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Abstract. We investigate sums of exceptional units in a quaternion ring H(R) over a finite commutative
ring R. We prove that in order to find the number of representations of an element in H(R) as a sum of k
exceptional units for some integer k ≥ 2, we can limit ourselves to studying the quaternion rings over local
rings. For a local ring R of even order, we find the number of representations of an element of H(R) as a
sum of k exceptional units for any integer k ≥ 2. For a local ring R of odd order, we find either the number
or the bounds for the number of representations of an element of H(R) as a sum of 2 exceptional units.

1. Introduction

Much research has been devoted to studying sums of units in a ring in recent times. For example, it has
been proved in [10] that every element of an Artinian ring can be expressed as the sum of two units if and
only if the factor ring over the Jacobson radical does not contain a summand isomorphic to the field with
two elements.

Furthermore, in 1969, Nagell [16] introduced the concept of an exceptional unit - the unit u ∈ R is called
exceptional if the element 1 − u ∈ R is also a unit in R. It turns out that exceptional units are important
for studying Diophantine equations, since the solutions of many Diophantine equations can be reduced
to the solution of the equation ax + by = 1, where x and y are units, so one has to find the exceptional
units in the case when a = b = 1. The importance of the exceptional units also surfaces when studying
certain cubic Diophantine equations [16], Thue equations [22], Thue-Mahler equations [23] and discriminant
form equations [19]. Furthermore, exceptional units also have connections with cyclic resultants [20, 21],
Euclidean number fields [9, 11, 12] and Lehmer’s conjecture related to Mahler’s measure [17, 18].

The sums of exceptional units in a ring have also been studied recently. Let φk(R, c) denote the number
of representations of c ∈ R as a sum of k exceptional units in a ring R. In [24], the authors proved a formula
for φk(Zn, c) where Zn denotes the ring of integers modulo n, Miguel [14] found the number φk(R, c) for
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an arbitrary finite commutative ring R, while in [6] the number φk(R, c) has been studied in the setting of
noncommutative rings.

Set

H(R) = {r1 + r2i + r3 j + r4k : ri ∈ R} = R ⊕ Ri ⊕ Rj ⊕ Rk,

where i2 = j2 = k2 = i jk = −1, and i j = − ji. Then, with the componentwise addition, multiplication subject
to the given relations, and the convention that i, j, k commute with R elementwise, H(R) is a ring called
the quaternion ring over R, which is a generalization of the Hamilton’s division ring of real quaternions
H = H(R). Quaternion rings and their properties have also been quite heavily studied recently. For
example, in [1, 2] the authors investigated the ring H(Zp) for a prime number p, while in [13], the number of
idempotents and the number of zero-divisors in H(Zp) were found. In [7], the structure of superderivations
of the quaternion rings over some special Z2-graded rings was determined, while in [8] the authors
described the form of some mappings on quaternion rings. Finally, in [4], the structure of the ring H(R) was
described.

In this paper, we investigate the sums of exceptional units in a quaternion ring over a finite commutative
ring. In the next section, we gather the definitions and known results that we shall use throughout the
paper. We prove that in order to find the number of representations of an element in H(R) as a sum of k
exceptional units, we can limit ourselves to studying the quaternion rings over local rings (see Theorem
2.5). Thereby, in Section 3, we study the quaternion rings over finite commutative local rings of even orders.
We find the number of representations of any element as a sum of k exceptional units for any integer k ≥ 2
(see Theorem 3.4). In Section 4, we turn our attention to the quaternion rings over finite commutative local
rings of odd orders. It turns out that the problem is much more complex in this case. However, we do
manage to find the number of representations of many elements as a sum of 2 exceptional units, and we
find the bounds for this number in the remaining cases (see Theorem 4.9). We manage to achieve this by
utilizing the isomorphism between the quaternion ring and the ring of 2 × 2 matrices over the factor field,
and studying the properties of sumsets of exceptional units in the matrix case.

2. Preliminaries

Let R be a ring (with identity). We shall denote its Jacobson radical by J = J(R). A ring R is called local
if R/J is a division ring. We denote the multiplicative group of units of R by R∗ and we let |A| stand for the
order of any finite set A. We write R∗∗ for the set of all exceptional units of R. For any integer k ≥ 2 and any
c ∈ R, we define φk(R, c) to be the number of representations of c as the sum of k exceptional units of R, i.e.,

φk(R, c) = |{(x1, . . . , xk) ∈ (R∗∗)k : x1 + · · · + xk = c}|.

We will denote the ring of 2 × 2 matrices over a field F by M2(F) and the group of invertible matrices
therein by GL2(F). The identity matrix in M2(F) will be denoted by I, the spectrum of a matrix A will be
denoted by Spec(A) and the centralizer of an invertible matrix A will be denoted by CGL2(F)(A). For a matrix
A ∈ M2(F) we will denote its entry at position (i, j) by Ai j. Finally, the finite field of order q will be denoted
by GF(q) and the characteristic of a field F will be denoted by char F.

In [3], the following theorem has been stated.

Theorem 2.1. [3, Theorem 3.10] Let F be a (not necessarily finite) field whose characteristic is an odd prime number
and let R be an algebra over F. Then

H(R) �M2(R).

Also, in [4], Cheraghpour et al. proved the following theorem:

Theorem 2.2. [4, Theorem 3.6] Let R be a ring with 2−1
∈ R. Then

J(H(R)) = H(J(R)).
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Dolžan, in [6], proved the following:

Corollary 2.3. [6, Corollary 2.3] Let R be a finite ring with Jacobson radical J(R). Choose c ∈ R and k ≥ 2. Then

φk(R, c) = |J(R)|k−1φk(R/J(R), c),

where c = c + J(R).

The following lemma states that we may only consider the sums of exceptional units in directly inde-
composable rings.

Lemma 2.4. [14, Lemma 2] Let R � R1 ⊕ · · · ⊕Rt be the decomposition of ring R into a direct sum of local rings. Let
ψ : R→ R1 ⊕ · · · ⊕ Rt be an isomorphism. If c ∈ R and ψ(c) = (c1, . . . , ct), then

φk(R, c) =
t∏

i=1

φk(Ri, ci).

Since any finite commutative ring can be decomposed into a finite direct sum of finite commutative
local rings, we have the following result.

Theorem 2.5. Let k ≥ 2 be an integer and let R be a finite commutative ring, where R � R1 ⊕ · · · ⊕ Rt is the
decomposition of R into finite local commutative rings R1, . . . ,Rt. Then for any c ∈ H(R) we have

φk(H(R), c) =
t∏

i=1

φk(H(Ri), ci),

where ψ : H(R)→ H(R1) ⊕ · · · ⊕H(Rt) defined by ψ(c) = (c1, . . . , ct) is a ring isomorphism.

Proof. Since R � R1 ⊕ · · · ⊕ Rt, then it can be easily seen that H(R) � H(R1) ⊕ · · · ⊕ H(Rt). The rest follows
from Lemma 2.4.

This now implies that we can limit ourselves to studying finite local commutative rings. In the next
section, we shall investigate the local rings of even order, while the final section deals with the local rings
of odd order.

3. Rings of even order

It is well known that a finite local ring has order pt for some prime p and integer t. In this section, we
examine the case when R is a finite commutative local ring of order of a power of 2. We have the following
lemma, which generalizes Theorem 4.4 from [4].

Lemma 3.1. Let R be a finite commutative local ring such that 2 is a zero-divisor. Then H(R) is a local ring with
J(H(R)) = {x1 + x2i + x3 j + x4k : x1 + x2 + x3 + x4 ∈ J(R)}.

Proof. Since 2 is a zero-divisor in R, we have 2 ∈ J(R). Let us firstly prove that x = x1 + x2i + x3 j + x4k is a
zero-divisor in H(R) if and only if x2

1 + x2
2 + x2

3 + x2
4 ∈ J(R).

Let x = x1 + x2i + x3 j + x4k be a zero-divisor in H(R). Then there exists y = y1 + y2i + y3 j + y4k in H(R)
such that xy = 0 or yx = 0. If xy = 0, then xxyy = 0, where x = x1 − x2i− x3 j− x4k and y = y1 − y2i− y3 j− y4k.
So, (x2

1 + x2
2 + x2

3 + x2
4)(y2

1 + y2
2 + y2

3 + y2
4) = 0. Therefore x2

1 + x2
2 + x2

3 + x2
4 is a zero-divisor in R. Since R is local,

then x2
1 + x2

2 + x2
3 + x2

4 ∈ J(R). The case yx = 0 can be done in a similar way.
Now, let x2

1 + x2
2 + x2

3 + x2
4 ∈ J(R). Then x2

1 + x2
2 + x2

3 + x2
4 is a zero-divisor in R. So, there exists y ∈ R such

that (x2
1 + x2

2 + x2
3 + x2

4)y = 0. Therefore (x1 + x2i+ x3 j+ x4k)(x1 − x2i− x3 j− x4k)y = 0, which implies that either
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x1 + x2i + x3 j + x4k is a zero-divisor in H(R) or xy = 0, but then also xy = 0, so x is indeed a zero-divisor in
H(R).

Now, choose two zero-divisors x = x1 + x2i+ x3 j+ x4k, y = y1 + y2i+ y3 j+ y4k in H(R). Then x2
1 + x2

2 + x2
3 +

x2
4, y

2
1+ y2

2+ y2
3+ y2

4 ∈ J(R), so (x1+ y1)2+ (x2+ y2)2+ (x3+ y3)2+ (x4+ y4)2 = x2
1+x2

2+x2
3+x2

4+ y2
1+ y2

2+ y2
3+ y2

4−

2(x1y1 + x2y2 + x3y3 + x4y4) ∈ J(R) since R is commutative. Therefore x+ y is a zero-divisor in H(R). We have
therefore proved that the set of zero-divisors in H(R) is closed under addition, which is equivalent to the fact
that H(R) is a local ring. This further implies that J(H(R)) = {x1+x2i+x3 j+x4k : x2

1+x2
2+x2

3+x2
4 ∈ J(R)}. Since

R is commutative, so x2
1+x2

2+x2
3+x2

4 = (x1+x2+x3+x4)2
−2(x1x2+x1x3+x1x4+x2x3+x2x4+x3x4). Since 2 ∈ J(R),

this implies that x2
1+x2

2+x2
3+x2

4 ∈ J(R) if and only if (x1+x2+x3+x4)2
∈ J(R). Furthermore, J(R) is a maximal

ideal, and hence a prime ideal in R. So (x1 + x2 + x3 + x4)2
∈ J(R) if and only if x1 + x2 + x3 + x4 ∈ J(R).

We shall need the following lemmas.

Lemma 3.2. Let k be an integer. Then
∑
⌊k/2⌋
i=0

( k
2i
)
=

∑⌊(k−1)/2⌋
i=0

( k
2i+1

)
= 2k−1.

Proof. We get this easily by either adding or subtracting the summands in 2k = (1 + 1)k =
∑k

i=0
(k

i
)

and
0 = (1 − 1)k =

∑k
i=0(−1)i(k

i
)
.

Lemma 3.3. Let k ≥ 2 be an integer and F = GF(2r) for some integer r. Then for any c ∈ F we have

φk(F, c) =

 (−1)k

2r

(
2r+k−1

− 2k + (2 − 2r)k
)
, if c = 0 or c = 1,

(−1)k

2r

(
−2k + (2 − 2r)k

)
, otherwise.

Proof. Theorem 1 from [14] shows that φk(F, c) = (−1)k

2r

2r
k∑

j=0
c=η( j)

(k
j
)
− 2k + (2 − 2r)k

, where η : Z→ F is defined

by η( j) = j · 1. Therefore, if c = 0 or c = 1, we have by Lemma 3.2 that φk(F, c) = (−1)k

2r

(
2r+k−1

− 2k + (2 − 2r)k
)
.

For all other c ∈ F, we have φk(F, c) = (−1)k

2r

(
−2k + (2 − 2r)k

)
.

Now, we have the following theorem, which is the main result of this section.

Theorem 3.4. Let k ≥ 2 be an integer and let R be a finite commutative local ring with 2nr elements for some integers
n, r such that R/J(R) is a field with 2r elements. Then for any c = x1 + x2i + x3 j + x4k ∈ H(R) we have

φk(H(R), c) =


(−1)k2(4nk−4n−k)r

(
2r+k−1

− 2k + (2 − 2r)k
)
, if

x1 + x2 + x3 + x4 ∈ {0, 1} mod J(R),
(−1)k2(4nk−4n−k)r

(
−2k + (2 − 2r)k

)
, otherwise.

Proof. We know that H(R) is a local ring by Lemma 3.1. Furthermore, J(H(R)) = {x1 + x2i + x3 j + x4k :
x1 + x2 + x3 + x4 ∈ J(R)}, so |J(H(R))| = |R|3|J(R)|. Since |J(R)| = 2(n−1)r, we have |J(H(R))| = 23nr+(n−1)r = 2(4n−1)r.
Note that F = H(R)/J(H(R)) is a finite field isomorphic to GF(2r). By Corollary 2.3, we then get φk(H(R), c) =
|J(H(R))|k−1φk(F, c) = 2(4n−1)(k−1)rφk(F, c), where c = c + J(H(R)). Observe that c = 0 if and only if c ∈ J(H(R)),
which is equivalent to the fact that x1 + x2 + x3 + x4 ∈ J(R) by the above. Similarly, c = 1 if and only if
1 + x1 + x2 + x3 + x4 ∈ J(R). Lemma 3.3 now proves the assertion.
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4. Rings of odd order

In this section, we examine the case when R is a finite commutative local ring of an odd order. It turns out
that the situation in this case is somewhat more complicated.

In view of Theorem 2.1, we have to investigate the problem in M2(F) for a finite field F of an odd order.
We can immediately establish the following bound.

Lemma 4.1. Let F be a finite field of an odd order q. If q ≥ 9 then φ2(M2(F),C) ≥ q4
− 8q3 for any C ∈M2(F).

Proof. Choose C ∈ M2(F) and x, y, z ∈ F and define A =
(
x y
z 0

)
∈ M2(F). Then (A + λI) + (C − A − λI) = C.

Denote Spec(A) = {a1, a2} and Spec(C−A) = {b1, b2}. (Note that Spec(A) and Spec(C−A) are in general subsets
of some field extension K over F.) Denote X = (− Spec(A))∪ (− Spec(A)+1)∪ (Spec(C−A))∪ (Spec(C−A)+1)
and observe that |X ∩ F| ≤ 8. If λ < X, then (A + λI) + (C − A − λI) = C is a sum of two exceptional units.
Since (A + λI)22 = λ, we see that we get different sums for every λ ∈ F \ X and every x, y, z ∈ F, so
φ2(M2(F),C) ≥ q3(q − 8).

Lemma 4.2. Let R be a ring and c ∈ R. Then

φ2(R, c) = |{(x1, x2) ∈ (R∗∗)2 : x1 + x2 = c}| = |{x ∈ R : x, x − 1, x − c, x + 1 − c ∈ R∗}|.

Proof. Observe that x2 = c − x1 is an exceptional unit, so c − x1 and 1 − (c − x1) are in R∗.

In the following lemmas, we will now try to calculate the number of decompositions into sums of two
exceptional units for different types of two by two matrices.

Lemma 4.3. Let F be a finite field of an odd order q. Then

φ2(M2(F), 0) = q4
− 3q3 + 6q.

Proof. By Lemma 4.2 we need to count the number of matrices A in M2(F) such that A, A + I and A − I are
invertible.

Recall that there exists an invertible matrix B ∈ M2(F) such that A = PBP−1 for some P ∈ M2(F), where

either B =
(
0 b
1 d

)
(b, d + 1 − b, and d − 1 + b are nonzero), or B =

(
a 0
0 a

)
(a, a + 1 and a − 1 are nonzero). In

the first case, we have q2
− 3q + 3 matrices, and in the second case, we have q − 3 matrices. Noting that

P1BP−1
1 = P2BP−1

2 if and only if P−1
2 P1 ∈ CGL2(F)(B), we need to compute |CGL2(F)(B)|, since then the number of

all matrices with the rational form equal to B is equal to |GL2(F)|
|CGL2(F)(B)| . Obviously in the second case, B is central,

so CGL2(F)(B) = GL2(F) and there exist exactly q − 3 matrices A with its rational form being a scalar matrix
and A,A + I,A − I being invertible.

Let us therefore examine the first case. Let C =
(
x y
z w

)
be in CGL2(F)(B). Then C =

(
x bz
z x + dz

)
, where

x2 + xdz− bz2 is nonzero. So, let us examine when x2 + xdz− bz2 = 0. Obviously, if x = 0 then z = 0 and vice
versa. So, assume that z , 0 and denote t = xz−1. Then

t2 + dt − b = 0. (1)

Consider the mapping f : F→ F, defined by f (x) = x2. If f (x) = f (y) then x = y or x = −y, so the fact that F
is of an odd order now yields | Im( f )| = q−1

2 + 1 = q+1
2 . Now, consider the following three cases.

Case 1: Suppose that d2+4b < Im( f ). Then Equation (1) has no solutions, so we get |CGL2(F)(B)| = q2
−1 in

this instance. Using the well known fact that |GL2(F)| = (q2
−1)(q2

−q), this implies that we have |GL2(F)|
q2−1 = q2

−q
different matrices for each choice of b and d such that d2 + 4b < Im( f ). So, how many choices of b and d are
such that d2 + 4b < Im( f )? We can choose any d ∈ F (we have q possibilities). Now consider the mapping
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1d : F → F defined by 1d(b) = d2 + 4b. Since 1d is injective and | Im( f )| = q+1
2 , exactly q − q+1

2 =
q−1

2 choices
of b will give 1d(b) < Im( f ). However, we also have further constraints that b , 0, b , d + 1 and b , 1 − d.
However, b = 0 gives us 1d(b) = d2

∈ Im( f ). Similarly, b = d + 1 yields 1d(b) = (d + 2)2
∈ Im( f ) and b = 1 − d

yields 1d(b) = (d − 2)2
∈ Im( f ), so these three possibilities do not appear here. This implies that we have

q q−1
2 choices for b and d such that d2 + 4b < Im( f ). This yields altogether (q3

− q2)( q−1
2 ) matrices.

Case 2: Suppose that d2 + 4b = 0. Then Equation (1) has a solution t = −2−1d. Note that b , 0 implies
d , 0, so for any of the q choices for x, we have q − 1 choices for z, therefore |CGL2(F)(B)| = q2

− q, yielding
|GL2(F)|

q2−q = q2
− 1 matrices. Observe that b = d + 1 implies that d2 + 4b = (d + 2)2 = 0, so d = −2 and b = −1.

Similarly, b = 1 − d implies that d2 + 4b = (d − 2)2 = 0, so d = 2 and b = −1. Note also that 2 , −2, since F
is a of odd order. Therefore, d ∈ F \ {−2, 0, 2} can be chosen arbitrarily and then b = −4−1d2, giving us q − 3
possibilities for choosing b and d. In this case, we thus have (q − 3)(q2

− 1) matrices.
Case 3: Suppose finally that 0 , d2 + 4b ∈ Im( f ), say d2 + 4b = α2 for some α ∈ F∗. Then Equation

(1) has a solution t = 2−1(−d ± α), so for any choice of non-zero x, we have q − 2 choices for z, giving us
(q − 1) + (q − 1)(q − 2) = (q − 1)2 elements of CGL2(F)(B), thus yielding q(q + 1) matrices in this case. Similar
reasoning as in Case 1 shows that for any d ∈ F exactly q−1

2 choices of b will give 1d(b) = d2 + 4b ∈ Im( f ) \ {0}.
We also have three additional constraints: b , 0, b , d + 1 and b , 1 − d.

Suppose firstly that char F , 3. If d = 0 therefore b , 1 (b , 0 is automatically true since 1d(b) , 0). If
d = ±1 we have b , 0, 2. If d = ±2 then b , 0, 3 (since b = −1 gives 1d(b) = 0 so this case does not appear here).
For all other choices of d, the elements d+1, 1−d and 0 are distinct (and 1d(b) ∈ Im( f )\ {0}when b equals any
of them), so we have q−1

2 −3 choices for b. This means that have exactly ( q−1
2 −1)+4( q−1

2 −2)+ (q−5)( q−1
2 −3) =

q2
−7q+12

2 choices for d and b.
If char F = 3, then we have the following constraints: if d = 0 we have b , 1 (b , 0 is automatically true

since 1d(b) , 0). If d = ±1 we have b , 0 (b = 2 gives 1d(b) = 0, so it does not appear here). For all other
choices of d, the elements d + 1, 1 − d and 0 are distinct (and 1d(b) ∈ Im( f ) \ {0} when b equals any of them),
so we have q−1

2 − 3 choices for b. This means that have exactly 3( q−1
2 − 1) + (q − 3)( q−1

2 − 3) = q2
−7q+12

2 choices
for d and b.

Thus, in Case 3, we have q2
−7q+12

2 q(q + 1) matrices.

So, if we sum it all together, we have (q− 3)+ (q3
− q2)( q−1

2 )+ (q− 3)(q2
− 1)+ q2

−7q+12
2 q(q+ 1) = q4

− 3q3 + 6q
matrices A ∈M2(F) such that A,A − I and A + I are invertible and thus the result is proven.

Lemma 4.4. Let F be a finite field of an odd order q and let C ∈M2(F) be an invertible matrix. Then

φ2(M2(F),C) ≤ q4
− 2q3

− q2 + 3q.

Furthermore, if C = 1, the above inequality becomes an equality.

Proof. Note that A+B = C for exceptional units A and B implies that AC−1+BC−1 = 1. Obviously, AC−1 and
BC−1 are invertible matrices. Since B = A − C is invertible, we see that (C − A)C−1 = 1 − AC−1 is invertible
as well, so AC−1 is an exceptional unit, and of course we can reason similarly for BC−1. Since the mapping
X 7→ XC−1 is a bijection on the set of all invertible matrices, we conclude that φ2(M2(F),C) ≤ φ2(M2(F), 1).
By Lemma 4.2, we know that to find φ2(M2(F), 1) we need to count the number of matrices A in M2(F) such
that A and A − I are invertible, i.e. matrices without 0 and 1 as their eigenvalues. The result now follows
from [15, Corollary 2.1].

Lemma 4.5. Let F be a finite field of an odd order q and let C ∈M2(F) be an idempotent matrix of rank one. Then

φ2(M2(F),C) = q4
− 4q3 + 5q2

− 4q + 4.

Proof. If P ∈ M2(F) is invertible then A ∈ M2(F) is an exceptional unit if and only if PAP−1 is an exceptional

unit. Therefore, φ2(M2(F),C) = φ2(M2(F),PCP−1), so we can assume that C =
(
1 0
0 0

)
. Let A =

(
a b
c d

)
. Then
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C = A + (C − A) is a sum of two exceptional units if and only if the following conditions hold:

ad − bc , 0, (1 − a)(1 − d) − bc , 0,
(1 − a)d + bc , 0 and a(1 + d) − bc , 0.

(2)

Denote t = bc ∈ F. So conditions (2) are equivalent to the fact that

t < {ad, (1 − a)(1 − d), (a − 1)d, a(1 + d)}.

Now, consider the following cases:

1. a = 0; d = 0 or a = 1; d = 0: then t < {0, 1}, so b can be any nonzero element in F and c can be any
nonzero element in F apart from tb−1, which gives us 2(q − 1)(q − 2) choices for A;

2. a = 0; d = 1 or a = 1; d = −1: then t < {0,−1}, so again b can be any nonzero element in F and c can be
any nonzero element in F apart from −tb−1, which gives us another 2(q − 1)(q − 2) matrices A;

3. a = 0; d , 0, 1: then t < {0,−d, 1 − d}, so b can be any nonzero element in F and c can be any nonzero
element in F apart from −db−1 and −(1 + d)b−1, which gives us (q − 1)(q − 2)(q − 3) choices for A;

4. a = 1; d , 0,−1: then t < {0, d, 1 + d}, so b can be any nonzero element in F and we have q − 3 choices
for c ∈ F, which gives us (q − 1)(q − 2)(q − 3) choices for A;

5. d = 0; a = 2−1: then 1 − a = a, so t < {0, a}, yielding (q − 1)(q − 2) choices for A;

6. d = 0; a , 0, 1, 2−1: then 1 − a , a, so t < {0, a, 1 − a}, therefore we have q − 3 choices for a, yielding
together (q − 1)(q − 3)2 choices for A;

7. d = 1; a = −1 or d = −1; a = 2: then t < {0,−1,−2}, therefore we have 2(q − 1)(q − 3) choices for A;

8. d , 0, 1,−1; a = −d: then t < {−d2, 1 − d2,−d2
− d}, and note that this set does not contain 0. Therefore,

we have 2q − 1 choices for b and c such that t = 0 and q − 1 choices for b and q − 4 choices for c such
that t , 0. Since we have q− 3 choices for d, these together give us (q− 3)(2q− 1+ (q− 1)(q− 4)) choices
for A;

9. d , 0, 1,−1; a = 1 − d: then t < {−d2, 1 − d2, d − d2
}. Again, this set does not contain 0, so we have q − 3

choices for d and 2q−1+ (q−1)(q−4) choices for b and c, yielding together (q−3)(2q−1+ (q−1)(q−4))
choices for A;

10. d , 0, 1,−1; 2a = 1 − d: then t < {a − 2a2, 2a − 2a2,−1 + 3a − 2a2
}. Since 2a2

− 3a + 1 = (a − 1)(2a − 1), we
see that this set does not contain zero. Therefore we have q− 3 choices for d, and 2q− 1+ (q− 1)(q− 4)
choices for b and c, yielding together (q − 3)(2q − 1 + (q − 1)(q − 4)) choices for A;

11. d = 1; a , 0, 1,−1: then t < {0, a, a − 1, 2a} therefore we have q − 3 choices for a, q − 1 choices for b and
q − 4 choices for c, yielding together (q − 1)(q − 3)(q − 4) choices for A;

12. d = −1; a , 0, 1, 2: then t < {0,−a, 1 − a, 2 − 2a} therefore we have q − 3 choices for a, q − 1 choices for b
and q − 4 choices for c, yielding together (q − 1)(q − 3)(q − 4) choices for A; and finally

13. d , 0, 1,−1; a , 0, 1, 1−d,−d, 2−1(1−d): then t < {ad, (1−a)(1−d), (a−1)d, a(1+d)} and this set has exactly
4 nonzero elements. Therefore, we have q − 3 choices for d, q − 5 choices for a, 2q − 1 + (q − 1)(q − 5)
choices for b and c, yielding together (q − 3)(q − 5)(2q − 1 + (q − 1)(q − 5)) choices for A.

One can easily verify that all cases are mutually exclusive and all together they cover every possibility.
This gives us q4

− 4q3 + 5q2
− 4q + 4 different matrices A, thus q4

− 4q3 + 5q2
− 4q + 4 different sums of two

exceptional units and the lemma is proven.



H. Cheraghpour, D. Dolžan / Filomat 39:4 (2025), 1301–1310 1308

Lemma 4.6. Let F be a field of order q ≥ 9 and λ ∈ F∗. Then

q − 8
q
φ2(M2(F),C) ≤ φ2(M2(F), λC) ≤

q
q − 8

φ2(M2(F),C).

Proof. Suppose A + B = C for some exceptional units A,B ∈ M2(F). Then (λA − µI) + (λB + µI) = λC for
any µ ∈ F. Denote Spec(A) = {a1, a2} and Spec(B) = {b1, b2} (note that we may of course have a1 = a2
or b1 = b2). Now, Spec(λA − µI) = λ Spec(A) − µ, so λA − µI is an exceptional unit in M2(F) if and
only if µ < {λa1, λa2, λa1 − 1, λa2 − 1}. Similarly, λB + µI is an exceptional unit in M2(F) if and only if
µ < {−λb1,−λb2, 1 − λb1, 1 − λb2}. Since q ≥ 9, there exist at least q − 8 different elements µ ∈ F such that
µ < {λa1, λa2, λa1 − 1, λa2 − 1} ∪ {−λb1,−λb2, 1− λb1, 1− λb2}. This gives us q− 8 different decompositions of
λC into a sum of two exceptional units.

Now, let C = A′ + B′ be another decomposition of C into a sum of two exceptional units A′,B′ ∈ M2(F).
Suppose that the above construction yields the decomposition of λC = (λA′ − µ′I) + (λB′ + µ′I) for some
µ′ ∈ F and assume that this is the same decomposition that we obtained from the decomposition C = A+B,
i.e., λA− µI = λA′ − µ′I and λB+ µI = λB′ + µ′I. This of course happens only if A = A′ + τI and B = B′ − τB
for some τ ∈ F.

Consequently,φ2(M2(F), λC) ≥ q−8
q φ2(M2(F),C). Sinceλ is invertible, we haveφ2(M2(F),C) ≥ q−8

q φ2(M2(F), λC),
so

q − 8
q
φ2(M2(F),C) ≤ φ2(M2(F), λC) ≤

q
q − 8

φ2(M2(F),C).

We now have the following corollary.

Corollary 4.7. Let F be a finite field of an odd order q ≥ 9 and let C ∈ M2(F) be a non-nilpotent matrix of rank one.
Then

q − 8
q

(q4
− 4q3 + 5q2

− 4q + 4) ≤ φ2(M2(F),C) ≤
q

q − 8
(q4
− 4q3 + 5q2

− 4q + 4).

Proof. Since C is a non-nilpotent matrix of rank one, it has two eigenvalues: 0 and some λ ∈ F∗. Therefore,

we can assume that C is similar to matrix
(
λ 0
0 0

)
= λ

(
1 0
0 0

)
. The result now follows from Lemmas 4.5 and

4.6.

Lemma 4.8. Let F be a finite field of an odd order q and let C ∈M2(F) be a nilpotent matrix of rank one. Then

φ2(M2(F),C) = q4
− 4q3 + 3q2 + 2q.

Proof. By choosing a suitable basis, we can assume that C =
(
0 1
0 0

)
. Let A =

(
a b
c d

)
. Then C = A + (C − A)

is a sum of two exceptional units if and only if the following conditions hold:

bc , ad, bc , (1 − a)(1 − d),
(b − 1)c , ad and (b − 1)c , (1 + a)(1 + d).

(3)

Assume first that c = 0. Then b ∈ F and a, d ∈ F \ {−1, 0, 1} all satisfy conditions (3), so we have q(q − 3)2

choices for A in this case.
Assume now that c , 0. Then conditions (3) are equivalent to the fact that

b < {adc−1, (1 − a)(1 − d)c−1, adc−1 + 1, (1 + a)(1 + d)c−1 + 1}.

Now, consider the following cases:
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1. a = 1− d: then b < X = {(1− d)dc−1, (1− d)dc−1 + 1, (2− d)(1+ d)c−1 + 1}. If c = 2 then |X| = 2, so we have
q(q − 2) choices for a, b, c and d. If c , 2 then |X| = 3 and we have q(q − 2)(q − 3) choices for A.

2. a = −1− d: then b < X = {(−d)(1+ d)c−1, (2+ d)(1− d)c−1, (−d)(1+ d)c−1 + 1}. If c = −2 then |X| = 2, so we
have q(q − 2) choices for a, b, c and d. If c , −2 then |X| = 3 and we have q(q − 2)(q − 3) choices for A.

3. c , 2 and a = 1 − c − d: then b < X = {(1 − c − d)dc−1, (c + d)(1 − d)c−1, (2 − c − d)(1 + d)c−1 + 1}. Since
c , 2, we have |X| = 3, so we have q(q − 2)(q − 3) choices for A.

4. c , −2 and a = −1− c− d: then b < X = {(−1− c− d)dc−1, (2+ c+ d)(1− d)c−1, (−1− c− d)dc−1 + 1}. Since
c , −2, we have |X| = 3, so we have q(q − 2)(q − 3) choices for A.

5. c , −2, 2 and 2a + 2d = −c: then b < X = {(2−1c − d)dc−1, (1 − 2−1c + d)dc−1(1 − d)c−1, 2−1c − d)dc−1 + 1}.
We have |X| = 3, so we have q(q − 3)2 choices for A.

6. a < {1 − d,−1 − d, 1 − c − d,−1 − c − d,−2−1c − d}: If c = 2 or c = −2 then |{1 − d,−1 − d, 1 − c −
d,−1 − c − d, 2−1c − d}| = 3, so there are q − 3 choices for a. The fact that c , −2a − 2d implies that
b < X = {adc−1, (1− a)(1− d)c−1, adc−1+ 1, (1+ a)(1+ d)c−1+ 1} and |X| = 4, so there are q− 4 choices for b.
This gives us 2q(q−3)(q−4) choices for A. If c , −2, 2 then |{1−d,−1−d, 1−c−d,−1−c−d,−2−1c−d}| = 5,
so there are q choices for d and q− 5 choices for a. We have |X| = 4, so there are q− 4 choices for b, and
this gives us q(q − 3)(q − 4)(q − 5) choices for A.

Again, all cases are mutually exclusive and together they cover every possibility. This gives us q4
− 4q3 +

3q2 + 2q different sums of two exceptional units and the lemma is proven.

Now, we gather the above results in the following theorem, which is the main result of this section.

Theorem 4.9. Let p > 2 be a prime and let R be a finite commutative local ring of order pnr such that R/J(R) is a
field with pr elements. Let c ∈ H(R) and denote c = c + J(H(R)). Then

φ2(H(R), c) =


p(4n−3)r(p3r

− 3p2r + 6), if c = 0,
p(4n−3)r(p3r

− 2p2r
− pr + 3), if c = 1,

p4(n−1)r(p4r
− 4p3r + 5p2r

− 4pr + 4), if 0, 1 , c is an idempotent,
p(4n−3)r(p3r

− 4p2r + 3pr + 2), if 0 , c is a nilpotent.

If c is invertible, we have φ2(H(R), c) ≤ p(4n−3)r(p3r
− 2p2r

− pr + 3). Furthermore, if pr
≥ 9 then φ2(H(R), c) ≥

p(4n−3)r(p3r
−8) and if additionally c2

= λc for some 0, 1 , λ ∈ F, we haveφ2(H(R), c) ≤ p(4n−3)r

pr−8 (p4r
−4p3r+5p2r

−4pr+4).

Proof. By Theorem 2.2, we have H(R)/J(H(R)) � H(R)/H(J(R)) � H(R/J(R)) � H(F), where F = R/J(R) is a
field with |F| = pr. By Corollary 2.3, we know that we have φ2(H(R), c) = |J(H(R))|φ2(H(R)/J(H(R)), c) =
|J(R)|4φ2(M2(F), ψ(c)) = p4(n−1)rφ2(M2(F), ψ(c)), where ψ denotes the isomorphism from H(F) to M2(F), which
is guaranteed by Theorem 2.1.

If c = 0, then ψ(c) = 0, so Lemma 4.3 now yields φ2(H(R), c) = p4(n−1)r(p4r
− 3p3r + 6pr). On the other

hand, if c ∈ H(R) is invertible, then ψ(c) is invertible as well and Lemma 4.4 tells us that φ2(H(R), c) ≤
p4(n−1)r(p4r

− 2p3r
− p2r + 3pr) and φ2(H(R), c) = p4(n−1)r(p4r

− 2p3r
− p2r + 3pr) if c = 1. Assume now that 0, 1 , c

is an idempotent. By Lemma 4.5, we have φ2(H(R), c) = p4(n−1)r(p4r
− 4p3r + 5p2r

− 4pr + 4). Finally, if 0 , c is
nilpotent, then Lemma 4.8 gives the desired result.

In case pr
≥ 9, the lower bound follows from Lemma 4.1 and the upper bound follows from Corollary

4.7.
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