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Abstract. In this article, we focus on a pair of Górnicki-type mappings T1,T2 ∈ XX, (X, d) being a
metric space, satisfying d(T1x,T2 y) ≤ M[d(x,T2 y) + d(y,T1x) + d(x, y)] for all x, y ∈ X where 0 ≤ M < 1.
The significance of such mappings lies in their broader class compared to contraction and nonexpansive
mappings. Our main focus is on the common fixed point(s) of this pair of Górnicki-type mappings.
Specifically, we establish conditions under which a couple of mappings share fixed points satisfying the
aforementioned inequality. Additionally, we provide several non-trivial examples to validate our results.

1. Introduction

A mapping T ∈ XX where (X, d) is a metric space, is called a (Banach) contraction mapping if there
exists a non-negative constant α < 1 such that d(Tx,Ty) ≤ αd(x, y) for all x, y ∈ X. The notion of contraction
mappings is a fundamental concept in metric fixed point theory. It originated in 1922 through the pioneering
work of Banach, who introduced these mappings. Since then, metric fixed point theory has flourished, with
renowned mathematicians contributing various fixed point results. These results guarantee the existence of
fixed points for mappings that satisfy different types of contraction conditions. Notable references include
works by authors such as Ekeland, Reich, Browder, Nadler, and others (see [1, 3–8, 11, 12, 16–19, 23–25, 25–
28, 30, 31, 33–35, 38, 38–41, 44]).

The subject has rapidly grown and become a major research area in mathematical analysis. The practical
applicability of fixed-point results adds to its allure, making it an active field of study. Researchers are
motivated to generalize and modify contraction mappings, leading to a rich variety of contraction-type
mappings. In many of these conditions, the classical Banach contraction is enhanced by considering
additional displacements, such as d(x,Tx), d(x,Ty) and d(y,Tx), along with the original distances d(x, y) and
d(Tx,Ty). Few of such well-known contractions are listed below:

Definition 1.1. Let (X, d) be a metric space. A mapping T ∈ XX is said to be a
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(a) Kannan contraction mapping if there exists a constant c with 0 ≤ c < 1
2 such that

d(Tx,Ty) ≤ c[d(x,Tx) + d(y,Ty)]

for all x, y ∈ X [25].

(b) Chatterjea contraction mapping if there exists a constant c with 0 ≤ c < 1
2 such that

d(Tx,Ty) ≤ c[d(x,Ty) + d(y,Tx)]

for all x, y ∈ X [10].

(c) Reich contraction if
d(Tx,Ty) ≤ α1d(x, y) + α2d(x,Tx) + α3d(y,Ty)

for all x, y ∈ X, where α1, α2, α3 ∈ R+ with α1 + α2 + α3 < 1 [36].

(d) Ćirić contraction if

d(Tx,Ty) ≤ αmax
{
d(x, y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)

}
for all x, y ∈ X, where α ∈ [0, 1) [11].

Here we can note down one important observation about the constants arising in the aforementioned
contractions. In each of the above mappings, the sum of the constants (i.e., α, αi) arising above < 1 and it is
known that if the sum of constants is relaxed to ≥ 1, then the mappings may not acquire fixed point(s). So, it
is now legitimate to study about the fact that if the sum of the constants ≥ 1, then what sufficient condition
can assure us about the existence of fixed point(s) of such mappings. From the theory of non-expansive
mappings, one can get a number of such sufficient conditions if the sum of the constants is exactly equal to
1, see [9, 14, 15, 20, 21, 29, 32, 37, 42, 43]. For the case where the sum of constants is strictly greater than 1,
Górnicki put in place a sufficient condition which can ensure the existence of fixed point(s) for the mapping
considered in Definition 1.1 (b). He instigated such condition by obtaining the following result:

Theorem 1.2. ([22, p. 2150, Theorem 3.3]) If (X, d) is a complete metric space and T ∈ XX, is an asymptotically
regular mapping such that there exists M < 1 satisfying

d(Tx,Ty) ≤M[d(x,Tx) + d(y,Ty) + d(x, y)] (1)

for every x, y ∈ X, then T has a unique fixed point v ∈ X.

After this, Popescu obtained some other sufficient condition for the above type of mappings in the following
result:

Theorem 1.3. ([35, p. 4, Theorem 4]) Let (X, d) be a complete metric space and let T ∈ XX. Suppose that T
satisfies (1) and there exist non-negative real constants a, b with a < 1 such that for any x ∈ X there exists u ∈ X with
d(u,Tu) ≤ ad(x,Tx) and d(u, x) ≤ bd(x,Tx). Then, T has a unique fixed point.

According to Popescu, the mapping satisfying the conditions of the above theorem, is called a Górnicki
mapping.

If we go through the literature of fixed point theory, then we can set up two scenario. The first one is that
there are many fixed point results related to contraction type mappings, where the contraction conditions
involve the displacements d(x,Ty) and d(y,Tx), and the second one is that there are again a lot of results
which deal with coincidence points and/or common fixed points of two or more mappings. It is noteworthy
to mention that in the context of the above two scenarios, it is legitimate to think about two important
directions of research: the first one is whether the above type of results can be extended to Górnicki-type
mappings where the displacements d(x,Tx) and d(y,Ty) can be changed to the displacements d(x,Ty) and
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d(y,Tx), and the second one is whether the above type of results can be acquired in case of common fixed
points of a pair of mappings. Recently, Debnath [13] have concentrated on the second observation and
obtained the following result. Before we state that theorem, let us first recall the following definition:
A pair of mappings T1,T2 ∈ XX, is said to be a Górnicki-type pair of mappings if there exists non-negative
real constants α, βwith α < 1 such that for any x ∈ X, there exists y ∈ X with

d(y,T1y) ≤ αd(x,T2x), d(y, x) ≤ βd(x,T2x)

and
d(y,T2y) ≤ αd(x,T1x), d(y, x) ≤ βd(x,T1x) ([13, p. 2, Definition 2.1]).

Theorem 1.4. ([13, p. 3, Theorem 2.2]) Let (X, d) be a complete metric space and T1,T2 ∈ XX be a Górnicki-type
pair of mappings satisfying the following condition for M ∈ (0, 1):

d(T1x,T2y) ≤M[d(x,T1x) + d(y,T2y) + d(x, y)] (2)

for all x, y ∈ X. Then, T1 and T2 have a unique common fixed point.

In this article, our primary goal is to achieve two significant outcomes simultaneously by proving
a single result. At first, we procure a couple of common fixed point results concerning Górnicki-type
mapping where the displacements d(x,Tx) and d(y,Ty) can be changed to d(x,Ty) and d(y,Tx). After this,
we show that the conditions in Theorem 1.4 which are used to get the guaranty of existence of common
fixed points due to Debnath can be weakened without affecting the conclusions of the result. Finally, we
provide relevant examples to support our derived results.

2. Common fixed point of Górnicki-type mappings

Throughout the paper, XX denotes the collection of all mappings f : X → X for a non-empty set X. We
use the notation Fix(T) to denote the set of all fixed points of a mapping T andN0 to denote the setN∪ {0}.

At the beginning of this section, we put in place a result which deals with the existence of common fixed
points of a couple of mappings satisfying the Górnicki-type condition.

Theorem 2.1. Let (X, d) be a complete metric space and let T1,T2 ∈ XX. Suppose that there exists an M ∈ [0, 1) such
that

d(T1x,T2y) ≤M[d(x,T2y) + d(y,T1x) + d(x, y)] (3)

for all x, y ∈ X. If there exist real numbers a, b with 0 ≤ a < 1, b > 0 such that for each x ∈ X there exists u ∈ X
satisfying d(u,T1u) ≤ ad(x,T2x), d(u,T2u) ≤ ad(x,T1x) and d(u, x) ≤ b max{d(x,T1x), d(x,T2x)}. Then, T1,T2
admit a common fixed point in X.

Proof. Let x0 ∈ X be chosen arbitrarily. Then, by hypothesis, there exists an element x1 ∈ X such that

d(x1,T1x1) ≤ ad(x0,T2x0), d(x1,T2x1) ≤ ad(x0,T1x0)

and
d(x1, x0) ≤ b max{d(x0,T1x0), d(x0,T2x0)}.

Again, there exists x2 ∈ X such that

d(x2,T1x2) ≤ ad(x1,T2x1) ≤ a2d(x0,T1x0)

d(x2,T2x2) ≤ ad(x1,T1x1) ≤ a2d(x0,T2x0)

and
d(x2, x1) ≤ b max{d(x1,T1x1), d(x1,T2x1)}.
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Continuing this process, we finally get a sequence {xn} in X such that for all n ∈N, we have

d(xn,T1xn) ≤
{

and(x0,T1x0) if n is even
and(x0,T2x0) if n is odd ,

d(xn,T2xn) ≤
{

and(x0,T2x0) if n is even
and(x0,T1x0) if n is odd

and
d(xn+1, xn) ≤ b max{d(xnT1xn), d(xn,T2xn)} ≤ ban max{d(x0,T1x0), d(x0,T2x0)}.

It is now an easy exercise to show that {xn} is a Cauchy sequence in X and hence, by completeness of X, there
is an element z ∈ X such that d(xn, z)→ 0 as n→ ∞. Also, from the last inequality, we have d(xn+1, xn)→ 0
as n→∞.

We further have d(xn,T1xn)→ 0 as n→ ∞ and d(xn,T2xn)→ 0 as n→ ∞. Using triangle inequality, we
deduce that d(T1xn, z)→ 0 as n→∞ and d(T2xn, z)→ 0 as n→∞.

Taking x = xn, y = z and putting in Equation (3), we get

d(T1xn,T2z) ≤M[d(xn,T2z) + d(z,T1xn) + d(xn, z)].

Now, taking limit as n→∞, we get
d(z,T2z) ≤Md(z,T2z),

which implies that d(z,T2z) = 0, i.e., z ∈ Fix(T2).
Now, putting x = z, y = xn in Equation (3), we see that z ∈ Fix(T1) which proves that z ∈ Fix(T1)∩Fix(T2).

Thus T1,T2 admit a common fixed point.

Let us consider T1 = T2 = T in the above theorem to establish the following result which is analogous to
[35, p. 4, Theorem 4]:

Theorem 2.2. Let (X, d) be a complete metric space and let T ∈ XX. Suppose that there exists an M ∈ [0, 1) such that

d(Tx,Ty) ≤M[d(x,Ty) + d(y,Tx) + d(x, y)] (4)

for all x, y ∈ X. If there exist real numbers a, b with 0 ≤ a < 1, b > 0 such that for each x ∈ X there exists u ∈ X
satisfying d(u,Tu) ≤ ad(x,Tx) and d(u, x) ≤ bd(x,Tx). Then, Fix(T) is a non-empty subset of X.

It’s noteworthy to note that Theorem 2.1 can only guarantee the presence of the common fixed point; it
cannot guarantee its uniqueness. We provide the following example to support this assertion:

Example 2.3. Let us choose X = N0 and consider the metric d defined on X by d(x, y) = 0 or 1 according as
x = y or x , y. Next, we define two mappings T1,T2 ∈ XX by

T1x = x2 and T2x = x4 for all x ∈ X.

Then, for M = 5
6 , one can easily check that (3) holds for all x, y ∈ X.

Now, for x = 0, we choose u = 0; for x = 1, we choose u = 1 and for x , 0, 1 we choose u = 0 to be sure that
d(u,T1u) ≤ ad(x,T2x), d(u,T2u) ≤ ad(x,T1x) and d(u, x) ≤ b max{d(x,T1x), d(x,T2x)} for a = 6

7 and b = 2.
Thus all the assumptions of Theorem 2.1 hold here and still T1, T2 have more than one common fixed point viz. 0

and 1.

Now, we move on to our next proposed aim. Particularly, we weaken the assumptions of [13, p. 3,
Theorem 2.2] without affecting the conclusions of the result.
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Theorem 2.4. Let (X, d) be a complete metric space and let T1,T2 ∈ XX. Suppose that there exists an M ∈ [0, 1) such
that

d(T1x,T2y) ≤M[d(x,T1x) + d(y,T2y) + d(x, y)] (5)

for all x, y ∈ X. If there exist real numbers a, b with 0 ≤ a < 1, b > 0 such that for each x ∈ X there exists u ∈ X
satisfying d(u,T1u) ≤ ad(x,T2x), d(u,T2u) ≤ ad(x,T1x) and d(u, x) ≤ b max{d(x,T1x), d(x,T2x)}. Then, T1,T2
admit a unique common fixed point in X.

Proof. Let x0 ∈ X be chosen arbitrarily. Then, by hypothesis, there exists an element x1 ∈ X such that

d(x1,T1x1) ≤ ad(x0,T2x0), d(x1,T2x1) ≤ ad(x0,T1x0)

and
d(x1, x0) ≤ b max{d(x0,T1x0), d(x0,T2x0)}.

Again, there exists x2 ∈ X such that

d(x2,T1x2) ≤ ad(x1,T2x1) ≤ a2d(x0,T1x0),

d(x2,T2x2) ≤ ad(x1,T1x1) ≤ a2d(x0,T2x0)

and
d(x2, x1) ≤ b max{d(x1,T1x1), d(x1,T2x1)}.

Continuing this process, we finally get a sequence {xn} in X such that for all n ∈N, we have

d(xn,T1xn) ≤
{

and(x0,T1x0) if n is even
and(x0,T2x0) if n is odd ,

d(xn,T2xn) ≤
{

and(x0,T2x0) if n is even
and(x0,T1x0) if n is odd

and
d(xn+1, xn) ≤ b max{d(xnT1xn), d(xn,T2xn)} ≤ ban max{d(x0,T1x0), d(x0,T2x0)}.

It is now an easy exercise to show that {xn} is a Cauchy sequence in X and hence, by completeness of X,
there is an element z ∈ X such that d(xn, z)→ 0 as n→∞. We also have d(xn,T1xn)→ 0 and d(xn,T2xn)→ 0
as n→∞. It can also be shown that d(T1xn, z)→ 0 as n→∞ as well as d(T2xn, z)→ 0 as n→∞.

We now show that z ∈ Fix(T1)∩ Fix(T2). For this, let us put x = xn and y = z in Equation (5) and we have

d(T1xn,T2z) ≤M[(d(xn,T1xn) + d(z,T2z) + d(xn, z)].

Passing through limit as n→∞ and applying continuity of f and d, we get

d(z,T2z) ≤Md(z,T2z),

which implies that d(z,T2z) = 0. This shows that z ∈ Fix(T2).
Similarly, putting x = z and y = xn in Equation (5), we see that z ∈ Fix(T1) and hence, z ∈ Fix(T1)∩Fix(T2).
To prove uniqueness, let z′ ∈ Fix(T1) ∩ Fix(T2). Then,

d(T1z,T2z′) ≤M[d(z,T1z) + d(z′,T2z′) + d(z, z′)]
=Md(z, z′),

which implies that
d(z, z′) ≤Md(z, z′).

This yields that d(z, z′) = 0, i.e., z = z′. Hence, Fix(T1) ∩ Fix(T2) = {z} and this completes the proof.
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Remark 2.5. If we take T1 = T2 = T in the above theorem, then we can obtain Theorem 1.3 due to Popescu as a
consequence.

We now present few examples in support of our established results. The first two examples are in
support of Theorem 2.4.

Example 2.6. Here we consider the metric space R2 equipped with the metric d defined by

d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|

for all (x1, y1), (x2, y2) ∈ R2.
Let us take X = {(x, y) ∈ R2 : x2+y2

≤ 1}. Let T1,T2 ∈ XX be defined by T1(x, y) =
(
−

x
3 ,

y
3

)
and T2(x, y) =

(
x
3 ,−

y
3

)
for all (x, y) ∈ X.

Let x = (x1, y1) and y = (x2, y2) be taken arbitrarily from X. Then,

d(T1x,T2y) =
1
3
{|x1 + x2| + |y1 + y2|},

d(x,T1x) = d
(
(x1, y1),

(
−

x1

3
,

y1

3

))
=

2
3
|x1| +

4
3
|y1|,

d(y,T2y) = d
(
(x2, y2),

(x2

3
,−

y2

3

))
=

4
3
|x2| +

2
3
|y2|,

and d(x, y) = |x1 − x2| + |y1 − y2|.
Now, taking M = 4

5 , we get

M(d(x,T1x) + d(y,T2y) + d(x, y))

=
4
5

{2
3
|x1| +

4
3
|y1| +

4
3
|x2| +

2
3
|y2| + |x1 − x2| + |y1 − y2|

}
=

8
15
|x1| +

16
15
|x2| +

16
15
|y1| +

8
15
|y2| +

4
15
|x1 − x2| +

4
15
|y1 − y2|

≥
1
3
{|x1| + |x2| + |y1| + |y2|}

≥
1
3
{|x1 + x2| + |y1 + y2|}

which implies that
d(T1x,T2y) ≤M[d(x,T1x) + d(y,T2y) + d(x, y)]

for all x, y ∈ X.
Let x = (x1, y1) ∈ X be arbitrary. Let us take u = (0, 0) ∈ X. Then, for 0 ≤ a < 1 and b = 4, we have

d(u,T1u) = d((0, 0), (0, 0)) = 0 ≤ ad(x,T2x)

d(u,T2u) = d((0, 0), (0, 0)) = 0 ≤ ad(x,T1x)

and
d(u, x) = d((0, 0), (x1, y1)) = |x1| + |y1| ≤ b max{d(x,T1x), d(x,T2x)}.

Thus all the conditions of Theorem 2.4 are satisfied. Therefore, we can conclude that T1,T2 have a unique common
fixed point in X viz. (0, 0).
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Example 2.7. Let us take X = R and consider the usual metric d on X. We define T1,T2 ∈ XX by T1x = −2x and
T2x = −x for all x ∈ X.

Let x, y ∈ X be arbitrary. Then, taking M = 5
6 , we get

M[d(x,T1y) + d(y,T2x) + d(x, y)] =
5
6
{d(x,−2x) + d(y,−y) + d(x, y)}

=
5
6
{3|x| + 2|y| + |x − y|}

=
5
2
|x| +

5
3
|y| +

5
6
|x − y|,

whereas

d(T1x,T2y) = |2x − y|
≤ 2|x| + |y|

≤
5
2
|x| +

5
3
|y|.

Therefore,
d(T1x,T2y) ≤M[d(x,T1y) + d(y,T2x) + d(x, y)].

Let x ∈ X be arbitrary. If we take u = 0 ∈ X, then for 0 ≤ a < 1 and b = 1, we have

d(u,T1u) = d(0, 0) = 0 ≤ ad(x,T2x)

d(u,T2u) = d(0, 0) = 0 ≤ ad(x,T1x)

and
d(u, x) = d(0, x) = |x| ≤ b max{d(x,T1x), d(x,T2x)}.

Thus wee see that all the conditions of Theorem 2.4 are satisfied. Therefore, we can conclude that T1,T2 have a unique
common fixed point in X viz. 0.

Next, we present below an example in support of Theorem 2.1.

Example 2.8. Here we consider the metric space X = R2 equipped with the metric d defined by

d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|

for all (x1, y1), (x2, y2) ∈ R2.
Let us define T1,T2 ∈ XX be defined by T1(x, y) = (0, 0) and T2(x, y) =

(
−x,−y

)
for all (x, y) ∈ X.

Let x = (x1, y1) and y = (x2, y2) be taken arbitrarily from X. Then,

d(T1x,T2y) = |x2| + |y2|.

Now,

d(x,T1y) = d
(
(x1, y1), (0, 0)

)
= |x1| + |y1|,

d(y,T2x) = d
(
(x2, y2),

(
−x1,−y1

))
= |x1 + x2| + |y1 + y2|,

and d(x, y) = |x1 − x2| + |y1 − y2|.
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Now, taking M = 4
5 , we have

d(T1x,T2y) −M[d(x,T1y) + d(y,T2x) + d(x, y)]

= (|x2| + |y2|) −
4
5
{
|x1| + |y1| + |x1 + x2| + |y1 + y2| + |x1 − x2| + |y1 − y2|

}
= (|x2| + |y2|) −

4
5

(|x1| + |y1|) −
4
5

(|x1 + x2| + |x1 − x2|) −
4
5

(|y1 + y2| + |y1 − y2|)

= (|x2| + |y2|) −
4
5

(|x1| + |y1|) −
8
5

max{|x1|, |x2|} −
8
5

max{|y1|, |y2|}

=
1
5
{|x2| + |y2| − 8 max{|x1|, |x2|} − 8 max{|y1|, |y2|} −

4
5

(|x1| + |y1|)

≤ 0

which implies that
d(T1x,T2y) ≤M[d(x,T1y) + d(y,T2x) + d(x, y)]

for all x, y ∈ X.
Let x = (x1, y1) ∈ X be arbitrary. Let us take u = (0, 0) ∈ X. Then, for 0 ≤ a < 1 and b = 1, we have

d(u,T1u) = d((0, 0), (0, 0)) = 0 ≤ ad(x,T2x)

d(u,T2u) = d((0, 0), (0, 0)) = 0 ≤ ad(x,T1x)

and
d(u, x) = d((0, 0), (x1, y1)) = |x1| + |y1| ≤ b max{d(x,T1x), d(x,T2x)}.

Thus all the conditions of Theorem 2.1 are satisfied. Therefore, we can conclude that T1,T2 have a unique common
fixed point in X viz. (0, 0).

We conclude this section by the following interesting remark:
Remark. It is widely known that a mapping (a pair of mappings) satisfying non-expansive (type) condition
may not posses fixed point (common fixed point) if the the underlying space(s) is (are) only complete metric
space(s). However, in Example 2.7 and Example 2.8, we see that pair of mappings satisfying non-expansive
condition can indeed have common fixed points when the underlying space is a complete metric space.

Acknowledgements. The authors are thankful to the referees and the editor for their comments and
suggestions, which substantially improve the initial version of the paper.
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