2))] . (15)

Then, it follows from (14) and (15) that

d(x2,S(x2, x3)) + d(x3,S(x2, x3)) ≤ λ2 [d(x0,S(x0, x1)) + d(x1,S(x0, x1))] .

Continuing in the same way, by induction, we obtain

d(xn,S(xn, xn+1)) + d(xn+1,S(xn, xn+1)) ≤ λnδ0, n ≥ 0, (16)

where δ0 is given by (6). On the other hand, by the triangle inequality, we have

d(xn, xn+1) ≤ d(xn,S(xn, xn+1)) + d(xn+1,S(xn, xn+1)), n ≥ 0. (17)

Hence, in view of (16) and (17), it holds that

d(xn, xn+1) ≤ λnδ0, n ≥ 0.

Notice that, since 0 ≤ κ < 1
2 , then 0 ≤ λ < 1. Making use of the triangle inequality, we obtain

d(xn, xn+m) ≤
λn

1 − λ
δ0, n ≥ 0, m ≥ 1, (18)
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which implies that {xn} is a Cauchy sequence in the complete metric space (M, d). Consequently, there exists
x∗ ∈M such that

lim
n→∞

d(Fnx0, x∗) = 0, (19)

which implies by (iii) that x∗ ∈ Fix(F). This proves part (I).

(II). From (I), we know that Fix(F) , ∅. Let us suppose that x, y ∈ Fix(F). Then, making use of (13) and (ii),
we obtain

d(x,S(x, y)) + d(y,S(x, y)) ≤ 2κ
[
d(x,S(x, x)) + d(y,S(y, y))

]
= 2κ

[
d(x, x) + d(y, y)

]
= 0,

which implies that
d(x,S(x, y)) = d(y,S(x, y)) = 0.

Consequently, we have x = y, which proves that F admits a unique fixed point. This proves part (II).

(III). From (I) and (II), we deduce that Fix(F) = {x∗}, where x∗ is given by (19). Passing to the limit as m→∞
in (18) and using (19), we obtain (III).

The proof of Theorem 3.3 is then completed.

Remark 3.4. Taking S(u, v) = u for all u, v ∈M (see Remark 3.2), (13) reduces to

d(Fx,Fy) ≤ κ
[
d(x,Fx) + d(y,Fy)

]
for every x, y ∈ M. Clearly, the mapping S satisfies condition (ii) of Theorem 3.3. Furthermore, for all u, v ∈ M, we
have

d(Fn+1u,Fv) = d(F(Fnu),Fv) ≤ κ
[
d(Fnu,Fn+1u) + d(v,Fv)

]
, n ≥ 0. (20)

So, if
lim
n→∞

d(Fnu, v) = 0,

then passing to the limit as n→∞ in (20), we obtain

d(v,Fv) ≤ κd(v,Fv) ≤
d(v,Fv)

2
,

which yields
d(v,Fv) = 0.

Consequently, we obtain

lim
n→∞

d(F(Fnu),Fv) = lim
n→∞

d(Fn+1u,Fv) = lim
n→∞

d(Fn+1u, v) = 0,

which shows that condition (iii) of Theorem 3.3 is satisfied. Then, Theorem 3.3 includes Kannan’s fixed-point theorem
[11].

An example illustrating Theorem 3.3 is provided below.

Example 3.5. Let M = [0, 1] and d be the standard metric on M, i.e.,

d(x, y) = |x − y|, x, y ∈M.
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We consider the mapping F : M→M defined by

Fx =
 0 if 0 ≤ x < 1,

1
2 if x = 1.

Notice that F is not a Kannan-contraction. Indeed, for (x, y) =
(

1
2 , 1
)
, we have

d(Fx,Fy)
d(x,Fx) + d(y,Fy)

=

∣∣∣0 − 1
2

∣∣∣∣∣∣ 12 − 0
∣∣∣ + ∣∣∣1 − 1

2

∣∣∣ = 1
2
.

So, there is no κ ∈
[
0, 1

2

)
such that

d(Fx,Fy) ≤ κ
[
d(x,Fx) + d(y,Fy)

]
for every x, y ∈M.

We now introduce the mapping S : M ×M→M defined by

S(x, y) =

 x if x = y,

1 − sin
[
π(x+y)

3

]
if x , y.

Clearly, the mapping S satisfies condition (ii) of Theorem 3.3. We claim that

d(Fx,S(Fx,Fy))+ d(Fy,S(Fx,Fy)) ≤
1
3
[
d(x,S(x,Fx)) + d(Fx,S(x,Fx)) + d(y,S(y,Fy)) + d(Fy,S(y,Fy))

]
(21)

for every x, y ∈M. Notice that, if x = y, then

d(Fx,S(Fx,Fy)) + d(Fy,S(Fx,Fy)) = d(Fx,S(Fx,Fx)) + d(Fx,S(Fx,Fx))
= 2d(Fx,Fx)
= 0,

which shows that (21) holds. So, taking into consideration the symmetry of S, we just have to check that (21) is
satisfied for 0 ≤ x < y < 1 and 0 ≤ x < 1, y = 1.
Case 1: 0 ≤ x < y < 1. In this case, we have

d(Fx,S(Fx,Fy)) + d(Fy,S(Fx,Fy)) = d(0,S(0, 0)) + d(0,S(0, 0))
= 2d(0, 0)
= 0,

which shows that (21) holds.
Case 2: 0 ≤ x < 1, y = 1. In this case, we have

d(Fx,S(Fx,Fy)) + d(Fy,S(Fx,Fy)) = d
(
0,S
(
0,

1
2

))
+ d
(1

2
,S
(
0,

1
2

))
= S
(
0,

1
2

)
+

∣∣∣∣∣12 − S
(
0,

1
2

)∣∣∣∣∣
= 1 − sin

(
π
6

)
+

∣∣∣∣∣12 − 1 + sin
(
π
6

)∣∣∣∣∣
=

1
2
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and
d(y,S(y,Fy)) + d(Fy,S(y,Fy)) = d

(
1,S
(
1,

1
2

))
+ d
(1

2
,S
(
1,

1
2

))
=

∣∣∣∣∣1 − S
(
1,

1
2

)∣∣∣∣∣ + ∣∣∣∣∣12 − S
(
1,

1
2

)∣∣∣∣∣
=

∣∣∣∣∣1 − 1 + sin
(
π
2

)∣∣∣∣∣ + ∣∣∣∣∣12 − 1 + sin
(
π
2

)∣∣∣∣∣
=

3
2
.

Consequently, it holds that

d(Fx,S(Fx,Fy)) + d(Fy,S(Fx,Fy))

=
1
3
[
d(y,S(y,Fy)) + d(Fy,S(y,Fy))

]
≤

1
3
[
d(x,S(x,Fx)) + d(Fx,S(x,Fx)) + d(y,S(y,Fy)) + d(Fy,S(y,Fy))

]
,

which shows that (21) holds.
Then, condition (i) of Theorem 3.3 is satisfied with κ = 1

3 .
On the other hand, by the definition of F, for all u ∈M, we have

Fnu = 0, n ≥ 2.

So, if for some v ∈M, we have
lim
n→∞
|Fnu − v| = 0,

then v = 0 and
lim
n→∞
|F(Fnu) − Fv| = |F0 − F0| = 0.

This shows that condition (iii) of Theorem 3.3 is also satisfied.
Consequently, Theorem 3.3 applies. Moreover, 0 is the unique fixed point of F, which confirms Theorem 3.3.

4. Cyclic contractions with an auxiliary mapping

In this section, making use of Theorem 2.3, we establish the existence and uniqueness of fixed points for
the following class of mappings.

Definition 4.1. Let {Ci}
p
i=1 be a family of nonempty and closed subsets of a metric space (M, d). Let

S :
p⋃

i=1

Ci ×

p⋃
i=1

Ci →

p⋃
i=1

Ci

be a given mapping. A mapping

F :
p⋃

i=1

Ci →

p⋃
i=1

Ci

is called a cyclic SB-contraction, if the following conditions hold:

(a) F(Ci) ⊂ Ci+1 for all 1 ≤ i ≤ p (with Cp+1 = C1).

(b) There exists κ ∈ [0, 1) such that for all (x, y) ∈ Ci × Ci+1 and 1 ≤ i ≤ p, we have

d(Fx,S(Fx,Fy)) + d(Fy,S(Fx,Fy)) ≤ κ
[
d(x,S(x, y)) + d(y,S(x, y))

]
.
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We have the following result.

Theorem 4.2. Let {Ci}
p
i=1 be a family of nonempty and closed subsets of a complete metric space (M, d). Let

S :
⋃p

i=1 Ci ×
⋃p

i=1 Ci →
⋃p

i=1 Ci be a given mapping. Assume that

(i) F :
⋃p

i=1 Ci →
⋃p

i=1 Ci is a cyclic SB-contraction for some κ ∈ [0, 1).

Then,
⋂p

i=1 Ci , ∅. Moreover, if

(ii) for all u, v ∈
⋂p

i=1 Ci, we have

lim
n→∞

d(Fnu, v) = 0 =⇒ lim
n→∞

d(F(Fnu),Fv) = 0,

then

(I) F admits a unique fixed point x∗ ∈
⋂p

i=1 Ci.

(II) x∗ ∈ Fix(S).

(III) For all x0 ∈
⋃p

i=1 Ci and n ≥ 0, we have

d(Fnx0, x∗) ≤
κn

1 − κ
[d(x0,S(x0,Fx0)) + d(Fx0,S(x0,Fx0))] (22)

and

d(Fnx0, x∗) ≤ κn [d(x0,S(x0, x∗)) + d(x∗,S(x0, x∗))] . (23)

Proof. Let u0 ∈
⋃p

i=1 Ci and
un = Fnu0, n ≥ 0.

By (a), for every n ≥ 0, there exists 1 ≤ in ≤ p such that (un,un+1) ∈ Cin × Cin+1. Then, making use of (b) with
(x, y) = (u0,u1), we obtain

d(Fu0,S(Fu0,Fu1)) + d(Fu1,S(Fu0,Fu1)) ≤ κ [d(u0,S(u0,u1)) + d(u1,S(u0,u1))] ,

that is,

d(u1,S(u1,u2) + d(u2,S(u1,u2)) ≤ κγ0, (24)

where

γ0 = d(u0,S(u0,u1)) + d(u1,S(u0,u1). (25)

Similarly, making use of (b) with (x, y) = (u1,u2), we obtain

d(u2,S(u2,u3)) + d(u3,S(u2,u3)) ≤ κ [d(u1,S(u1,u2)) + d(u2,S(u1,u2))] ,

which implies by (24) that
d(u2,S(u2,u3)) + d(u3,S(u2,u3)) ≤ κ2γ0.

Continuing in the same way, we obtain

d(un,S(un,un+1)) + d(un+1,S(un,un+1)) ≤ κnγ0, n ≥ 0,

which implies by the triangle inequality that

d(un,un+1) ≤ κnγ0, n ≥ 0. (26)
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Consequently, {un} is a Cauchy sequence in
(⋃p

i=1 Ci, d
)
. On the other hand, since

⋃p
i=1 Ci is a closed subset

of the complete metric space (M, d), then
(⋃p

i=1 Ci, d
)

is a complete metric space. Therefore, there exists
u∗ ∈
⋃p

i=1 Ci such that

lim
n→∞

d(un,u∗) = 0. (27)

Furthermore, by (a), for all 1 ≤ i ≤ p, there exists a subsequence {uφi(n)} of {un} such that {uφi(n)} ⊂ Ci. Then,
in view of (27), we obtain

lim
n→∞

d(uφi(n),u∗) = 0

for all 1 ≤ i ≤ p. Since Ci is closed for all 1 ≤ i ≤ p, we deduce that

u∗ ∈
p⋂

i=1

Ci,

which shows that
⋂p

i=1 Ci , ∅. Moreover, by (a), we have

F

 p⋂
i=1

Ci

 ⊂ p⋂
i=1

Ci.

(I)-(II). Assume now that (ii) holds. Let us consider the mapping

F|⋂p
i=1 Ci

:
p⋂

i=1

Ci →

p⋂
i=1

Ci.

Clearly, the mapping F|⋂p
i=1 Ci

satisfies the assumptions of Theorem 2.3. Consequently, F|⋂p
i=1 Ci

admits a
unique fixed point x∗ ∈

⋂p
i=1 Ci and x∗ ∈ Fix(S), which proves parts (I) and (II).

(III). We now take an arbitrary element x0 ∈
⋃p

i=1 Ci. Since x∗ ∈
⋂p

i=1 Ci, there exists some 1 ≤ j ≤ p such that
(x0, x∗) ∈ C j × C j+1. Then, using (b) with (x, y) = (x0, x∗), we obtain

d(Fx0,S(Fx0,Fx∗)) + d(Fx∗,S(Fx0,Fx∗)) ≤ κ [d(x0,S(x0, x∗)) + d(x∗,S(x0, x∗))] ,

that is (since x∗ ∈ Fix(F)),

d(Fx0,S(Fx0, x∗)) + d(x∗,S(Fx0, x∗)) ≤ κ [d(x0,S(x0, x∗)) + d(x∗,S(x0, x∗))] . (28)

Similarly, there exists some 1 ≤ k ≤ p such that (Fx0, x∗) ∈ Ck × Ck+1. Then, using (b) with (x, y) = (Fx0, x∗),
we obtain

d(F(Fx0),S(F(Fx0),Fx∗)) + d(Fx∗,S(F(Fx0),Fx∗)) ≤ κ [d(Fx0,S(Fx0, x∗)) + d(x∗,S(Fx0, x∗))] ,

that is,
d(F2x0,S(F2x0, x∗)) + d(x∗,S(F2x0, x∗)) ≤ κ [d(Fx0,S(Fx0, x∗)) + d(x∗,S(Fx0, x∗))] ,

which implies by (28) that

d(F2x0,S(F2x0, x∗)) + d(x∗,S(F2x0, x∗)) ≤ κ2 [d(x0,S(x0, x∗)) + d(x∗,S(x0, x∗))] .

Continuing this process, we obtain by induction that

d(Fnx0,S(Fnx0, x∗)) + d(x∗,S(Fnx0, x∗)) ≤ κn [d(x0,S(x0, x∗)) + d(x∗,S(x0, x∗))] , n ≥ 0,
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which implies by the triangle inequality that

d(Fnx0, x∗) ≤ κn [d(x0,S(x0, x∗)) + d(x∗,S(x0, x∗))] , n ≥ 0,

which proves (23) and that

lim
n→∞

d(Fnx0, x∗) = 0. (29)

On the other hand, using (26) with u0 = x0, we get thanks to the triangle inequality that

d(Fnx0,Fn+mx0) ≤
κn

1 − κ
[d(x0,S(x0,Fx0)) + d(Fx0,S(x0,Fx0))] , n ≥ 0, m ≥ 1,

which implies by passing to the limit as m→∞ and using (29) that

d(Fnx0, x∗) ≤
κn

1 − κ
[d(x0,S(x0,Fx0)) + d(Fx0,S(x0,Fx0))] , n ≥ 0.

This proves (22). Thus, part (III) is proved.
The proof of Theorem 4.2 is then completed.

Remark 4.3. Taking S(u, v) = v in Theorem 4.2, we obtain the fixed-point result due to Kirk et al. [12].

References

[1] P. Agarwal, M. Jleli, B. Samet, Fixed Point Theory in Metric Spaces: Recent Advances and Applications, Springer, Singapore, 2018.
[2] L. Balog, V. Berinde, Fixed point theorems for nonself Kannan type contractions in Banach spaces endowed with a graph, Carpathian J.

Math. 32 (2016), 293–302.
[3] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund Math. 3 (1922), 133–181.
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[22] A. Petruşel, G. Petruşel, Fixed points, coupled fixed points and best proximity points for cyclic operators, J. Nonlinear Convex Anal. 20

(2019), 1637–1646.
[23] S. Reich, Kannan’s fixed point theorem, Boll. Un. Mat. Ital. 4 (1971), 1–11.
[24] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull. 14 (1971), 121–24.
[25] I.A. Rus, Cyclic representations and fixed points, Ann. T. Popoviciu Seminar Funct. Eq. Approx. Convexity. 3 (2005), 171–178.
[26] I.A. Rus, Set-theoretical aspects of the fixed point theory: Some examples, Carpathian J. Math. 37 (2021), 235–258.
[27] P.V. Subrahmanyam, Remarks on some fixed-point theorems related to Banach’s contraction principle, J. Math. Phys. Sci. 8 (1974),

445–457.
[28] X. Zhou, C. Xu, Well-posedness of a kind of nonlinear coupled system of fractional differential equations, Sci. China Math. 59 (2016),

1209–1220.


