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Abstract. A partial transformation α on an n-element set n = {1, . . . ,n} is called order-decreasing if xα ≤ x
for all x ∈ dom(α). The set of all partial order-decreasing transformations on n forms a monoid PDn.
In this paper, we determine the maximal subsemigroups as well as the maximal idempotent generated
subsemigroups of PDn. Furthermore, we investigate the abundance of the ideals of PDn, and characterize
the structure of the left (right) abundant principal ideal of PDn.

1. Introduction and preliminaries

Fix a positive integer n. We write n for the finite set {1, . . . ,n}. We denote byPT n the monoid of all partial
transformations of n and by Tn the monoid of all full transformations of n. We say that a transformation
α ∈ PT n is order-preserving [order-reversing] if x ≤ y implies xα ≤ yα [xα ≥ yα], for all x, y ∈ dom(α), and α
is decreasing [increasing or extensive] if xα ≤ x [xα ≥ x], for all x ∈ dom(α). Denote by On the monoid of all
order-preserving full transformations, by POn the monoid of all order-preserving partial transformations
and by POEn the of all order-preserving and extensive partial transformations. We also denote by Dn the
monoid of all order-decreasing full transformations and PDn the monoid of all order-decreasing partial
transformations.

Let c = (c1, c2, . . . , ct) be a sequence of t (t ≥ 0) elements from the set n. We say that c is cyclic if there
exists no more than one index i ∈ {1, . . . , t} such that ci > ci+1, where ct+1 denotes c1. Let α ∈ PT n and
suppose that dom(α) = {a1, . . . , at}, with t ≥ 0 and a1 < · · · < at. We say that α is orientation-preserving if
the sequence of its image (a1α, . . . , atα) is cyclic. We denote by POPn the submonoid of PT n of all partial
orientation-preserving transformations and byOPn the submonoidPOPn∩Tn ofPT n of all full orientation-
preserving transformations. We also denote by OPEn the monoid of orientation-preserving and extensive
full transformations and by POPEn of all orientation-preserving and extensive partial transformations.

Algebraic, combinatorial, and rank properties of various kinds of transformation semigroups have been
studied over a long period and many interesting results have emerged. In particular, Dimitrova and Koppitz
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[1] (2008) characterized the maximal subsemigroups of the ideals of On as well as of the ideals of ODn the
monoid of all order-preserving or order-reversing full transformations. Further, Dimitrova and Koppitz
[2] (2011) classified the maximal regular subsemigroups of the ideals of On. Dimitrova, Fernandes and
Koppitz [4] (2011) characterized completely the maximal subsemigroups of the ideals of OPn. Dimitrova
and Koppitz [3] (2012) described the maximal subsemigroups as well as the maximal idempotent generated
subsemigroups of POEn. Zhao et al.[14] (2022) completely determined the maximal subsemigroups as
well as the maximal idempotent generated subsemigroups of the ideals of the monoid POEn. Li, Zhang
and Luo [9] (2022) characterized the maximal subsemigroups as well as the maximal idempotent generated
subsemigroups of the monoidOPEn. Recently, Zhao and Hu [15] (2023) completely determined the maximal
subsemigroups as well as the maximal idempotent generated subsemigroups of the monoid POPEn.

In 1986, Pin [10] proved that a finite monoid is R-trivial if and only if it can be embedded inDn for some
n. In 1992, Umar [11] showed that both the rank and the idempotent rank of the singular subsemigroup of
Dn of all singular order-decreasing full transformations are equal to n(n−1)

2 . In 2004, Laradji and Umar [8]
studied algebraic, combinatorial and rank properties of certain Rees quotient semigroups ofDn. Yağci [13]
(2023) investigated the maximum nilpotent subsemigroup ofDn and determined the minimum generating
set as well as the cardinality of the maximum nilpotent subsemigroup of Dn. Recently, Zhao and Hu [16]
characterized the maximal subsemigroups as well as the maximal idempotent generated subsemigroups of
the monoidDn.

Regarding the monoid PDn, Umar [12] studied combinatorial and rank properties of certain Rees
quotient semigroups of PDn. They showed that the ideals PDn,r = {α ∈ PDn : | im(α)| ≤ r} (1 ≤ r ≤ n)
of PDn are abundant (see [12, Corollary 2.4.3 and Theorem 2.2.5]). However, the results about algebraic
properties of the monoid PDn are very few. The main aim of this paper is to study the monoid PDn. We
notice that each ideal of PDn is not always the form PDn,r, for 1 ≤ r ≤ n, and PDn is the principal ideal
PDn1nPDn generated by 1n (the identity transformation on n). In this paper, we determine the maximal
subsemigroups as well as the maximal idempotent generated subsemigroups of PDn in Sect.2. In Sect.3,
we characterize the abundance of the ideals of PDn. Moreover, we characterize the structure of the left
(right) abundant principal ideal of PDn.

Given a subset A of a semigroup S and u ∈ S, we denote by E(A) the set of idempotents of S belonging
to A and by LS

u and RS
u the L -class and R-class of u, respectively. For general background on Semigroup

Theory, we refer the reader to Howie’s book [6].

We denote by θn the empty transformation on n. Let α ∈ PT n\{θn}, we will write

α =

(
A1 · · · Am
a1 · · · am

)
to indicate that dom(α) = A1 ⊔ · · · ⊔ Am, im(α) = {a1, . . . , am} and Aiα = ai for each i ∈ {1, . . . ,m} (the symbol
”⊔” denotes disjoint union). Usually this notation will imply that a1, · · · , am are distinct, but occasionally
this will not be the case, and we will always specify this. As usual, we denote the kernel of α ∈ PT n\{θn} by

ker(α) = {(x, y) ∈ dom(α) × dom(α) : xα = yα}.

We will sometimes write ker(α) = (A1| . . . |Am) to indicate that ker(α) has equivalence classes A1, . . . ,Am, and
this notation will always imply that Ai are pairwise disjoint and non-empty.

Let α ∈ PDn with | im(α)| = r ≥ 2. Then α can be expressed as

α =

(
A1
a1

∣∣∣∣∣ A2
a2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar

ar

)
,

where a1 < · · · < ar and ai ≤ min Ai, for 1 ≤ i ≤ r. Notice that if 1 ∈ A1, then a1 = 1. Notice that if α ∈ E(PDn),
then ai = minAi for 1 ≤ i ≤ r.
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2. Maximal (idempotent generated) subsemigroups of PDn

We shall say that a proper subsemigroup S of PDn is maximal subsemigroup (idempotent generated
subsemigroups) if any subsemigroup (idempotent generated subsemigroups) of PDn properly containing
S must bePDn. In this section, we describe all maximal subsemigroups and maximal idempotent generated
subsemigroups of PDn. For 1 ≤ r ≤ n, put

Jr = {α ∈ PDn : | im(α)| = r}, Er = E(Jr) and Dn,r = {α ∈ Dn : | im(α)| ≤ r}.

Then the sets PDn,r and Dn,r are the two-sided ideals of PDn and Dn, respectively. Clearly, PDn,r =
J0 ∪ J1 ∪ · · · ∪ Jr, where J0 consists of the empty transformation θn.

Lemma 2.1. Let 0 ≤ m ≤ n − 2. Then Em ⊆ ⟨Em+1⟩.

Proof. Let ε ∈ Em be arbitrary. To prove that ε ∈ ⟨Em+1⟩, we distinguish two cases:

Case 1. m = 0. Clearly, ε = θn. Put

η =

(
1
1

)
and ξ =

(
2
2

)
.

Then η, ξ ∈ E1 and ε = ηξ. Thus ε = ηξ ∈ ⟨E1⟩.

Case 2. m ≥ 1. We can suppose that

ε =

(
A1
a1

∣∣∣∣∣ . . .. . .
∣∣∣∣∣ Am

am

)
,

where ai = minAi, for 1 ≤ i ≤ m. Notice that dom(ε) = A1 ⊔ · · · ⊔ Am. Clearly, |dom(ε)| ≥ m. We distinguish
two subcases:

Subcase 2.1. |dom(ε)| = n. Since m ≤ n−2, there exist 1 ≤ p ≤ m such that |Ap| ≥ 2. Let xp = min(Ap\{ap}).
Take y ∈ n\{a1, . . . , am, xp}. Put

η =

(
A1
a1

∣∣∣∣∣ . . .. . .
∣∣∣∣∣ Ap−1

ap−1

∣∣∣∣∣ ap Ap\{ap}

ap xp

∣∣∣∣∣ Ap+1
ap+1

∣∣∣∣∣ . . .. . .
∣∣∣∣∣ Am

am

)
,

ξ =

(
a1
a1

∣∣∣∣∣ . . .. . .
∣∣∣∣∣ ap−1

ap−1

∣∣∣∣∣ {ap, xp}

ap

∣∣∣∣∣ ap+1
ap+1

∣∣∣∣∣ . . .. . .
∣∣∣∣∣ am

am

∣∣∣∣∣ y
y

)
.

Then η, ξ ∈ Em+1 and ε = ηξ. Thus ε = ηξ ∈ ⟨Em+1⟩.

Subcase 2.2. |dom(ε)| ≤ n − 1. Take x ∈ n\dom(ε) and y ∈ n\{a1, . . . , am, x}. Put

η =

(
A1
a1

∣∣∣∣∣ . . .. . .
∣∣∣∣∣ Am

am

∣∣∣∣∣ x
x

)
and ξ =

(
a1
a1

∣∣∣∣∣ . . .. . .
∣∣∣∣∣ am

am

∣∣∣∣∣ y
y

)
.

Then η, ξ ∈ Em+1 and ε = ηξ. Thus ε = ηξ ∈ ⟨Em+1⟩.

Lemma 2.2. Let 0 ≤ m ≤ n. Then Jm ⊆ ⟨Em⟩.
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Proof. Notice that J0 = E0 = {θn} and Jn = En = {1n}. Then Jm = ⟨Em⟩, for m = 0,n. Suppose that 1 ≤ m ≤ n−1.
Let

α =

(
B1
b1

∣∣∣∣∣ . . .. . .
∣∣∣∣∣ Bm

bm

)
∈ Jm,

where bi ≤ minBi, for 1 ≤ i ≤ m. Let qi = minBi, for 1 ≤ i ≤ m. Then bi ≤ qi, for 1 ≤ i ≤ m. We denote by Sr
the symmetric group on {1, . . . ,m}. Then there exists σ ∈ Sm such that q1σ < q2σ < · · · < qmσ. Thus

bkσ ≤ qkσ < · · · < qmσ, f or 1 ≤ k ≤ m.

Put

τ =

(
B1σ B2σ · · · Bmσ
q1σ q2σ · · · qmσ

)
, τ1 =

(
{b1σ, q1σ} q2σ . . . qmσ

b1σ q2σ . . . qmσ

)
and

τi =

(
b1σ . . . b(i−1)σ {biσ, qiσ} q(i+1)σ . . . qmσ
b1σ . . . b(i−1)σ biσ q(i+1)σ . . . qmσ

)
for 2 ≤ i ≤ m. Clearly, τ, τ1, . . . , τm ∈ Em. It is easy to verify that

α = ττ1 . . . τm.

Thus α ∈ ⟨Em⟩.

Notice that PDn,r = J0 ∪ J1 ∪ · · · ∪ Jr, for 1 ≤ r ≤ n− 1. As an immediate consequence of Lemmas 2.1 and
2.2, we have the following result:

Lemma 2.3. Let 1 ≤ r ≤ n − 1. Then PDn,r = ⟨Er⟩.

Let S ∈ {Tn,Dn}. Put
JS
r = {α ∈ S : | im(α)| = r} and ES

r = E(JS
r ).

Then JDn
r ⊆ Jr and EDn

r ⊆ Er. Now, recall that Umar [8, Theorem 1.3] proved:

Lemma 2.4. Let 1 ≤ r ≤ n − 1. ThenDn,r = ⟨EDn
r ⟩.

Notice that each idempotent ε of ETn
n−1 has a form

(a
b
)

for some a, b ∈ n, a , b, which maps a to b and x to
itself for x , a. Then

EDn
n−1 = {

(
i
j

)
: i, j ∈ n with i > j}.

For 1 ≤ i ≤ n, we denote by δi the identity mapping on Xn\{i}. Put

Fn−1 = {δi : 1 ≤ i ≤ n}.

Then En−1 = EDn
n−1 ⊔ Fn−1.

Let S be a semigroup. We say that an element α ∈ S is undecomposable in S if there are no β, γ ∈ S\{α}
such that α = βγ. Given a subset U of S, we say that U is a undecomposable subset of S if each element of U
is undecomposable in S. Let A be a subset of n. We denote by 1A the identity mapping on A. Clearly, 1n is
undecomposable in PDn. In fact, we have the following lemma:

Lemma 2.5. The elements of the idempotent set En−1 are undecomposable in PDn.
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Proof. Let ε ∈ En−1 be arbitrary. Suppose that there exist β, γ ∈ PDn\{ε} such that ε = βγ. Notice that

En−1 = EDn
n−1 ⊔ Fn−1.

We distinguish two cases:

Case 1. ε ∈ EDn
n−1. Then there exist i, j ∈ n with i > j such that ε =

(i
j
)
. Assume that there exist

β, γ ∈ PDn\{ε} such that ε = βγ. Clearly, dom(β) = n. Let x ∈ n\{i}. Then x = xε = (xβ)γ ≤ xβ ≤ x. It follows
that

xβ = xγ = x, f or x ∈ n\{i}. (2.1)

If iβ = i, then β = 1n and so γ = βγ = ε, a contradiction. If iβ , i, then, by (2.1), (iβ)γ = iβ and so
iβ = iβγ = iε = j. Thus, by (2.1), β =

(i
j
)
= ε, a contradiction.

Case 2. ε ∈ Fn−1. Then ε = δi for some 1 ≤ i ≤ n. Let x ∈ n\{i}. Then x = xε = (xβ)γ ≤ xβ ≤ x. It follows
that

xβ = xγ = x, f or x ∈ n\{i}. (2.2)

If i < dom(γ), then, by (2.2), γ = δi, a contradiction. If i ∈ dom(γ), then dom(γ) = n. It follows from
δi = ε = βγ and (2.2) that i < dom(β). Then, by (2.2), β = δi, a contradiction.

We can now present one of the main results of this section.

Theorem 2.6. Let n ≥ 3. Then each maximal subsemigroup S of PDn must be one of the following forms:

S = PDn,n−1 or S = PDn\{ε}, f or some ε ∈ En−1.

Proof. Notice that 1n is undecomposable in PDn. Let ε ∈ En−1 ∪ {1n} be arbitrary. Then, by Lemma 2.5,
we obtain the set PDn\{ε} is a maximal subsemigroup of PDn. Let S be a maximal subsemigroup of PDn.
Notice that PDn = PDn,n−1 ∪ {1n}. If 1n < S, then S ⊆ PDn,n−1 ⊂ PDn. Thus, by the maximality of S,
S = PDn,n−1. If 1n ∈ S, then, by Lemma 2.3 and S ⊂ PDn, En−1 ⊈ S. Then there exists ε ∈ En−1 such that
ε < S. Thus S ⊆ PDn\{ε} ⊂ PDn. Hence, by the maximality of S, S = PDn\{ε}.

For i, j ∈ n with i > j, put
G(i, j) = {α ∈ JDn

n−1 : iα , j}.

Notice that EDn
n−1\{

(i
j
)
} ⊆ G(i, j). Recall that Zhao and Hu [16, Lemma 2.6]) proved the following result:

Lemma 2.7. Let n ≥ 3. Then G(i, j) = ⟨EDn
n−1\{

(i
j
)
}⟩ ∩ JDn

n−1, for i, j ∈ n with i > j.

A product ε1ε2 . . . εm of idempotents in PT n will be called irreducible if εiεi+1 , εi, εiεi+1 , εi+1 (i =
1, . . . ,m − 1). Now, recall that Howie [7, Lemma 4] proved:

Lemma 2.8. Let α ∈ JTn
n−1. If α =

(i1
j1

)(i2
j2

)
· · ·

(im
jm

)
is irreducible. Then ir−1 = jr and jr−1 , ir, for 2 ≤ r ≤ m.

Notice that JDn
n−1 ⊆ JTn

n−1. What is clear is that if a is expressible as a product of idempotents then the
product can be ’pruned down’ until it is irreducible (see [7, page 2]). Thus, by Lemma 2.8, we immediately
deduce the following result:

Lemma 2.9. Let I ⊆ EDn
n−1. If α ∈ ⟨I⟩ ∩ JDn

n−1, then α can be written as

α =

(
x1

x0

)(
x2

x1

)
· · ·

(
xm

xm−1

)
,

where all
(xk+1

xk

)
∈ I, for 0 ≤ k ≤ m − 1.
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For i, j ∈ n with i > j, put

G△(i, j) = {α ∈ Jn−1 : iα , j}, ∆i = {α ∈ Jn−1 : i < dom(α)}

and
PG(i, j) = G△(i, j) ⊔ ∆i.

Clearly, G(i, j) ⊆ G△(i, j) and Fn−1 ⊆ PG(i, j). Let α ∈ PDn, we put

Shi f t(α) = {i ∈ dom(α) : iα , i}.

Lemma 2.10. Let n ≥ 3. Then PG(i, j) = ⟨En−1\{
(i

j
)
}⟩ ∩ Jn−1, for i, j ∈ n with i > j.

Proof. Let α ∈ PG(i, j) be arbitrary. Notice that PG(i, j) = G△(i, j) ⊔ ∆i. To prove that α ∈ ⟨En−1\{
(i

j
)
}⟩ ∩ Jn−1, we

distinguish two cases.
Case 1. α ∈ G△(i, j). Then iα , j and α ∈ Jn−1. If |dom(α)| = n, then α ∈ G(i, j). Thus, by Lemma 2.7,

α ∈ G(i, j) = ⟨EDn
n−1\{

(
i
j

)
}⟩ ∩ JDn

n−1 ⊆ ⟨En−1\{

(
i
j

)
}⟩ ∩ Jn−1.

If |dom(α)| = n − 1, then dom(α) = n\{k} for some k ∈ n\{i}. (i) If 1 ∈ im(α), we define α∗ by

xα∗ =
{

1, x = k,
xα, x , k.

Then α∗ ∈ G(i, j) and α = δkα∗. Thus, by Lemma 2.7,

α = δkα
∗
∈ δk · G(i, j) = δk · [⟨EDn

n−1\{

(
i
j

)
}⟩ ∩ Jn−1] ⊆ ⟨En−1\{

(
i
j

)
}⟩ ∩ Jn−1.

(ii) If 1 < im(α), then k = 1 otherwise 1α = 1. Thus, by α ∈ Jn−1, dom(α) = im(α) = n\{1}. It follows from
α ∈ PDn that

α =

(
2 3 · · · n
2 3 · · · n

)
= δ1 ∈ ⟨En−1\{

(
i
j

)
}⟩ ∩ Jn−1.

Case 2. α ∈ ∆i. Then dom(α) = n\{i}. Notice that i > j ≥ 1. If i ≥ 3, then there exists s ∈ {1, 2} such that
s , j. Now, we define α∗ by

xα∗ =
{

s, x = i,
xα, x , i.

Then α∗ ∈ G(i, j) and α = δiα∗. Thus, by Lemma 2.7,

α = δiα
∗
∈ δi · G(i, j) = δi · [⟨EDn

n−1\{

(
i
j

)
}⟩ ∩ Jn−1] ⊆ ⟨En−1\{

(
i
j

)
}⟩ ∩ Jn−1.

Notice that if i = 2, then j = 1 since i > j. (i) If i = 2 and 2 < im(α), then dom(α) = im(α) = n\{2}. It follows
from α ∈ PDn that

α =

(
1 3 · · · n
1 3 · · · n

)
= δ2 ∈ ⟨En−1\{

(
i
j

)
}⟩ ∩ Jn−1.

(ii) If i = 2 and 2 ∈ im(α), then we define α∗ by

xα∗ =
{

2, x = 2,
xα, x , 2.
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Then α∗ ∈ G(i, j) and α = δ2α∗. Thus, by Lemma 2.7,

α = δ2α
∗
∈ δ2 · G(i, j) = δ2 · [⟨EDn

n−1\{

(
i
j

)
}⟩ ∩ Jn−1] ⊆ ⟨En−1\{

(
i
j

)
}⟩ ∩ Jn−1.

It remains to prove that ⟨En−1\{
(i

j
)
}⟩ ∩ Jn−1 ⊆ PG(i, j). Let α ∈ ⟨En−1\{

(i
j
)
}⟩ ∩ Jn−1 be arbitrary. To prove that

α ∈ PG(i, j), we distinguish two cases.

Case 1. α ∈ JDn
n−1. Then, by Lemma 2.9, α can be written as

α =

(
y1

y0

)(
y2

y1

)
· · ·

(
yt−1

yt−2

)(
yt

yt−1

)
where Shi f t(α) = {y1, y2, . . . , yt} and y1 < y2 < · · · < yt such that

(yk+1
yk

)
,

(i
j
)

for all 0 ≤ k ≤ t− 1. If i < Shi f t(α),
then iα = i > j. If i = yk+1 ∈ Shi f t(α) for some k ∈ {0, 1, . . . , t − 1}, then j , yk and so

iα = i
(
y1

y0

)(
y2

y1

)
· · ·

(
yk+1

yk

)
· · ·

(
yt

yt−1

)
= yk , j.

Thus α ∈ G(i, j) ⊆ PG(i, j).

Case 2. α ∈ Jn−1\JDn
n−1. Notice that En−1 = EDn

n−1 ∪ Fn−1 and α ∈ ⟨En−1\{
(i

j
)
}⟩ ∩ Jn−1. Then, by Lemma 2.8, α

can be written as
α = δk for some 1 ≤ k ≤ n

or

α = δs

(
y1

y0

)(
y2

y1

)
· · ·

(
yt−1

yt−2

)(
yt

yt−1

)
,

where Shi f t(α) = {y1, y2, . . . , yt}\{s} and y1 < y2 < · · · < yt such that
(yk+1

yk

)
,

(i
j
)

for all 0 ≤ k ≤ t − 1, and
1 ≤ s ≤ n. If α = δk for some 1 ≤ k ≤ n, then clearly α = δk ∈ Fn−1 ⊆ PG(i, j). Notice that dom(α) = n\{s}. If
α = δs

(y1
y0

)(y2
y1

)
· · ·

(yt−1
yt−2

)( yt
yt−1

)
, to prove that α ∈ PG(i, j), we distinguish two subcases.

Subcase 2.1. s = i. Then clearly α ∈ ∆i ⊆ PG(i, j).

Subcase 2.2. s , i. Then i ∈ dom(α). If i < Shi f t(α), then iα = i > j. If i = yk+1 ∈ Shi f t(α) for some
k ∈ {0, 1, . . . , t − 1}, then j , yk and so

iα = iδs

(
y1

y0

)(
y2

y1

)
· · ·

(
yt−1

yt−2

)(
yt

yt−1

)
= i

(
y1

y0

)(
y2

y1

)
· · ·

(
yk+1

yk

)
· · ·

(
yt

yt−1

)
= yk , j.

Thus α ∈ G△(i, j) ⊆ PG(i, j).

For 1 ≤ i ≤ n, put
Ωi = {α ∈ Jn−1 : i ∈ dom(α)}.

Lemma 2.11. Let n ≥ 3. Then Ωi = ⟨En−1\{δi}⟩ ∩ Jn−1, for 1 ≤ i ≤ n.

Proof. By Lemma 2.4, we have Dn,n−1 = ⟨EDn
n−1⟩. Notice that JDn

n−1 ⊆ Jn−1. Then JDn
n−1 ⊆ Dn,n−1 ∩ Jn−1 =

⟨EDn
n−1⟩ ∩ Jn−1. Let α ∈ Ωi be arbitrary. To prove that α ∈ ⟨En−1\{δi}⟩ ∩ Jn−1, we distinguish two cases.

Case 1. α ∈ JDn
n−1. Then

α ∈ JDn
n−1 ⊆ ⟨E

Dn
n−1⟩ ∩ Jn−1 ⊆ ⟨En−1\{δi}⟩ ∩ Jn−1.
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Case 2. α ∈ Jn−1\JDn
n−1. Then dom(α) = n\{k}, for some k ∈ n\{i}. We distinguish two subcases.

Subcase 2.1. 1 ∈ im(α). We define α∗ by

xα∗ =
{

1, x = k,
xα, x , k.

Then α∗ ∈ JDn
n−1 and α = δkα∗. Thus

α = δkα
∗
∈ δk · JDn

n−1 ⊆ δk · ⟨EDn
n−1⟩ ∩ Jn−1 ⊆ ⟨En−1\{δi}⟩ ∩ Jn−1.

Subcase 2.2. 1 < im(α). Then k = 1 otherwise 1α = 1. Thus, by α ∈ Jn−1, dom(α) = im(α) = n\{1}. Notice
that i , k = 1. It follows from α ∈ PDn that

α =

(
2 3 · · · n
2 3 · · · n

)
= δ1 ∈ ⟨En−1\{δi}⟩ ∩ Jn−1.

It remains to prove that ⟨En−1\{δi}⟩ ∩ Jn−1 ⊆ Ωi. Let α ∈ ⟨En−1\{δi}⟩ ∩ Jn−1 be arbitrary. To prove that
α ∈ Ωi, we distinguish two subcases.

Case 1. α ∈ JDn
n−1. Then clearly α ∈ JDn

n−1 ⊆ Ωi.

Case 2. α ∈ Jn−1\JDn
n−1. It is obvious that, for all β ∈ Jn−1 and δi ∈ Fn−1, if βδi ∈ Jn−1, then clearly βδi = β.

Notice that En−1 = EDn
n−1 ∪ Fn−1 and α ∈ ⟨En−1\{δi}⟩ ∩ Jn−1. Then α can be written as α = δk for some k ∈ n\{i}

or
α = δsε1 · · · εm,

where s ∈ n\{i} and ε1, . . . , εm ∈ EDn
n−1. Then clearly i ∈ dom(α). Thus α ∈ Ωi.

We are now ready to prove the main result of this section.

Theorem 2.12. Let n ≥ 3. Then each maximal idempotent generated subsemigroup S of PDn must be one of the
following forms:

(1) S = PDn,n−1.

(2) S = PDn,n−2 ∪ PG(i, j) ∪ {1n}, for 1 ≤ j < i ≤ n.

(3) S = PDn,n−2 ∪Ωi ∪ {1n}, for 1 ≤ i ≤ n.

Proof. Notice that PDn = PDn,n−1 ∪ {1n} and PDn,r = ⟨Er⟩ = ⟨E(PDn,r)⟩, for 1 ≤ r ≤ n − 1 (by Lemma 2.3). It
is clear that PDn,n−1 is a maximal idempotent generated subsemigroup of PDn. Put

Mi, j = PDn,n−2 ∪ PG(i, j) ∪ {1n}, 1 ≤ j < i ≤ n,

Ni = PDn,n−2 ∪Ωi ∪ {1n}, 1 ≤ i ≤ n.

Then, by Lemmas 2.10 and 2.11,

Mi, j = PDn,n−2 ∪ [⟨En−1\{

(
i
j

)
}⟩) ∩ Jn−1] ∪ {1n}

= PDn,n−2 ∪ ⟨En−1\{

(
i
j

)
}⟩ ∪ {1n}

= ⟨E(PDn,n−2) ∪ [En−1\{

(
i
j

)
}] ∪ {1n}⟩
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= ⟨E(PDn)\{
(
i
j

)
}⟩,

Ni = PDn,n−2 ∪ [⟨En−1\{δi}⟩) ∩ Jn−1] ∪ {1n}

= PDn,n−2 ∪ ⟨En−1\{δi}⟩ ∪ {1n}

= ⟨E(PDn,n−2) ∪ [En−1\{δi}] ∪ {1n}⟩

= ⟨E(PDn)\{δi}⟩.

Thus clearly Mi, j and Ni are maximal idempotent generated subsemigroups of PDn. Let S be a maximal
idempotent generated subsemigroup ofPDn. Notice thatPDn = PDn,n−1∪{1n}. If 1n < S, then S ⊆ PDn,n−1 ⊂

PDn. Thus, by the maximality of S, S = PDn,n−1. If 1n ∈ S, then, by Lemma 2.3 and S ⊂ PDn, En−1 ⊈ S.
Then

(i
j
)
< S for some i, j ∈ n with i > j or δi < S for some 1 ≤ i ≤ n. Thus S ⊆ ⟨E(PDn)\{

(i
j
)
}⟩ = Mi, j ⊂ PDn

or S ⊆ ⟨E(PDn)\{δi}⟩ = Ni ⊂ PDn. Hence, by the maximality of S, S =Mi, j or S = Ni.

Notice that |En−1| =
n(n+1)

2 . By Theorems 2.6 and 2.12, we have the following result:

Corollary 2.13. Let n ≥ 3. Then the semigroup PDn contains exactly n(n+1)
2 + 1 maximal (idempotent generated)

subsemigroups.

3. Abundance for the (principal) ideals of PDn

A subset I of a semigroup S is an ideal if it is closed under multiplication by arbitrary elements of S: for
all x ∈ S and y ∈ I, we have xy, yx ∈ I. The principal ideal generated by an element a of the semigroup S is
the set SaS = {xay : x, y ∈ S}. Notice that PDn is the principal ideal PDn1nPDn generated by 1n.

In 1992, Umar [12] showed that the ideals PDn,r (1 ≤ r ≤ n) of PDn are abundant. In this section, we
give necessary and sufficient conditions for the ideals of PDn to be abundant. Moreover, we characterize
the structure of the left (right) abundant principal ideal of PDn.

On a semigroup S the relation L ∗ is defined by the rule that (a, b) ∈ L ∗ if and only if the elements a, b
of S are related by Green’s relation L in some oversemigroup of S. The relation R∗ is defined dually. A
semigroup S is called left abundant if each of its L ∗-classes contains an idempotent. Dually, a semigroup S
is called right abundant if each of its R∗-classes contains an idempotent. A semigroup S is abundant if it
is both left and right abundant (see [5]). Given a semigroup S, we denote by L∗Su and R∗Su the L ∗-class and
R∗-class, respectively, of an element u ∈ S.

The following lemma and its dual give a characterization of L ∗ and R∗ [5, Lemma 1.1].

Lemma 3.1. Let S be a semigroup and let a, b ∈ S. Then the following conditions are equivalent:

(1) (a, b) ∈ L ∗.

(2) for all x, y ∈ S1, ax = ay if and only if bx = by.

Now, recall that Umar [12, Corollary 2.4.3, Theorem 2.2.5 and Lemma 2.2.6] proved:

Lemma 3.2. Let 1 ≤ r ≤ n, and let α, β ∈ PDn,r. Then

(1) (α, β) ∈ L ∗ if and only if im(α) = im(β).

(2) (α, β) ∈ R∗ if and only if ker(α) = ker(β).

(3) the semigroup PDn,r is abundant.
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Notice that the idempotents in Er are exactly of the following form:

ε =

(
A1
c1

∣∣∣∣∣ A2
c2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar

cr

)
,

where c1 < c2 < · · · < cr and ci = minAi, for 1 ≤ i ≤ r. Notice that ker(ε) = (A1|A2| · · · |Ar). Thus, we have:

Lemma 3.3. Let 1 ≤ r ≤ n and ε, η ∈ Er. Then ker(ε) = ker(η) if and only if ε = η.

It is well known that the Green relations on PT n can be characterized as αL β ⇔ im(α) = im(β),
αRβ ⇔ ker(α) = ker(β) and αJ β ⇔ | im(α)| = | im(β)|. Using Lemma 3.1, we can prove the following
lemma:

Lemma 3.4. Let S be a subsemigroup of PT n, and let m = max{| im(α)| : α ∈ S}. If E(LPT n
α )∩ S = ∅ for some α ∈ S

with | im(α)| = m, then S is not left abundant.

Proof. Assume that S is left abundant. Then there exists an idempotent in L∗Sα , say ε. It follows from Lemma
3.1 that

αε = α

since ε · ε = ε · 1n and so im(α) ⊆ im(ε) which implies that m = | im(α)| ≤ | im(ε)|. By the maximality
of m, we have | im(ε)| = | im(α)| = m and so im(ε) = im(α). Thus (α, ε) ∈ L PT n and ε ∈ E(LPT n

α ) ∩ S, a
contradiction.

Lemma 3.5. Let S be a subsemigroup of PT n, and let m = max{| im(α)| : α ∈ S}. If E(RPT n
α )∩ S = ∅ for some α ∈ S

with | im(α)| = m, then S is not right abundant.

Proof. Assume that S is right abundant. Then there exists an idempotent in R∗Sα , say ε. It follows from
Lemma 3.1 that

εα = α

since ε · ε = 1n · ε. Thus dom(α) ⊆ dom(ε) and ker(ε) ⊆ ker(α) which implies that m = | im(α)| =
|dom(α)/ker(α)| ≤ |dom(ε)/ker(ε)| = | im(ε)|. By the maximality of m, we have | im(ε)| = | im(α)| = m and
so ker(ε) = ker(α). Thus (α, ε) ∈ RPT n and ε ∈ E(RPT n

α ) ∩ S, a contradiction.

Now, it is easy to prove the following result:

Theorem 3.6. Let I be an ideal of PDn. Then I is abundant if and only if there exists r ∈ {0, 1, . . . ,n} such that
I = PDn,r.

Proof. Notice thatPDn = PDn,n−1∪{1n} andPDn is abundant (by Lemma 3.2). Suppose that I is abundant.
If 1n ∈ I. Then clearly α = α · 1n ∈ I, for all α ∈ PDn. Thus I = PDn = PDn,n. If 1n < I, we put

r = max{| im(α)| : α ∈ I}.

Then clearly 0 ≤ r ≤ n− 1 and I ⊆ PDn,r. Notice that PDn,0 = {θn}. If r = 0, then clearly I = PDn,0. If r ≥ 1,
there exists α ∈ Iwith | im(α)| = r. Suppose that

α =

(
A1
a1

∣∣∣∣∣ A2
a2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar

ar

)
,
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where a1 < · · · < ar and ai ≤ min Ai, for 1 ≤ i ≤ r. Notice that ai ≤ n − r + i, for 1 ≤ i ≤ r. Put

β =

(
n − r + 1
min A1

∣∣∣∣∣ n − r + 2
min A2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ n

min Ar

)
,

ξ =

(
n − r + 1

a1

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ n − 1

ar−1

∣∣∣∣∣ n
ar

)
.

Then ξ = βα ∈ I since I is an ideal of PDn. Notice that clearly | im(ξ)| = | im(α)| = r. By Lemma 3.5 and I
is abundant, we have E(RPDn

ξ ) ∩ I , ∅. Then there exists η ∈ E(I) such that ker(η) = ker(ξ). Notice that

λr =

(
n − r + 1
n − r + 1

∣∣∣∣∣ n − r + 2
n − r + 2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ n

n

)
∈ Er.

Then ker(η) = ker(ξ) = ker(λr) and so η = λr by Lemma 3.3. Now, let

ε =

(
A1
c1

∣∣∣∣∣ A2
c2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar

cr

)
∈ Er,

where c1 < c2 < · · · < cr and ci = min Ai, for 1 ≤ i ≤ r. Notice that ci ≤ n − r + i, for 1 ≤ i ≤ r. Put

γ =

(
n − r + 1

c1

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ n − 1

cr−1

∣∣∣∣∣ r
cr

)
.

Since η ∈ I and I is an ideal ofPDn, we have γ = λrγ = ηγ ∈ I. By Lemma 3.4 and I is abundant, we have
E(LPDn

γ ) ∩ I , ∅. Then there exists δ ∈ E(I) such that im(δ) = im(γ). Suppose that

δ =

(
B1
c1

∣∣∣∣∣ B2
c2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Br

cr

)
Since δ ∈ E(I), we have ci = min Bi, for 1 ≤ i ≤ r. It is obvious that ε = εδ and so ε ∈ I (since I is an ideal
of PDn and δ ∈ I). Then we have proved that Er ⊆ I. Thus, by Lemma 2.3, I = PDn,r.

Conversely, if I = PDn,0, then clearly I is abundant. If there exists 1 ≤ r ≤ n such that I = PDn,r, then,
by Lemma 3.2, I is abundant.

For any α ∈ PDn, we denote by △α the principal ideal

PDnαPDn

generated by α. Notice that if α = 1n, then ∆α = PDn; if | im(α)| = 1, then α =
(n

1
)
. Notice that if α = 1n, then

∆α = PDn. Let β ∈ ∆α be arbitrary. Then there exist γ, δ ∈ PDn such that β = γαδ. Clearly, | im(β)| ≤ | im(α)|.
Notice that α = 1nα1n ∈ ∆α. Thus | im(α)| = max{| im(β)| : β ∈ ∆α}.

Lemma 3.7. Let α ∈ PDn and α is not an idempotent. Then E(LPT n
α ) ∩ ∆α , ∅ and E(RPT n

α ) ∩ ∆α , ∅.

Proof. Suppose that | im(α)| = r. Then r ≥ 1 since α is not an idempotent. Thus we can suppose that

α =

(
A1
a1

∣∣∣∣∣ A2
a2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar

ar

)
,

where a1 < a2 < · · · < ar and ai ≤ min Ai, for 1 ≤ i ≤ r. Let ci = min Ai, for 1 ≤ i ≤ r. Since α is not an
idempotent, there exist m ∈ {1, . . . , r} such that am < cm. Clearly, am < Am. Then amα , am (if am ∈ dom(α)).
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Assume that E(LPT n
α ) ∩ ∆α , ∅. Let ε ∈ E(LPT n

α ) ∩ ∆α. Then there exist β, γ ∈ PDn such that ε = βαγ and
im(ε) = im(α) = {a1, . . . , ar}. Since ε is an idempotent, we have ai = aiε, for 1 ≤ i ≤ r. Then

am = amε = (amβα)γ ≤ (amβ)α ≤ amβ ≤ am.

It follows that am = amβ = (amβ)α and so amα = am, a contradiction. Thus E(LPT n
α ) ∩ ∆α = ∅.

Assume that E(RPT n
α ) ∩ ∆α , ∅. Let ε ∈ E(RPT n

α ) ∩ ∆α. Then there exist β, γ ∈ PDn such that ε = βαγ
and ker(ε) = ker(α) = (A1| · · · |Ar). Notice that ci = min Ai, for 1 ≤ i ≤ r. Since ε is an idempotent, we have
ciε = ci for 1 ≤ i ≤ r. Then

cm = cmε = (cmβα)γ ≤ (cmβ)α ≤ cmβ ≤ cm.

It follows that cm = cmβ = (cmβ)α and so cm = cmα = am, a contradiction. Thus E(RPT n
α ) ∩ ∆α = ∅.

Using Lemmas 3.4, 3.5 and 3.7, we can prove the following result:

Lemma 3.8. Let α ∈ PDn and α is not an idempotent. Then △α is neither left abundant nor right abundant.

Proof. By Lemma 3.7, we have

E(LPT n
α ) ∩ ∆α , ∅ and E(RPT n

α ) ∩ ∆α , ∅.

Then, by Lemmas 3.4 and 3.5, △α is neither left abundant nor right abundant.

Let x, y ∈ n with x < y. The set [x, y] = {z ∈ n : x ≤ z ≤ y} of n is called a closed convex set. Similarly, we
can define the convex sets of other kinds, such as (x, y], (x, y) and [x, y).

For 1 ≤ r ≤ n, put
E∆r = {ε ∈ Er : im(ε) = [1, r]}.

Then clearly E∆n = {1n}. Let α ∈ PDn. It is easy to see that α ∈ E∆n (α = 1n) if and only if ∆α = POEn = {α ∈
POEn : im(α) ⊆ [1,n]}. In fact, we have the following result:

Theorem 3.9. Let 1 ≤ r ≤ n − 1. Let α ∈ PDn with | im(α)| = r. Then the following statements are equivalent:

(1) ∆α is left abundant.

(2) α ∈ E∆r .

(3) ∆α = {β ∈ PDn : im(β) ⊆ [1, r]}.

Proof. (1) =⇒ (2) Suppose that ∆α is left abundant. Then, by Lemma 3.8, α is an idempotent. We can
suppose that

α =

(
A1
c1

∣∣∣∣∣ A2
c2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar

cr

)
,

where c1 < c2 < · · · < cr and ci = min Ai for 1 ≤ i ≤ r. Let c0 = 0. Assume that α < E∆r . Then im(α) , [1, r].
Then there exists m ∈ {1, · · · , r} such that cm − cm−1 ≥ 2. Clearly, cm − 1 < im(α). Put

ξ =



(
A1

c1 − 1

∣∣∣∣∣ A2
c2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar

cr

)
, m = 1,(

A1
c1

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Am−1

cm−1

∣∣∣∣∣ Am
cm − 1

∣∣∣∣∣ Am+1
cm+1

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar

cr

)
, 2 ≤ m ≤ r − 1,(

A1
c1

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar−1

cr−1

∣∣∣∣∣ Ar
cr − 1

)
, m = r.
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Then ξ = αξ = 1nαξ ∈ ∆α and ξ2 , ξ. Notice that clearly | im(ξ)| = | im(α)|. Assume that E(LPT n
ξ ) ∩ ∆α , ∅.

Let ε ∈ E(LPT n
ξ ) ∩ ∆α. Then there exist β, γ ∈ PDn such that ε = βαγ and im(ε) = im(ξ). Notice that

cm − 1 ∈ im(ξ) and ∆α ⊆ PDn. Since ε is an idempotent, we have cm − 1 = (cm − 1)ε. Then

cm − 1 = (cm − 1)ε = [(cm − 1)βα]γ ≤ [(cm − 1)β]α ≤ (cm − 1)β ≤ cm − 1

and so (cm − 1)β = cm − 1. Thus

cm − 1 = (cm − 1)ε = [(cm − 1)βα]γ ≤ [(cm − 1)β]α = (cm − 1)α ≤ cm − 1

and so (cm − 1)α = cm − 1. Hence, cm − 1 ∈ im(α), a contradiction. We have proved that E(LPT n
ξ )∩∆α = ∅ and

so ∆α is not left abundant by Lemma 3.4, a contradiction.

(2) =⇒ (3) Let M = {β ∈ PDn : im(β) ⊆ [1, r]}. Suppose that α ∈ E∆r . Then im(α) = [1, r]. Let ξ ∈ ∆α be
arbitrary. Then there exist β, γ ∈ PDn such that ξ = βαγ. Clearly, im(ξ) ⊆ im(α)γ = [1, r]γ. It follows from
γ ∈ PDn that rγ ≤ r and so im(ξ) ⊆ [1, r] = im(α). Then ξ ∈ M. Thus ∆α ⊆ M. Conversely, let β ∈ M be
arbitrary. Then im(β) ⊆ [1, r]. Since α ∈ E∆r ⊆ Er and im(α) = [1, r], we have xα = x, for 1 ≤ x ≤ r. Then
β = βα = βα1n ∈ ∆α. Thus M ⊆ ∆α. Hence, we have proved that M = ∆α.

(3) =⇒ (1) Suppose that ∆α = {β ∈ PDn : im(β) ⊆ [1, r]}. Notice that α = 1nα1n ∈ ∆α and | im(α)| = r.
Then im(α) = [1, r]. Let β ∈ ∆α be arbitrary. Then im(β) ⊆ [1, r] = im(α). Put ε = 1im(β). Then clearly
ε ∈ E(∆α) and im(ε) = im(β). Thus (ε, β) ∈ L PT n . Hence, ε ∈ L ∗

β (∆α) ∩ E(∆α).

For 1 ≤ r ≤ n, put

λr =

(
n − r + 1
n − r + 1

∣∣∣∣∣ n − r + 2
n − r + 2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ n

n

)
.

Then clearly λr ∈ Er and λn = 1n. Let α ∈ PDn. It is easy to see that α = λn(= 1n) if and only if
∆α = PDn = {α ∈ PDn : dom(α) ⊆ [1,n]}. In fact, we have the following result:

Theorem 3.10. Let 1 ≤ r ≤ n − 1. Let α ∈ PDn with | im(α)| = r. Then the following statements are equivalent:

(1) ∆α is right abundant.

(2) α = λr.

(3) ∆α = {β ∈ PDn : dom(β) ⊆ [n − r + 1,n]}.

Proof. (1) =⇒ (2) Suppose that ∆α is right abundant. Then, by Lemma 3.8, α is an idempotent. Suppose that

α =

(
A1
c1

∣∣∣∣∣ A2
c2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Ar

cr

)
,

where c1 < c2 < · · · < cr and ci = min Ai, for 1 ≤ i ≤ r. Notice that ci ≤ n − r + i, for 1 ≤ i ≤ r. Put

ξ =

(
n − r + 1

c1

∣∣∣∣∣ n − r + 2
c2

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ n

cr

)
.

Then ker(ξ) = ker(λr) and ξ = ξα = ξα1n ∈ ∆α. Since ∆α is right abundant, then R∗ξ(∆α) ∩ E(∆α) , ∅.
Then there exists η ∈ E(∆α) such that ker(η) = ker(ξ)(= ker(λr)). Thus, by Lemma 3.3, η = λr. Since
η ∈ ∆α, there exist β, γ ∈ PDn such that λr = η = βαγ. Clearly, im(λr) ⊆ im(α)γ and | im(α)γ| ≤ | im(α)|.
Notice that | im(λr)| = | im(α)|. Then im(λr) = im(α)γ. It follows from γ ∈ PDn and im(λr) = [n − r + 1,n]
that im(α) = [n − r + 1,n]. Let x ∈ dom(α) be arbitrary. Then x ≥ xα ≥ min im(α) = n − r + 1. Thus
dom(α) ⊆ [n − r + 1,n] = im(α). It follows from |dom(α)| ≥ | im(α)| = r that dom(α) = im(α) = [n − r + 1,n].
Thus, by α ∈ PDn, α = λr.



P. Zhao, H.B. Hu / Filomat 39:4 (2025), 1149–1162 1162

(2) =⇒ (3) Let M = {β ∈ PDn : dom(β) ⊆ [n − r + 1,n]}. Suppose that α = λr. Let ξ ∈ ∆α be arbitrary.
Then there exist β, γ ∈ PDn such that ξ = βαγ. Assume that there exists 1 ≤ j ≤ n − r such that j ∈ dom(ξ).
Then jξ = jβαγ and so jβ ∈ dom(α) = dom(λr) = [n − r + 1,n]. Since β ∈ PDn, we have jβ ≤ j ≤ n − r,
a contradiction. Then dom(ξ) ⊆ [n − r + 1,n]. Thus ∆α ⊆ M. Conversely, let β ∈ M be arbitrary. Then
dom(β) ⊆ [n − r + 1,n]. Since α = λr, we have xα = x, for n − r + 1 ≤ x ≤ n. It follows from β ∈ PDn that
β = βα = βα1n ∈ ∆α. Thus M ⊆ ∆α. Hence, we have proved that M = ∆α.

(3) =⇒ (1) Suppose that ∆α = {β ∈ PDn : dom(β) ⊆ [n − r + 1,n]}. Notice that α = 1nα1n ∈ ∆α and
| im(α)| = r. Then dom(α) = [n − r + 1,n]. Let ξ ∈ ∆α be arbitrary. Then dom(ξ) ⊆ [n − r + 1,n]. Take
ε ∈ E(PDn) such that ker(ε) = ker(ξ). Then clearly (ε, ξ) ∈ RPT n and dom(ε) = dom(ξ) ⊆ [n− r+ 1,n]. Then
ε ∈ {β ∈ PDn : dom(β) ⊆ [n − r + 1,n]} = ∆α and so ε ∈ E(∆α). Thus ε ∈ R∗ξ(∆α) ∩ E(∆α).

Theorem 3.11. Let α ∈ PDn. Then ∆α is abundant if and only if α = θn or α = 1n.

Proof. Suppose that ∆α is abundant. Then, by Lemma 3.8, α is an idempotent. We claim that | im(α)| = r ∈
{0,n}. Notice that α = 1nα1n ∈ ∆α. Assume that 1 ≤ r ≤ n − 1, then, by Theorems 3.9 and 3.10, im(α) = [1, r]
and dom(α) = [n − r + 1,n]. Since α is an idempotent, we have xα = x, for x ∈ im(α). It follows that
im(α) ⊆ dom(α) and so [1, r] = im(α) ⊆ dom(α) = [n− r+ 1,n], a contradiction. Thus r ∈ {0,n}. If r = 0, then
clearly α = θn. If r = n, then clearly α = 1n.

Conversely, if α = 1n, then ∆α = PDn. Thus, by Lemma 3.2, ∆α = PDn is abundant. On the other hand,
if α = θn, then clearly ∆α = {θn} is abundant.
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