Filomat 39:4 (2025), 1149–1162 https://doi.org/10.2298/FIL2504149Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the monoid of all order-decreasing partial transformations

Ping Zhao^{a,b}, Huabi Hu^{a,*}

^a School of Biology and Engineering, Guizhou Medical University, Guiyang 50004, Guizhou Province, China ^b School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China

Abstract. A partial transformation α on an *n*-element set $\mathbf{n} = \{1, ..., n\}$ is called order-decreasing if $x\alpha \le x$ for all $x \in \text{dom}(\alpha)$. The set of all partial order-decreasing transformations on \mathbf{n} forms a monoid \mathcal{PD}_n . In this paper, we determine the maximal subsemigroups as well as the maximal idempotent generated subsemigroups of \mathcal{PD}_n . Furthermore, we investigate the abundance of the ideals of \mathcal{PD}_n , and characterize the structure of the left (right) abundant principal ideal of \mathcal{PD}_n .

1. Introduction and preliminaries

Fix a positive integer *n*. We write **n** for the finite set $\{1, ..., n\}$. We denote by \mathcal{PT}_n the monoid of all partial transformations of **n** and by \mathcal{T}_n the monoid of all full transformations of **n**. We say that a transformation $\alpha \in \mathcal{PT}_n$ is order-preserving [order-reversing] if $x \leq y$ implies $x\alpha \leq y\alpha$ [$x\alpha \geq y\alpha$], for all $x, y \in \text{dom}(\alpha)$, and α is *decreasing* [*increasing* or *extensive*] if $x\alpha \leq x$ [$x\alpha \geq x$], for all $x \in \text{dom}(\alpha)$. Denote by \mathcal{O}_n the monoid of all order-preserving partial transformations and by \mathcal{POE}_n the of all order-preserving and extensive partial transformations. We also denote by \mathcal{D}_n the monoid of all order-decreasing partial transformations and \mathcal{PD}_n the monoid of all order-decreasing partial transformations.

Let $c = (c_1, c_2, ..., c_t)$ be a sequence of t ($t \ge 0$) elements from the set **n**. We say that c is *cyclic* if there exists no more than one index $i \in \{1, ..., t\}$ such that $c_i > c_{i+1}$, where c_{t+1} denotes c_1 . Let $\alpha \in \mathcal{PT}_n$ and suppose that dom(α) = $\{a_1, ..., a_t\}$, with $t \ge 0$ and $a_1 < \cdots < a_t$. We say that α is orientation-preserving if the sequence of its image $(a_1\alpha, ..., a_t\alpha)$ is cyclic. We denote by \mathcal{POP}_n the submonoid of \mathcal{PT}_n of all partial orientation-preserving transformations and by \mathcal{OP}_n the submonoid $\mathcal{POP}_n \cap \mathcal{T}_n$ of \mathcal{PT}_n of all full orientation-preserving and extensive full transformations and by \mathcal{POPE}_n of all orientation-preserving and extensive partial transformations.

Algebraic, combinatorial, and rank properties of various kinds of transformation semigroups have been studied over a long period and many interesting results have emerged. In particular, Dimitrova and Koppitz

²⁰²⁰ Mathematics Subject Classification. Primary 20M20; Secondary 20M10.

Keywords. Maximal subsemigroup; Maximal idempotent generated subsemigroup; Left abundant; Right abundant; Abundant. Received: 8 July 2024; Revised: 01 November 2024; Accepted: 06 November 2024

Communicated by Dijana Mosić

Research supported by the National Natural Science Foundation of China (No.12261022) and the National Natural Science Foundation of China (No.11461014).

^{*} Corresponding author: Huabi Hu

Email addresses: pingzhao731108@163.com (Ping Zhao), huhuabi1978@163.com (Huabi Hu)

ORCID iDs: https://orcid.org/0000-0003-2639-9841 (Ping Zhao), https://orcid.org/0000-0002-7152-2629 (Huabi Hu)

[1] (2008) characterized the maximal subsemigroups of the ideals of O_n as well as of the ideals of OD_n the monoid of all order-preserving or order-reversing full transformations. Further, Dimitrova and Koppitz [2] (2011) classified the maximal regular subsemigroups of the ideals of O_n . Dimitrova, Fernandes and Koppitz [4] (2011) characterized completely the maximal subsemigroups of the ideals of OP_n . Dimitrova and Koppitz [3] (2012) described the maximal subsemigroups as well as the maximal idempotent generated subsemigroups of POE_n . Zhao et al.[14] (2022) completely determined the maximal subsemigroups as well as the monoid POE_n . Li, Zhang and Luo [9] (2022) characterized the maximal subsemigroups as well as the maximal idempotent generated subsemigroups of the ideals of the monoid POE_n . Li, Zhang and Luo [9] (2022) characterized the maximal subsemigroups as well as the maximal idempotent generated subsemigroups as well as the monoid POE_n . Li, Zhang and Luo [9] (2022) characterized the maximal subsemigroups as well as the maximal idempotent generated subsemigroups as well as the monoid POE_n . Li, Zhang and Luo [9] (2022) characterized the maximal subsemigroups as well as the maximal idempotent generated subsemigroups as well as the monoid POE_n . Recently, Zhao and Hu [15] (2023) completely determined the maximal subsemigroups as well as the monoid $POPE_n$.

In 1986, Pin [10] proved that a finite monoid is \mathcal{R} -trivial if and only if it can be embedded in \mathcal{D}_n for some n. In 1992, Umar [11] showed that both the rank and the idempotent rank of the singular subsemigroup of \mathcal{D}_n of all singular order-decreasing full transformations are equal to $\frac{n(n-1)}{2}$. In 2004, Laradji and Umar [8] studied algebraic, combinatorial and rank properties of certain Rees quotient semigroups of \mathcal{D}_n . Yağci [13] (2023) investigated the maximum nilpotent subsemigroup of \mathcal{D}_n and determined the minimum generating set as well as the cardinality of the maximum nilpotent subsemigroup of \mathcal{D}_n . Recently, Zhao and Hu [16] characterized the maximal subsemigroups as well as the maximal idempotent generated subsemigroups of the monoid \mathcal{D}_n .

Regarding the monoid \mathcal{PD}_n , Umar [12] studied combinatorial and rank properties of certain Rees quotient semigroups of \mathcal{PD}_n . They showed that the ideals $\mathcal{PD}_{n,r} = \{\alpha \in \mathcal{PD}_n : |\operatorname{im}(\alpha)| \leq r\}$ $(1 \leq r \leq n)$ of \mathcal{PD}_n are abundant (see [12, Corollary 2.4.3 and Theorem 2.2.5]). However, the results about algebraic properties of the monoid \mathcal{PD}_n are very few. The main aim of this paper is to study the monoid \mathcal{PD}_n . We notice that each ideal of \mathcal{PD}_n is not always the form $\mathcal{PD}_{n,r}$, for $1 \leq r \leq n$, and \mathcal{PD}_n is the principal ideal $\mathcal{PD}_n 1_n \mathcal{PD}_n$ generated by 1_n (the identity transformation on **n**). In this paper, we determine the maximal subsemigroups as well as the maximal idempotent generated subsemigroups of \mathcal{PD}_n in Sect.2. In Sect.3, we characterize the abundance of the ideals of \mathcal{PD}_n . Moreover, we characterize the structure of the left (right) abundant principal ideal of \mathcal{PD}_n .

Given a subset *A* of a semigroup *S* and $u \in S$, we denote by E(A) the set of idempotents of *S* belonging to *A* and by L_u^S and R_u^S the \mathscr{L} -class and \mathscr{R} -class of *u*, respectively. For general background on Semigroup Theory, we refer the reader to Howie's book [6].

We denote by θ_n the empty transformation on **n**. Let $\alpha \in \mathcal{PT}_n \setminus \{\theta_n\}$, we will write

$$\alpha = \left(\begin{array}{ccc} A_1 & \cdots & A_m \\ a_1 & \cdots & a_m \end{array}\right)$$

to indicate that dom(α) = $A_1 \sqcup \cdots \sqcup A_m$, im(α) = { a_1, \ldots, a_m } and $A_i \alpha = a_i$ for each $i \in \{1, \ldots, m\}$ (the symbol " \sqcup " denotes disjoint union). Usually this notation will imply that a_1, \cdots, a_m are distinct, but occasionally this will not be the case, and we will always specify this. As usual, we denote the *kernel* of $\alpha \in \mathcal{PT}_n \setminus \{\theta_n\}$ by

$$\ker(\alpha) = \{(x, y) \in \operatorname{dom}(\alpha) \times \operatorname{dom}(\alpha) : x\alpha = y\alpha\}.$$

We will sometimes write $ker(\alpha) = (A_1 | ... | A_m)$ to indicate that $ker(\alpha)$ has equivalence classes $A_1, ..., A_m$, and this notation will always imply that A_i are pairwise disjoint and non-empty.

Let $\alpha \in \mathcal{PD}_n$ with $|\operatorname{im}(\alpha)| = r \ge 2$. Then α can be expressed as

$$\alpha = \left(\begin{array}{ccc} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{array}\right),$$

where $a_1 < \cdots < a_r$ and $a_i \le \min A_i$, for $1 \le i \le r$. Notice that if $1 \in A_1$, then $a_1 = 1$. Notice that if $\alpha \in E(\mathcal{PD}_n)$, then $a_i = \min A_i$ for $1 \le i \le r$.

2. Maximal (idempotent generated) subsemigroups of \mathcal{PD}_n

We shall say that a proper subsemigroup *S* of \mathcal{PD}_n is *maximal subsemigroup* (idempotent generated subsemigroups) if any subsemigroup (idempotent generated subsemigroups) of \mathcal{PD}_n properly containing *S* must be \mathcal{PD}_n . In this section, we describe all maximal subsemigroups and maximal idempotent generated subsemigroups of \mathcal{PD}_n . For $1 \le r \le n$, put

 $J_r = \{ \alpha \in \mathcal{PD}_n : |\operatorname{im}(\alpha)| = r \}, \ E_r = E(J_r) \ and \ \mathcal{D}_{n,r} = \{ \alpha \in \mathcal{D}_n : |\operatorname{im}(\alpha)| \le r \}.$

Then the sets $\mathcal{PD}_{n,r}$ and $\mathcal{D}_{n,r}$ are the two-sided ideals of \mathcal{PD}_n and \mathcal{D}_n , respectively. Clearly, $\mathcal{PD}_{n,r} = J_0 \cup J_1 \cup \cdots \cup J_r$, where J_0 consists of the empty transformation θ_n .

Lemma 2.1. Let $0 \le m \le n - 2$. Then $E_m \subseteq \langle E_{m+1} \rangle$.

Proof. Let $\varepsilon \in E_m$ be arbitrary. To prove that $\varepsilon \in \langle E_{m+1} \rangle$, we distinguish two cases:

Case 1. m = 0. Clearly, $\varepsilon = \theta_n$. Put

$$\eta = \begin{pmatrix} 1 \\ 1 \end{pmatrix} and \xi = \begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$

Then $\eta, \xi \in E_1$ and $\varepsilon = \eta \xi$. Thus $\varepsilon = \eta \xi \in \langle E_1 \rangle$.

Case 2. $m \ge 1$. We can suppose that

$$\varepsilon = \left(\begin{array}{ccc} A_1 & \dots & A_m \\ a_1 & \dots & a_m \end{array}\right),$$

where $a_i = minA_i$, for $1 \le i \le m$. Notice that dom $(\varepsilon) = A_1 \sqcup \cdots \sqcup A_m$. Clearly, $|dom(\varepsilon)| \ge m$. We distinguish two subcases:

Subcase 2.1. $|\operatorname{dom}(\varepsilon)| = n$. Since $m \le n-2$, there exist $1 \le p \le m$ such that $|A_p| \ge 2$. Let $x_p = min(A_p \setminus \{a_p\})$. Take $y \in \mathbf{n} \setminus \{a_1, \ldots, a_m, x_p\}$. Put

$$\eta = \begin{pmatrix} A_1 & \dots & A_{p-1} & a_p & A_p \setminus \{a_p\} & A_{p+1} & \dots & A_m \\ a_1 & \dots & a_{p-1} & a_p & x_p & a_{p+1} & \dots & a_m \end{pmatrix},$$

$$\xi = \begin{pmatrix} a_1 & \dots & a_{p-1} & \{a_p, x_p\} & a_{p+1} & \dots & a_m & y \\ a_p & a_{p+1} & \dots & a_m & y \end{pmatrix}.$$

Then $\eta, \xi \in E_{m+1}$ and $\varepsilon = \eta \xi$. Thus $\varepsilon = \eta \xi \in \langle E_{m+1} \rangle$.

Subcase 2.2. $|\operatorname{dom}(\varepsilon)| \le n - 1$. Take $x \in \mathbf{n} \setminus \operatorname{dom}(\varepsilon)$ and $y \in \mathbf{n} \setminus \{a_1, \ldots, a_m, x\}$. Put

$$\eta = \begin{pmatrix} A_1 & \dots & A_m & x \\ a_1 & \dots & a_m & x \end{pmatrix} and \xi = \begin{pmatrix} a_1 & \dots & a_m & y \\ a_1 & \dots & a_m & y \end{pmatrix}.$$

Then $\eta, \xi \in E_{m+1}$ and $\varepsilon = \eta \xi$. Thus $\varepsilon = \eta \xi \in \langle E_{m+1} \rangle$. \Box

Lemma 2.2. Let $0 \le m \le n$. Then $J_m \subseteq \langle E_m \rangle$.

Proof. Notice that $J_0 = E_0 = \{\theta_n\}$ and $J_n = E_n = \{1_n\}$. Then $J_m = \langle E_m \rangle$, for m = 0, n. Suppose that $1 \le m \le n-1$. Let

$$\alpha = \left(\begin{array}{cc} B_1 \\ b_1 \end{array} \middle| \begin{array}{c} \dots \\ \dots \\ \dots \\ \end{array} \middle| \begin{array}{c} B_m \\ b_m \end{array} \right) \in J_m$$

where $b_i \leq minB_i$, for $1 \leq i \leq m$. Let $q_i = minB_i$, for $1 \leq i \leq m$. Then $b_i \leq q_i$, for $1 \leq i \leq m$. We denote by S_r the symmetric group on $\{1, ..., m\}$. Then there exists $\sigma \in S_m$ such that $q_{1\sigma} < q_{2\sigma} < \cdots < q_{m\sigma}$. Thus

$$b_{k\sigma} \leq q_{k\sigma} < \cdots < q_{m\sigma}, \text{ for } 1 \leq k \leq m$$

Put

$$\tau = \begin{pmatrix} B_{1\sigma} & B_{2\sigma} & \cdots & B_{m\sigma} \\ q_{1\sigma} & q_{2\sigma} & \cdots & q_{m\sigma} \end{pmatrix}, \ \tau_1 = \begin{pmatrix} \{b_{1\sigma}, q_{1\sigma}\} & q_{2\sigma} & \cdots & q_{m\sigma} \\ b_{1\sigma} & q_{2\sigma} & \cdots & q_{m\sigma} \end{pmatrix}$$

,

and

$$\tau_i = \begin{pmatrix} b_{1\sigma} & \dots & b_{(i-1)\sigma} & \{b_{i\sigma}, q_{i\sigma}\} & q_{(i+1)\sigma} & \dots & q_{m\sigma} \\ b_{1\sigma} & \dots & b_{(i-1)\sigma} & b_{i\sigma} & q_{(i+1)\sigma} & \dots & q_{m\sigma} \end{pmatrix}$$

for $2 \le i \le m$. Clearly, $\tau, \tau_1, \ldots, \tau_m \in E_m$. It is easy to verify that

$$\alpha=\tau\tau_1\ldots\tau_m.$$

Thus $\alpha \in \langle E_m \rangle$. \square

Notice that $\mathcal{PD}_{n,r} = J_0 \cup J_1 \cup \cdots \cup J_r$, for $1 \le r \le n-1$. As an immediate consequence of Lemmas 2.1 and 2.2, we have the following result:

Lemma 2.3. Let $1 \le r \le n - 1$. Then $\mathcal{PD}_{n,r} = \langle E_r \rangle$.

Let $S \in \{\mathcal{T}_n, \mathcal{D}_n\}$. Put

$$J_r^S = \{\alpha \in S : |\operatorname{im}(\alpha)| = r\}$$
 and $E_r^S = E(J_r^S)$

Then $J_r^{\mathcal{D}_n} \subseteq J_r$ and $E_r^{\mathcal{D}_n} \subseteq E_r$. Now, recall that Umar [8, Theorem 1.3] proved:

Lemma 2.4. Let $1 \le r \le n-1$. Then $\mathcal{D}_{n,r} = \langle E_r^{\mathcal{D}_n} \rangle$.

Notice that each idempotent ε of $E_{n-1}^{\mathcal{T}_n}$ has a form $\binom{a}{b}$ for some $a, b \in \mathbf{n}, a \neq b$, which maps a to b and x to itself for $x \neq a$. Then

$$E_{n-1}^{\mathcal{D}_n} = \{ \begin{pmatrix} i \\ j \end{pmatrix} : i, j \in \mathbf{n} \text{ with } i > j \}.$$

For $1 \le i \le n$, we denote by δ_i the identity mapping on $X_n \setminus \{i\}$. Put

$$F_{n-1} = \{\delta_i : 1 \le i \le n\}.$$

Then $E_{n-1} = E_{n-1}^{\mathcal{D}_n} \sqcup F_{n-1}$.

Let *S* be a semigroup. We say that an element $\alpha \in S$ is *undecomposable* in *S* if there are no $\beta, \gamma \in S \setminus \{\alpha\}$ such that $\alpha = \beta \gamma$. Given a subset *U* of *S*, we say that *U* is a *undecomposable subset* of *S* if each element of *U* is *undecomposable* in S. Let A be a subset of **n**. We denote by 1_A the identity mapping on A. Clearly, 1_n is undecomposable in \mathcal{PD}_n . In fact, we have the following lemma:

Lemma 2.5. The elements of the idempotent set E_{n-1} are undecomposable in \mathcal{PD}_n .

1152

Proof. Let $\varepsilon \in E_{n-1}$ be arbitrary. Suppose that there exist $\beta, \gamma \in \mathcal{PD}_n \setminus \{\varepsilon\}$ such that $\varepsilon = \beta \gamma$. Notice that

$$E_{n-1} = E_{n-1}^{\mathcal{D}_n} \sqcup F_{n-1}$$

We distinguish two cases:

Case 1. $\varepsilon \in E_{n-1}^{\mathcal{D}_n}$. Then there exist $i, j \in \mathbf{n}$ with i > j such that $\varepsilon = \binom{i}{j}$. Assume that there exist $\beta, \gamma \in \mathcal{PD}_n \setminus \{\varepsilon\}$ such that $\varepsilon = \beta\gamma$. Clearly, dom $(\beta) = \mathbf{n}$. Let $x \in \mathbf{n} \setminus \{i\}$. Then $x = x\varepsilon = (x\beta)\gamma \le x\beta \le x$. It follows that

$$x\beta = x\gamma = x, \text{ for } x \in \mathbf{n} \setminus \{i\}.$$
 (2.1)

If $i\beta = i$, then $\beta = 1_n$ and so $\gamma = \beta\gamma = \varepsilon$, a contradiction. If $i\beta \neq i$, then, by (2.1), $(i\beta)\gamma = i\beta$ and so $i\beta = i\beta\gamma = i\varepsilon = j$. Thus, by (2.1), $\beta = {i \choose i} = \varepsilon$, a contradiction.

Case 2. $\varepsilon \in F_{n-1}$. Then $\varepsilon = \delta_i$ for some $1 \le i \le n$. Let $x \in \mathbf{n} \setminus \{i\}$. Then $x = x\varepsilon = (x\beta)\gamma \le x\beta \le x$. It follows that

$$x\beta = x\gamma = x, \text{ for } x \in \mathbf{n} \setminus \{i\}.$$
(2.2)

If $i \notin \text{dom}(\gamma)$, then, by (2.2), $\gamma = \delta_i$, a contradiction. If $i \in \text{dom}(\gamma)$, then $\text{dom}(\gamma) = \mathbf{n}$. It follows from $\delta_i = \varepsilon = \beta \gamma$ and (2.2) that $i \notin \text{dom}(\beta)$. Then, by (2.2), $\beta = \delta_i$, a contradiction. \Box

We can now present one of the main results of this section.

Theorem 2.6. Let $n \ge 3$. Then each maximal subsemigroup S of \mathcal{PD}_n must be one of the following forms:

$$S = \mathcal{PD}_{n,n-1} \text{ or } S = \mathcal{PD}_n \setminus \{\varepsilon\}, \text{ for some } \varepsilon \in E_{n-1}.$$

Proof. Notice that 1_n is undecomposable in \mathcal{PD}_n . Let $\varepsilon \in E_{n-1} \cup \{1_n\}$ be arbitrary. Then, by Lemma 2.5, we obtain the set $\mathcal{PD}_n \setminus \{\varepsilon\}$ is a maximal subsemigroup of \mathcal{PD}_n . Let *S* be a maximal subsemigroup of \mathcal{PD}_n . Notice that $\mathcal{PD}_n = \mathcal{PD}_{n,n-1} \cup \{1_n\}$. If $1_n \notin S$, then $S \subseteq \mathcal{PD}_{n,n-1} \subset \mathcal{PD}_n$. Thus, by the maximality of *S*, $S = \mathcal{PD}_{n,n-1}$. If $1_n \in S$, then, by Lemma 2.3 and $S \subset \mathcal{PD}_n$, $E_{n-1} \notin S$. Then there exists $\varepsilon \in E_{n-1}$ such that $\varepsilon \notin S$. Thus $S \subseteq \mathcal{PD}_n \setminus \{\varepsilon\} \subset \mathcal{PD}_n$. Hence, by the maximality of *S*, $S = \mathcal{PD}_n \setminus \{\varepsilon\}$. \Box

For $i, j \in \mathbf{n}$ with i > j, put

$$G_{(i,j)} = \{ \alpha \in J_{n-1}^{\mathcal{D}_n} : i\alpha \neq j \}.$$

Notice that $E_{n-1}^{\mathcal{D}_n} \setminus \{\binom{i}{j}\} \subseteq G_{(i,j)}$. Recall that Zhao and Hu [16, Lemma 2.6]) proved the following result:

Lemma 2.7. Let $n \ge 3$. Then $G_{(i,j)} = \langle E_{n-1}^{\mathcal{D}_n} \setminus \{\binom{i}{j}\} \rangle \cap J_{n-1'}^{\mathcal{D}_n}$ for $i, j \in n$ with i > j.

A product $\varepsilon_1 \varepsilon_2 \dots \varepsilon_m$ of idempotents in \mathcal{PT}_n will be called *irreducible* if $\varepsilon_i \varepsilon_{i+1} \neq \varepsilon_i$, $\varepsilon_i \varepsilon_{i+1} \neq \varepsilon_{i+1}$ (*i* = 1,...,*m* – 1). Now, recall that Howie [7, Lemma 4] proved:

Lemma 2.8. Let $\alpha \in J_{n-1}^{\mathcal{T}_n}$. If $\alpha = \binom{i_1}{j_1}\binom{i_2}{j_2} \cdots \binom{i_m}{j_m}$ is irreducible. Then $i_{r-1} = j_r$ and $j_{r-1} \neq i_r$, for $2 \le r \le m$.

Notice that $J_{n-1}^{\mathcal{D}_n} \subseteq J_{n-1}^{\mathcal{T}_n}$. What is clear is that if a is expressible as a product of idempotents then the product can be 'pruned down' until it is irreducible (see [7, page 2]). Thus, by Lemma 2.8, we immediately deduce the following result:

Lemma 2.9. Let $I \subseteq E_{n-1}^{\mathcal{D}_n}$. If $\alpha \in \langle I \rangle \cap J_{n-1}^{\mathcal{D}_n}$, then α can be written as

$$\alpha = \begin{pmatrix} x_1 \\ x_0 \end{pmatrix} \begin{pmatrix} x_2 \\ x_1 \end{pmatrix} \cdots \begin{pmatrix} x_m \\ x_{m-1} \end{pmatrix},$$

where all $\binom{x_{k+1}}{x_k} \in I$, for $0 \le k \le m - 1$.

For $i, j \in \mathbf{n}$ with i > j, put

 $G_{(i,i)}^{\Delta} = \{ \alpha \in J_{n-1} : i\alpha \neq j \}, \ \Delta_i = \{ \alpha \in J_{n-1} : i \notin \operatorname{dom}(\alpha) \}$

and

$$PG_{(i,j)} = G_{(i,j)}^{\triangle} \sqcup \Delta_i.$$

Clearly, $G_{(i,j)} \subseteq G_{(i,j)}^{\vartriangle}$ and $F_{n-1} \subseteq PG_{(i,j)}$. Let $\alpha \in \mathcal{PD}_n$, we put

$$Shift(\alpha) = \{i \in dom(\alpha) : i\alpha \neq i\}$$

Lemma 2.10. Let $n \ge 3$. Then $PG_{(i,j)} = \langle E_{n-1} \setminus \{ \binom{i}{j} \} \rangle \cap J_{n-1}$, for $i, j \in n$ with i > j.

Proof. Let $\alpha \in PG_{(i,j)}$ be arbitrary. Notice that $PG_{(i,j)} = G_{(i,j)}^{\triangle} \sqcup \Delta_i$. To prove that $\alpha \in \langle E_{n-1} \setminus \{\binom{i}{j}\} \rangle \cap J_{n-1}$, we distinguish two cases.

Case 1. $\alpha \in G_{(i,j)}^{\wedge}$. Then $i\alpha \neq j$ and $\alpha \in J_{n-1}$. If $|\operatorname{dom}(\alpha)| = n$, then $\alpha \in G_{(i,j)}$. Thus, by Lemma 2.7,

$$\alpha \in G_{(i,j)} = \langle E_{n-1}^{\mathcal{D}_n} \setminus \{ \binom{i}{j} \} \rangle \cap J_{n-1}^{\mathcal{D}_n} \subseteq \langle E_{n-1} \setminus \{ \binom{i}{j} \} \rangle \cap J_{n-1}.$$

If $|\operatorname{dom}(\alpha)| = n - 1$, then $\operatorname{dom}(\alpha) = \mathbf{n} \setminus \{k\}$ for some $k \in \mathbf{n} \setminus \{i\}$. (*i*) If $1 \in \operatorname{im}(\alpha)$, we define α^* by

$$x\alpha^* = \begin{cases} 1, & x = k, \\ x\alpha, & x \neq k. \end{cases}$$

Then $\alpha^* \in G_{(i,j)}$ and $\alpha = \delta_k \alpha^*$. Thus, by Lemma 2.7,

$$\alpha = \delta_k \alpha^* \in \delta_k \cdot G_{(i,j)} = \delta_k \cdot [\langle E_{n-1}^{\mathcal{D}_n} \setminus \{ \begin{pmatrix} i \\ j \end{pmatrix} \} \rangle \cap J_{n-1}] \subseteq \langle E_{n-1} \setminus \{ \begin{pmatrix} i \\ j \end{pmatrix} \} \rangle \cap J_{n-1}$$

(*ii*) If $1 \notin im(\alpha)$, then k = 1 otherwise $1\alpha = 1$. Thus, by $\alpha \in J_{n-1}$, dom $(\alpha) = im(\alpha) = \mathbf{n} \setminus \{1\}$. It follows from $\alpha \in \mathcal{PD}_n$ that

$$\alpha = \begin{pmatrix} 2 & 3 & \cdots & n \\ 2 & 3 & \cdots & n \end{pmatrix} = \delta_1 \in \langle E_{n-1} \setminus \{ \begin{pmatrix} i \\ j \end{pmatrix} \} \rangle \cap J_{n-1}.$$

Case 2. $\alpha \in \Delta_i$. Then dom(α) = **n**\{*i*}. Notice that $i > j \ge 1$. If $i \ge 3$, then there exists $s \in \{1, 2\}$ such that $s \ne j$. Now, we define α^* by

$$x\alpha^* = \begin{cases} s, & x = i, \\ x\alpha, & x \neq i. \end{cases}$$

Then $\alpha^* \in G_{(i,j)}$ and $\alpha = \delta_i \alpha^*$. Thus, by Lemma 2.7,

$$\alpha = \delta_i \alpha^* \in \delta_i \cdot G_{(i,j)} = \delta_i \cdot \left[\langle E_{n-1}^{\mathcal{D}_n} \setminus \{ \binom{i}{j} \} \rangle \cap J_{n-1} \right] \subseteq \langle E_{n-1} \setminus \{ \binom{i}{j} \} \rangle \cap J_{n-1}$$

Notice that if i = 2, then j = 1 since i > j. (*i*) If i = 2 and $2 \notin im(\alpha)$, then dom(α) = im(α) = n\{2}. It follows from $\alpha \in \mathcal{PD}_n$ that

$$\alpha = \begin{pmatrix} 1 & 3 & \cdots & n \\ 1 & 3 & \cdots & n \end{pmatrix} = \delta_2 \in \langle E_{n-1} \setminus \{ \begin{pmatrix} i \\ j \end{pmatrix} \} \rangle \cap J_{n-1}.$$

(*ii*) If i = 2 and $2 \in im(\alpha)$, then we define α^* by

$$x\alpha^* = \begin{cases} 2, & x = 2, \\ x\alpha, & x \neq 2. \end{cases}$$

Then $\alpha^* \in G_{(i,j)}$ and $\alpha = \delta_2 \alpha^*$. Thus, by Lemma 2.7,

$$\alpha = \delta_2 \alpha^* \in \delta_2 \cdot G_{(i,j)} = \delta_2 \cdot [\langle E_{n-1}^{\mathcal{D}_n} \setminus \{ \binom{i}{j} \} \rangle \cap J_{n-1}] \subseteq \langle E_{n-1} \setminus \{ \binom{i}{j} \} \rangle \cap J_{n-1}.$$

It remains to prove that $\langle E_{n-1} \setminus \{\binom{i}{j}\} \rangle \cap J_{n-1} \subseteq PG_{(i,j)}$. Let $\alpha \in \langle E_{n-1} \setminus \{\binom{i}{j}\} \rangle \cap J_{n-1}$ be arbitrary. To prove that $\alpha \in PG_{(i,j)}$, we distinguish two cases.

Case 1. $\alpha \in J_{n-1}^{\mathcal{D}_n}$. Then, by Lemma 2.9, α can be written as

$$\alpha = \begin{pmatrix} y_1 \\ y_0 \end{pmatrix} \begin{pmatrix} y_2 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} y_{t-1} \\ y_{t-2} \end{pmatrix} \begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix}$$

where $Shift(\alpha) = \{y_1, y_2, \dots, y_t\}$ and $y_1 < y_2 < \dots < y_t$ such that $\binom{y_{k+1}}{y_k} \neq \binom{i}{j}$ for all $0 \le k \le t - 1$. If $i \notin Shift(\alpha)$, then $i\alpha = i > j$. If $i = y_{k+1} \in Shift(\alpha)$ for some $k \in \{0, 1, \dots, t-1\}$, then $j \neq y_k$ and so

$$i\alpha = i \begin{pmatrix} y_1 \\ y_0 \end{pmatrix} \begin{pmatrix} y_2 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} y_{k+1} \\ y_k \end{pmatrix} \cdots \begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix} = y_k \neq j.$$

Thus $\alpha \in G_{(i,j)} \subseteq PG_{(i,j)}$.

Case 2. $\alpha \in J_{n-1} \setminus J_{n-1}^{\mathcal{D}_n}$. Notice that $E_{n-1} = E_{n-1}^{\mathcal{D}_n} \cup F_{n-1}$ and $\alpha \in \langle E_{n-1} \setminus \{\binom{i}{j}\} \rangle \cap J_{n-1}$. Then, by Lemma 2.8, α can be written as

$$\alpha = \delta_k$$
 for some $1 \le k \le n$

or

$$\alpha = \delta_s \begin{pmatrix} y_1 \\ y_0 \end{pmatrix} \begin{pmatrix} y_2 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} y_{t-1} \\ y_{t-2} \end{pmatrix} \begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix},$$

where $Shift(\alpha) = \{y_1, y_2, \dots, y_t\} \setminus \{s\}$ and $y_1 < y_2 < \dots < y_t$ such that $\binom{y_{k+1}}{y_k} \neq \binom{i}{j}$ for all $0 \le k \le t - 1$, and $1 \le s \le n$. If $\alpha = \delta_k$ for some $1 \le k \le n$, then clearly $\alpha = \delta_k \in F_{n-1} \subseteq PG_{(i,j)}$. Notice that dom $(\alpha) = \mathbf{n} \setminus \{s\}$. If $\alpha = \delta_s \binom{y_1}{y_0} \binom{y_2}{y_1} \cdots \binom{y_{t-1}}{y_{t-2}} \binom{y_t}{y_{t-1}}$, to prove that $\alpha \in PG_{(i,j)}$, we distinguish two subcases.

Subcase 2.1. s = i. Then clearly $\alpha \in \Delta_i \subseteq PG_{(i,j)}$.

Subcase 2.2. $s \neq i$. Then $i \in \text{dom}(\alpha)$. If $i \notin Shift(\alpha)$, then $i\alpha = i > j$. If $i = y_{k+1} \in Shift(\alpha)$ for some $k \in \{0, 1, \dots, t-1\}$, then $j \neq y_k$ and so

$$i\alpha = i\delta_s \begin{pmatrix} y_1 \\ y_0 \end{pmatrix} \begin{pmatrix} y_2 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} y_{t-1} \\ y_{t-2} \end{pmatrix} \begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix} = i \begin{pmatrix} y_1 \\ y_0 \end{pmatrix} \begin{pmatrix} y_2 \\ y_1 \end{pmatrix} \cdots \begin{pmatrix} y_{k+1} \\ y_k \end{pmatrix} \cdots \begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix} = y_k \neq j.$$

Thus $\alpha \in G_{(i,j)}^{\vartriangle} \subseteq PG_{(i,j)}$. \Box

For $1 \le i \le n$, put

$$\Omega_i = \{ \alpha \in J_{n-1} : i \in \operatorname{dom}(\alpha) \}.$$

Lemma 2.11. Let $n \ge 3$. Then $\Omega_i = \langle E_{n-1} \setminus \{\delta_i\} \rangle \cap J_{n-1}$, for $1 \le i \le n$.

Proof. By Lemma 2.4, we have $\mathcal{D}_{n,n-1} = \langle E_{n-1}^{\mathcal{D}_n} \rangle$. Notice that $J_{n-1}^{\mathcal{D}_n} \subseteq J_{n-1}$. Then $J_{n-1}^{\mathcal{D}_n} \subseteq \mathcal{D}_{n,n-1} \cap J_{n-1} = \langle E_{n-1}^{\mathcal{D}_n} \rangle \cap J_{n-1}$. Let $\alpha \in \Omega_i$ be arbitrary. To prove that $\alpha \in \langle E_{n-1} \setminus \{\delta_i\} \rangle \cap J_{n-1}$, we distinguish two cases.

Case 1. $\alpha \in J_{n-1}^{\mathcal{D}_n}$. Then

$$\alpha \in J_{n-1}^{\mathcal{D}_n} \subseteq \langle E_{n-1}^{\mathcal{D}_n} \rangle \cap J_{n-1} \subseteq \langle E_{n-1} \backslash \{\delta_i\} \rangle \cap J_{n-1}.$$

Case 2. $\alpha \in J_{n-1} \setminus J_{n-1}^{\mathcal{D}_n}$. Then dom $(\alpha) = \mathbf{n} \setminus \{k\}$, for some $k \in \mathbf{n} \setminus \{i\}$. We distinguish two subcases. Subcase 2.1. $1 \in im(\alpha)$. We define α^* by

$$x\alpha^* = \begin{cases} 1, & x = k, \\ x\alpha, & x \neq k. \end{cases}$$

Then $\alpha^* \in J_{n-1}^{\mathcal{D}_n}$ and $\alpha = \delta_k \alpha^*$. Thus

$$\alpha = \delta_k \alpha^* \in \delta_k \cdot J_{n-1}^{\mathcal{D}_n} \subseteq \delta_k \cdot \langle E_{n-1}^{\mathcal{D}_n} \rangle \cap J_{n-1} \subseteq \langle E_{n-1} \setminus \{\delta_i\} \rangle \cap J_{n-1}$$

Subcase 2.2. $1 \notin im(\alpha)$. Then k = 1 otherwise $1\alpha = 1$. Thus, by $\alpha \in J_{n-1}$, dom $(\alpha) = im(\alpha) = \mathbf{n} \setminus \{1\}$. Notice that $i \neq k = 1$. It follows from $\alpha \in \mathcal{PD}_n$ that

$$\alpha = \begin{pmatrix} 2 & 3 & \cdots & n \\ 2 & 3 & \cdots & n \end{pmatrix} = \delta_1 \in \langle E_{n-1} \setminus \{\delta_i\} \rangle \cap J_{n-1}.$$

It remains to prove that $\langle E_{n-1} \setminus \{\delta_i\} \rangle \cap J_{n-1} \subseteq \Omega_i$. Let $\alpha \in \langle E_{n-1} \setminus \{\delta_i\} \rangle \cap J_{n-1}$ be arbitrary. To prove that $\alpha \in \Omega_i$, we distinguish two subcases.

Case 1. $\alpha \in J_{n-1}^{\mathcal{D}_n}$. Then clearly $\alpha \in J_{n-1}^{\mathcal{D}_n} \subseteq \Omega_i$.

Case 2. $\alpha \in J_{n-1} \setminus J_{n-1}^{\mathcal{D}_n}$. It is obvious that, for all $\beta \in J_{n-1}$ and $\delta_i \in F_{n-1}$, if $\beta \delta_i \in J_{n-1}$, then clearly $\beta \delta_i = \beta$. Notice that $E_{n-1} = E_{n-1}^{\mathcal{D}_n} \cup F_{n-1}$ and $\alpha \in \langle E_{n-1} \setminus \{\delta_i\} \rangle \cap J_{n-1}$. Then α can be written as $\alpha = \delta_k$ for some $k \in \mathbf{n} \setminus \{i\}$ or

$$\alpha = \delta_s \varepsilon_1 \cdots \varepsilon_m$$

where $s \in \mathbf{n} \setminus \{i\}$ and $\varepsilon_1, \ldots, \varepsilon_m \in E_{n-1}^{\mathcal{D}_n}$. Then clearly $i \in \text{dom}(\alpha)$. Thus $\alpha \in \Omega_i$. \Box

We are now ready to prove the main result of this section.

Theorem 2.12. Let $n \ge 3$. Then each maximal idempotent generated subsemigroup S of \mathcal{PD}_n must be one of the following forms:

(1) $S = \mathcal{PD}_{n,n-1}$. (2) $S = \mathcal{PD}_{n,n-2} \cup PG_{(i,j)} \cup \{1_n\}, \text{ for } 1 \le j < i \le n$. (3) $S = \mathcal{PD}_{n,n-2} \cup \Omega_i \cup \{1_n\}, \text{ for } 1 \le i \le n$.

Proof. Notice that $\mathcal{PD}_n = \mathcal{PD}_{n,n-1} \cup \{1_n\}$ and $\mathcal{PD}_{n,r} = \langle E_r \rangle = \langle E(\mathcal{PD}_{n,r}) \rangle$, for $1 \le r \le n-1$ (by Lemma 2.3). It is clear that $\mathcal{PD}_{n,n-1}$ is a maximal idempotent generated subsemigroup of \mathcal{PD}_n . Put

$$\begin{split} M_{i,j} &= \mathcal{PD}_{n,n-2} \cup PG_{(i,j)} \cup \{1_n\}, \ 1 \leq j < i \leq n, \\ N_i &= \mathcal{PD}_{n,n-2} \cup \Omega_i \cup \{1_n\}, \ 1 \leq i \leq n. \end{split}$$

Then, by Lemmas 2.10 and 2.11,

$$M_{i,j} = \mathcal{PD}_{n,n-2} \cup [\langle E_{n-1} \setminus \{ \begin{pmatrix} i \\ j \end{pmatrix} \} \rangle) \cap J_{n-1}] \cup \{1_n\}$$
$$= \mathcal{PD}_{n,n-2} \cup \langle E_{n-1} \setminus \{ \begin{pmatrix} i \\ j \end{pmatrix} \} \rangle \cup \{1_n\}$$
$$= \langle E(\mathcal{PD}_{n,n-2}) \cup [E_{n-1} \setminus \{ \begin{pmatrix} i \\ j \end{pmatrix} \}] \cup \{1_n\} \rangle$$

$$= \langle E(\mathcal{PD}_n) \setminus \{ \begin{pmatrix} i \\ j \end{pmatrix} \} \rangle,$$

$$N_i = \mathcal{PD}_{n,n-2} \cup [\langle E_{n-1} \setminus \{\delta_i\} \rangle) \cap J_{n-1}] \cup \{1_n\}$$

$$= \mathcal{PD}_{n,n-2} \cup \langle E_{n-1} \setminus \{\delta_i\} \rangle \cup \{1_n\}$$

$$= \langle E(\mathcal{PD}_{n,n-2}) \cup [E_{n-1} \setminus \{\delta_i\}] \cup \{1_n\} \rangle$$

$$= \langle E(\mathcal{PD}_n) \setminus \{\delta_i\} \rangle.$$

Thus clearly $M_{i,j}$ and N_i are maximal idempotent generated subsemigroups of \mathcal{PD}_n . Let *S* be a maximal idempotent generated subsemigroup of \mathcal{PD}_n . Notice that $\mathcal{PD}_n = \mathcal{PD}_{n,n-1} \cup \{1_n\}$. If $1_n \notin S$, then $S \subseteq \mathcal{PD}_{n,n-1} \subset \mathcal{PD}_n$. Thus, by the maximality of *S*, $S = \mathcal{PD}_{n,n-1}$. If $1_n \in S$, then, by Lemma 2.3 and $S \subset \mathcal{PD}_n$, $E_{n-1} \notin S$. Then $\binom{i}{j} \notin S$ for some $i, j \in \mathbf{n}$ with i > j or $\delta_i \notin S$ for some $1 \le i \le n$. Thus $S \subseteq \langle E(\mathcal{PD}_n) \setminus \{\binom{i}{j}\} \rangle = M_{i,j} \subset \mathcal{PD}_n$ or $S \subseteq \langle E(\mathcal{PD}_n) \setminus \{\delta_i\} \rangle = N_i \subset \mathcal{PD}_n$. Hence, by the maximality of *S*, $S = M_{i,j}$ or $S = N_i$. \Box

Notice that $|E_{n-1}| = \frac{n(n+1)}{2}$. By Theorems 2.6 and 2.12, we have the following result:

Corollary 2.13. Let $n \ge 3$. Then the semigroup \mathcal{PD}_n contains exactly $\frac{n(n+1)}{2} + 1$ maximal (idempotent generated) subsemigroups.

3. Abundance for the (principal) ideals of \mathcal{PD}_n

A subset *I* of a semigroup *S* is an *ideal* if it is closed under multiplication by arbitrary elements of *S*: for all $x \in S$ and $y \in I$, we have $xy, yx \in I$. The *principal ideal* generated by an element *a* of the semigroup *S* is the set $SaS = \{xay : x, y \in S\}$. Notice that \mathcal{PD}_n is the principal ideal $\mathcal{PD}_n 1_n \mathcal{PD}_n$ generated by 1_n .

In 1992, Umar [12] showed that the ideals $\mathcal{PD}_{n,r}$ ($1 \le r \le n$) of \mathcal{PD}_n are abundant. In this section, we give necessary and sufficient conditions for the ideals of \mathcal{PD}_n to be abundant. Moreover, we characterize the structure of the left (right) abundant principal ideal of \mathcal{PD}_n .

On a semigroup *S* the relation \mathcal{L}^* is defined by the rule that $(a, b) \in \mathcal{L}^*$ if and only if the elements a, b of *S* are related by Green's relation \mathcal{L} in some oversemigroup of *S*. The relation \mathcal{R}^* is defined dually. A semigroup *S* is called *left abundant* if each of its \mathcal{L}^* -classes contains an idempotent. Dually, a semigroup *S* is called right abundant if each of its \mathcal{R}^* -classes contains an idempotent. A semigroup *S* is abundant if it is both left and right abundant (see [5]). Given a semigroup *S*, we denote by L_u^{*S} and R_u^{*S} the \mathcal{L}^* -class and \mathcal{R}^* -class, respectively, of an element $u \in S$.

The following lemma and its dual give a characterization of \mathscr{L}^* and \mathscr{R}^* [5, Lemma 1.1].

Lemma 3.1. Let S be a semigroup and let $a, b \in S$. Then the following conditions are equivalent:

(1) $(a, b) \in \mathcal{L}^*$.

(2) for all $x, y \in S^1$, ax = ay if and only if bx = by.

Now, recall that Umar [12, Corollary 2.4.3, Theorem 2.2.5 and Lemma 2.2.6] proved:

Lemma 3.2. Let $1 \le r \le n$, and let $\alpha, \beta \in \mathcal{PD}_{n,r}$. Then

(1) $(\alpha, \beta) \in \mathscr{L}^*$ if and only if $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$.

- (2) $(\alpha, \beta) \in \mathscr{R}^*$ *if and only if* ker $(\alpha) = \text{ker}(\beta)$.
- (3) the semigroup $\mathcal{PD}_{n,r}$ is abundant.

1157

Notice that the idempotents in E_r are exactly of the following form:

$$\varepsilon = \left(\begin{array}{cc|c} A_1 & A_2 & \cdots & A_r \\ c_1 & c_2 & \cdots & c_r \end{array}\right),$$

where $c_1 < c_2 < \cdots < c_r$ and $c_i = minA_i$, for $1 \le i \le r$. Notice that $ker(\varepsilon) = (A_1|A_2|\cdots|A_r)$. Thus, we have:

Lemma 3.3. Let $1 \le r \le n$ and $\varepsilon, \eta \in E_r$. Then $\ker(\varepsilon) = \ker(\eta)$ if and only if $\varepsilon = \eta$.

It is well known that the Green relations on \mathcal{PT}_n can be characterized as $\alpha \mathscr{L}\beta \Leftrightarrow \operatorname{im}(\alpha) = \operatorname{im}(\beta)$, $\alpha \mathscr{R}\beta \Leftrightarrow \operatorname{ker}(\alpha) = \operatorname{ker}(\beta)$ and $\alpha \mathscr{J}\beta \Leftrightarrow |\operatorname{im}(\alpha)| = |\operatorname{im}(\beta)|$. Using Lemma 3.1, we can prove the following lemma:

Lemma 3.4. Let *S* be a subsemigroup of \mathcal{PT}_n , and let $m = max\{|im(\alpha)| : \alpha \in S\}$. If $E(L_{\alpha}^{\mathcal{PT}_n}) \cap S = \emptyset$ for some $\alpha \in S$ with $|im(\alpha)| = m$, then *S* is not left abundant.

Proof. Assume that *S* is left abundant. Then there exists an idempotent in L^{*S}_{α} , say ε . It follows from Lemma 3.1 that

 $\alpha \varepsilon = \alpha$

since $\varepsilon \cdot \varepsilon = \varepsilon \cdot 1_n$ and so $\operatorname{im}(\alpha) \subseteq \operatorname{im}(\varepsilon)$ which implies that $m = |\operatorname{im}(\alpha)| \leq |\operatorname{im}(\varepsilon)|$. By the maximality of *m*, we have $|\operatorname{im}(\varepsilon)| = |\operatorname{im}(\alpha)| = m$ and so $\operatorname{im}(\varepsilon) = \operatorname{im}(\alpha)$. Thus $(\alpha, \varepsilon) \in \mathscr{L}^{\mathcal{PT}_n}$ and $\varepsilon \in E(L_{\alpha}^{\mathcal{PT}_n}) \cap S$, a contradiction. \Box

Lemma 3.5. Let *S* be a subsemigroup of \mathcal{PT}_n , and let $m = max\{|\operatorname{im}(\alpha)| : \alpha \in S\}$. If $E(R_{\alpha}^{\mathcal{PT}_n}) \cap S = \emptyset$ for some $\alpha \in S$ with $|\operatorname{im}(\alpha)| = m$, then *S* is not right abundant.

Proof. Assume that *S* is right abundant. Then there exists an idempotent in R^{*S}_{α} , say ε . It follows from Lemma 3.1 that

 $\epsilon \alpha = \alpha$

since $\varepsilon \cdot \varepsilon = 1_n \cdot \varepsilon$. Thus dom(α) \subseteq dom(ε) and ker(ε) \subseteq ker(α) which implies that $m = |\operatorname{im}(\alpha)| = |\operatorname{dom}(\alpha)/\operatorname{ker}(\alpha)| \leq |\operatorname{dom}(\varepsilon)/\operatorname{ker}(\varepsilon)| = |\operatorname{im}(\varepsilon)|$. By the maximality of m, we have $|\operatorname{im}(\varepsilon)| = |\operatorname{im}(\alpha)| = m$ and so ker(ε) = ker(α). Thus (α, ε) $\in \mathscr{R}^{\mathcal{PT}_n}$ and $\varepsilon \in E(R_\alpha^{\mathcal{PT}_n}) \cap S$, a contradiction. \Box

Now, it is easy to prove the following result:

Theorem 3.6. Let I be an ideal of \mathcal{PD}_n . Then I is abundant if and only if there exists $r \in \{0, 1, ..., n\}$ such that $I = \mathcal{PD}_{n,r}$.

Proof. Notice that $\mathcal{PD}_n = \mathcal{PD}_{n,n-1} \cup \{1_n\}$ and \mathcal{PD}_n is abundant (by Lemma 3.2). Suppose that I is abundant. If $1_n \in I$. Then clearly $\alpha = \alpha \cdot 1_n \in I$, for all $\alpha \in \mathcal{PD}_n$. Thus $I = \mathcal{PD}_n = \mathcal{PD}_{n,n}$. If $1_n \notin I$, we put

$$r = \max\{|\operatorname{im}(\alpha)| : \alpha \in \mathcal{I}\}.$$

Then clearly $0 \le r \le n-1$ and $\mathcal{I} \subseteq \mathcal{PD}_{n,r}$. Notice that $\mathcal{PD}_{n,0} = \{\theta_n\}$. If r = 0, then clearly $\mathcal{I} = \mathcal{PD}_{n,0}$. If $r \ge 1$, there exists $\alpha \in \mathcal{I}$ with $|\operatorname{im}(\alpha)| = r$. Suppose that

$$\alpha = \left(\begin{array}{c|c} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{array}\right),$$

where $a_1 < \cdots < a_r$ and $a_i \le \min A_i$, for $1 \le i \le r$. Notice that $a_i \le n - r + i$, for $1 \le i \le r$. Put

$$\beta = \begin{pmatrix} n-r+1 \\ \min A_1 \end{pmatrix} \begin{pmatrix} n-r+2 \\ \min A_2 \end{pmatrix} \begin{pmatrix} \cdots \\ \min A_r \end{pmatrix}$$
$$\xi = \begin{pmatrix} n-r+1 \\ a_1 \end{pmatrix} \begin{pmatrix} \cdots \\ \cdots \end{pmatrix} \begin{pmatrix} n-1 \\ a_{r-1} \end{pmatrix} \begin{pmatrix} n \\ a_r \end{pmatrix}.$$

Then $\xi = \beta \alpha \in I$ since I is an ideal of \mathcal{PD}_n . Notice that clearly $|\operatorname{im}(\xi)| = |\operatorname{im}(\alpha)| = r$. By Lemma 3.5 and I is abundant, we have $E(\mathbb{R}_{\xi}^{\mathcal{PD}_n}) \cap I \neq \emptyset$. Then there exists $\eta \in E(I)$ such that $\operatorname{ker}(\eta) = \operatorname{ker}(\xi)$. Notice that

$$\lambda_r = \left(\begin{array}{ccc} n-r+1 \\ n-r+1 \end{array} \middle| \begin{array}{ccc} n-r+2 \\ n-r+2 \end{array} \middle| \begin{array}{ccc} \cdots \\ n \end{array} \right) \in E_r.$$

Then $ker(\eta) = ker(\xi) = ker(\lambda_r)$ and so $\eta = \lambda_r$ by Lemma 3.3. Now, let

$$\varepsilon = \left(\begin{array}{ccc} A_1 & A_2 & \cdots & A_r \\ c_1 & c_2 & \cdots & c_r \end{array}\right) \in E_r$$

where $c_1 < c_2 < \cdots < c_r$ and $c_i = \min A_i$, for $1 \le i \le r$. Notice that $c_i \le n - r + i$, for $1 \le i \le r$. Put

$$\gamma = \left(\begin{array}{cc|c} n-r+1 & \cdots & n-1 & r \\ c_1 & \cdots & c_{r-1} & c_r \end{array}\right).$$

Since $\eta \in I$ and I is an ideal of \mathcal{PD}_n , we have $\gamma = \lambda_r \gamma = \eta \gamma \in I$. By Lemma 3.4 and I is abundant, we have $E(L_{\gamma}^{\mathcal{PD}_n}) \cap I \neq \emptyset$. Then there exists $\delta \in E(I)$ such that $im(\delta) = im(\gamma)$. Suppose that

$$\delta = \left(\begin{array}{c|c} B_1 & B_2 & \cdots & B_r \\ c_1 & c_2 & \cdots & c_r \end{array}\right)$$

Since $\delta \in E(I)$, we have $c_i = \min B_i$, for $1 \le i \le r$. It is obvious that $\varepsilon = \varepsilon \delta$ and so $\varepsilon \in I$ (since I is an ideal of \mathcal{PD}_n and $\delta \in I$). Then we have proved that $E_r \subseteq I$. Thus, by Lemma 2.3, $I = \mathcal{PD}_{n,r}$.

Conversely, if $I = \mathcal{PD}_{n,0}$, then clearly I is abundant. If there exists $1 \le r \le n$ such that $I = \mathcal{PD}_{n,r}$, then, by Lemma 3.2, I is abundant. \Box

For any $\alpha \in \mathcal{PD}_n$, we denote by \triangle_α the principal ideal

 $\mathcal{PD}_n \alpha \mathcal{PD}_n$

generated by α . Notice that if $\alpha = 1_n$, then $\Delta_{\alpha} = \mathcal{PD}_n$; if $|\operatorname{im}(\alpha)| = 1$, then $\alpha = \binom{n}{1}$. Notice that if $\alpha = 1_n$, then $\Delta_{\alpha} = \mathcal{PD}_n$. Let $\beta \in \Delta_{\alpha}$ be arbitrary. Then there exist $\gamma, \delta \in \mathcal{PD}_n$ such that $\beta = \gamma \alpha \delta$. Clearly, $|\operatorname{im}(\beta)| \le |\operatorname{im}(\alpha)|$. Notice that $\alpha = 1_n \alpha 1_n \in \Delta_{\alpha}$. Thus $|\operatorname{im}(\alpha)| = \max\{|\operatorname{im}(\beta)| : \beta \in \Delta_{\alpha}\}$.

Lemma 3.7. Let $\alpha \in \mathcal{PD}_n$ and α is not an idempotent. Then $E(L_{\alpha}^{\mathcal{PT}_n}) \cap \Delta_{\alpha} \neq \emptyset$ and $E(R_{\alpha}^{\mathcal{PT}_n}) \cap \Delta_{\alpha} \neq \emptyset$.

Proof. Suppose that $|im(\alpha)| = r$. Then $r \ge 1$ since α is not an idempotent. Thus we can suppose that

$$\alpha = \left(\begin{array}{ccc} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{array}\right),$$

where $a_1 < a_2 < \cdots < a_r$ and $a_i \le \min A_i$, for $1 \le i \le r$. Let $c_i = \min A_i$, for $1 \le i \le r$. Since α is not an idempotent, there exist $m \in \{1, \dots, r\}$ such that $a_m < c_m$. Clearly, $a_m \notin A_m$. Then $a_m \alpha \ne a_m$ (if $a_m \in \operatorname{dom}(\alpha)$).

Assume that $E(L_{\alpha}^{\mathcal{PT}_n}) \cap \Delta_{\alpha} \neq \emptyset$. Let $\varepsilon \in E(L_{\alpha}^{\mathcal{PT}_n}) \cap \Delta_{\alpha}$. Then there exist $\beta, \gamma \in \mathcal{PD}_n$ such that $\varepsilon = \beta \alpha \gamma$ and $\operatorname{im}(\varepsilon) = \operatorname{im}(\alpha) = \{a_1, \ldots, a_r\}$. Since ε is an idempotent, we have $a_i = a_i \varepsilon$, for $1 \le i \le r$. Then

$$a_m = a_m \varepsilon = (a_m \beta \alpha) \gamma \le (a_m \beta) \alpha \le a_m \beta \le a_m$$

It follows that $a_m = a_m \beta = (a_m \beta) \alpha$ and so $a_m \alpha = a_m$, a contradiction. Thus $E(L_{\alpha}^{\mathcal{PT}_n}) \cap \Delta_{\alpha} = \emptyset$.

Assume that $E(R_{\alpha}^{\mathcal{PT}_n}) \cap \Delta_{\alpha} \neq \emptyset$. Let $\varepsilon \in E(R_{\alpha}^{\mathcal{PT}_n}) \cap \Delta_{\alpha}$. Then there exist $\beta, \gamma \in \mathcal{PD}_n$ such that $\varepsilon = \beta \alpha \gamma$ and ker(ε) = ker(α) = (A_1 |···| A_r). Notice that $c_i = \min A_i$, for $1 \le i \le r$. Since ε is an idempotent, we have $c_i \varepsilon = c_i$ for $1 \le i \le r$. Then

$$c_m = c_m \varepsilon = (c_m \beta \alpha) \gamma \le (c_m \beta) \alpha \le c_m \beta \le c_m \gamma$$

It follows that $c_m = c_m \beta = (c_m \beta) \alpha$ and so $c_m = c_m \alpha = a_m$, a contradiction. Thus $E(R_{\alpha}^{\mathcal{PT}_n}) \cap \Delta_{\alpha} = \emptyset$. \Box

Using Lemmas 3.4, 3.5 and 3.7, we can prove the following result:

Lemma 3.8. Let $\alpha \in \mathcal{PD}_n$ and α is not an idempotent. Then \triangle_α is neither left abundant nor right abundant.

Proof. By Lemma 3.7, we have

$$E(L^{\varphi \mathcal{F}_n}_{\alpha}) \cap \Delta_{\alpha} \neq \emptyset \text{ and } E(R^{\varphi \mathcal{F}_n}_{\alpha}) \cap \Delta_{\alpha} \neq \emptyset.$$

Then, by Lemmas 3.4 and 3.5, \triangle_{α} is neither left abundant nor right abundant. \Box

Let $x, y \in \mathbf{n}$ with x < y. The set $[x, y] = \{z \in \mathbf{n} : x \le z \le y\}$ of \mathbf{n} is called a *closed convex set*. Similarly, we can define the convex sets of other kinds, such as (x, y], (x, y) and [x, y).

For $1 \le r \le n$, put

$$E_r^{\Delta} = \{ \varepsilon \in E_r : \operatorname{im}(\varepsilon) = [1, r] \}.$$

Then clearly $E_n^{\Delta} = \{1_n\}$. Let $\alpha \in \mathcal{PD}_n$. It is easy to see that $\alpha \in E_n^{\Delta}(\alpha = 1_n)$ if and only if $\Delta_{\alpha} = \mathcal{POE}_n = \{\alpha \in \mathcal{POE}_n : im(\alpha) \subseteq [1, n]\}$. In fact, we have the following result:

Theorem 3.9. Let $1 \le r \le n-1$. Let $\alpha \in \mathcal{PD}_n$ with $|im(\alpha)| = r$. Then the following statements are equivalent:

(1) Δ_{α} *is left abundant.*

(2) $\alpha \in E_r^{\Delta}$.

(3) $\Delta_{\alpha} = \{\beta \in \mathcal{PD}_n : \operatorname{im}(\beta) \subseteq [1, r]\}.$

Proof. (1) \implies (2) Suppose that Δ_{α} is left abundant. Then, by Lemma 3.8, α is an idempotent. We can suppose that

$$\alpha = \left(\begin{array}{cc|c} A_1 & A_2 & \cdots & A_r \\ c_1 & c_2 & \cdots & c_r \end{array}\right),$$

where $c_1 < c_2 < \cdots < c_r$ and $c_i = \min A_i$ for $1 \le i \le r$. Let $c_0 = 0$. Assume that $\alpha \notin E_r^{\Delta}$. Then $\operatorname{im}(\alpha) \neq [1, r]$. Then there exists $m \in \{1, \cdots, r\}$ such that $c_m - c_{m-1} \ge 2$. Clearly, $c_m - 1 \notin \operatorname{im}(\alpha)$. Put

$$\xi = \begin{cases} \begin{pmatrix} A_1 & | & A_2 & | & \cdots & | & A_r \\ c_1 - 1 & | & c_2 & | & \cdots & | & c_r \end{pmatrix}, & m = 1, \\ \begin{pmatrix} A_1 & | & \cdots & | & A_{m-1} & | & A_m & | & A_{m+1} & | & \cdots & | & A_r \\ c_1 & | & \cdots & | & c_{m-1} & | & c_m - 1 & | & c_{m+1} & | & \cdots & | & c_r \end{pmatrix}, & 2 \le m \le r - 1, \\ \begin{pmatrix} A_1 & | & \cdots & | & A_{r-1} & | & A_r \\ c_1 & | & \cdots & | & c_{r-1} & | & c_r - 1 \end{pmatrix}, & m = r. \end{cases}$$

Then $\xi = \alpha \xi = 1_n \alpha \xi \in \Delta_\alpha$ and $\xi^2 \neq \xi$. Notice that clearly $|\operatorname{im}(\xi)| = |\operatorname{im}(\alpha)|$. Assume that $E(L_{\xi}^{\mathcal{PT}_n}) \cap \Delta_\alpha \neq \emptyset$. Let $\varepsilon \in E(L_{\xi}^{\mathcal{PT}_n}) \cap \Delta_\alpha$. Then there exist $\beta, \gamma \in \mathcal{PD}_n$ such that $\varepsilon = \beta \alpha \gamma$ and $\operatorname{im}(\varepsilon) = \operatorname{im}(\xi)$. Notice that $c_m - 1 \in \operatorname{im}(\xi)$ and $\Delta_\alpha \subseteq \mathcal{PD}_n$. Since ε is an idempotent, we have $c_m - 1 = (c_m - 1)\varepsilon$. Then

$$c_m - 1 = (c_m - 1)\varepsilon = [(c_m - 1)\beta\alpha]\gamma \le [(c_m - 1)\beta]\alpha \le (c_m - 1)\beta \le c_m - 1$$

and so $(c_m - 1)\beta = c_m - 1$. Thus

$$c_m - 1 = (c_m - 1)\varepsilon = [(c_m - 1)\beta\alpha]\gamma \le [(c_m - 1)\beta]\alpha = (c_m - 1)\alpha \le c_m - 1$$

and so $(c_m - 1)\alpha = c_m - 1$. Hence, $c_m - 1 \in im(\alpha)$, a contradiction. We have proved that $E(L_{\xi}^{\mathcal{PT}_n}) \cap \Delta_{\alpha} = \emptyset$ and so Δ_{α} is not left abundant by Lemma 3.4, a contradiction.

(2) \Longrightarrow (3) Let $M = \{\beta \in \mathcal{PD}_n : \operatorname{im}(\beta) \subseteq [1, r]\}$. Suppose that $\alpha \in E_r^{\Delta}$. Then $\operatorname{im}(\alpha) = [1, r]$. Let $\xi \in \Delta_\alpha$ be arbitrary. Then there exist $\beta, \gamma \in \mathcal{PD}_n$ such that $\xi = \beta \alpha \gamma$. Clearly, $\operatorname{im}(\xi) \subseteq \operatorname{im}(\alpha)\gamma = [1, r]\gamma$. It follows from $\gamma \in \mathcal{PD}_n$ that $r\gamma \leq r$ and so $\operatorname{im}(\xi) \subseteq [1, r] = \operatorname{im}(\alpha)$. Then $\xi \in M$. Thus $\Delta_\alpha \subseteq M$. Conversely, let $\beta \in M$ be arbitrary. Then $\operatorname{im}(\beta) \subseteq [1, r]$. Since $\alpha \in E_r^{\Delta} \subseteq E_r$ and $\operatorname{im}(\alpha) = [1, r]$, we have $x\alpha = x$, for $1 \leq x \leq r$. Then $\beta = \beta \alpha = \beta \alpha 1_n \in \Delta_\alpha$. Thus $M \subseteq \Delta_\alpha$. Hence, we have proved that $M = \Delta_\alpha$.

(3) \Longrightarrow (1) Suppose that $\Delta_{\alpha} = \{\beta \in \mathcal{PD}_n : \operatorname{im}(\beta) \subseteq [1, r]\}$. Notice that $\alpha = 1_n \alpha 1_n \in \Delta_{\alpha}$ and $|\operatorname{im}(\alpha)| = r$. Then $\operatorname{im}(\alpha) = [1, r]$. Let $\beta \in \Delta_{\alpha}$ be arbitrary. Then $\operatorname{im}(\beta) \subseteq [1, r] = \operatorname{im}(\alpha)$. Put $\varepsilon = 1_{\operatorname{im}(\beta)}$. Then clearly $\varepsilon \in E(\Delta_{\alpha})$ and $\operatorname{im}(\varepsilon) = \operatorname{im}(\beta)$. Thus $(\varepsilon, \beta) \in \mathscr{L}^{\mathcal{PT}_n}$. Hence, $\varepsilon \in \mathscr{L}^*_{\beta}(\Delta_{\alpha}) \cap E(\Delta_{\alpha})$. \Box

For $1 \le r \le n$, put

$$\lambda_r = \left(\begin{array}{ccc} n-r+1 & n-r+2 & \cdots & n \\ n-r+1 & n-r+2 & \cdots & n \end{array}\right).$$

Then clearly $\lambda_r \in E_r$ and $\lambda_n = 1_n$. Let $\alpha \in \mathcal{PD}_n$. It is easy to see that $\alpha = \lambda_n (= 1_n)$ if and only if $\Delta_\alpha = \mathcal{PD}_n = \{\alpha \in \mathcal{PD}_n : \operatorname{dom}(\alpha) \subseteq [1, n]\}$. In fact, we have the following result:

Theorem 3.10. Let $1 \le r \le n - 1$. Let $\alpha \in \mathcal{PD}_n$ with $|im(\alpha)| = r$. Then the following statements are equivalent:

(1) Δ_{α} *is right abundant.*

(2) $\alpha = \lambda_r$.

(3) $\Delta_{\alpha} = \{\beta \in \mathcal{PD}_n : \operatorname{dom}(\beta) \subseteq [n - r + 1, n]\}.$

Proof. (1) \implies (2) Suppose that Δ_{α} is right abundant. Then, by Lemma 3.8, α is an idempotent. Suppose that

$$\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_r \\ c_1 & c_2 & \cdots & c_r \end{pmatrix},$$

where $c_1 < c_2 < \cdots < c_r$ and $c_i = \min A_i$, for $1 \le i \le r$. Notice that $c_i \le n - r + i$, for $1 \le i \le r$. Put

$$\xi = \left(\begin{array}{cc|c} n-r+1 & n-r+2 & \cdots & n\\ c_1 & c_2 & \cdots & c_r\end{array}\right).$$

Then ker(ξ) = ker(λ_r) and $\xi = \xi \alpha = \xi \alpha 1_n \in \Delta_\alpha$. Since Δ_α is right abundant, then $\mathscr{R}^*_{\xi}(\Delta_\alpha) \cap E(\Delta_\alpha) \neq \emptyset$. Then there exists $\eta \in E(\Delta_\alpha)$ such that ker(η) = ker(ξ)(= ker(λ_r)). Thus, by Lemma 3.3, $\eta = \lambda_r$. Since $\eta \in \Delta_\alpha$, there exist $\beta, \gamma \in \mathcal{PD}_n$ such that $\lambda_r = \eta = \beta \alpha \gamma$. Clearly, im(λ_r) \subseteq im(α) γ and |im(α) γ | \leq |im(α)|. Notice that |im(λ_r)| = |im(α)|. Then im(λ_r) = im(α) γ . It follows from $\gamma \in \mathcal{PD}_n$ and im(λ_r) = [n - r + 1, n] that im(α) = [n - r + 1, n]. Let $x \in \text{dom}(\alpha)$ be arbitrary. Then $x \geq x\alpha \geq \min(\alpha) = n - r + 1$. Thus dom(α) \subseteq [n - r + 1, n] = im(α). It follows from |dom(α)| \geq |im(α)| = r that dom(α) = im(α) = [n - r + 1, n]. Thus, by $\alpha \in \mathcal{PD}_n$, $\alpha = \lambda_r$. (2) \Longrightarrow (3) Let $M = \{\beta \in \mathcal{PD}_n : \operatorname{dom}(\beta) \subseteq [n - r + 1, n]\}$. Suppose that $\alpha = \lambda_r$. Let $\xi \in \Delta_\alpha$ be arbitrary. Then there exist $\beta, \gamma \in \mathcal{PD}_n$ such that $\xi = \beta \alpha \gamma$. Assume that there exists $1 \leq j \leq n - r$ such that $j \in \operatorname{dom}(\xi)$. Then $j\xi = j\beta\alpha\gamma$ and so $j\beta \in \operatorname{dom}(\alpha) = \operatorname{dom}(\lambda_r) = [n - r + 1, n]$. Since $\beta \in \mathcal{PD}_n$, we have $j\beta \leq j \leq n - r$, a contradiction. Then $\operatorname{dom}(\xi) \subseteq [n - r + 1, n]$. Thus $\Delta_\alpha \subseteq M$. Conversely, let $\beta \in M$ be arbitrary. Then $\operatorname{dom}(\beta) \subseteq [n - r + 1, n]$. Since $\alpha = \lambda_r$, we have $x\alpha = x$, for $n - r + 1 \leq x \leq n$. It follows from $\beta \in \mathcal{PD}_n$ that $\beta = \beta\alpha = \beta\alpha 1_n \in \Delta_\alpha$. Thus $M \subseteq \Delta_\alpha$. Hence, we have proved that $M = \Delta_\alpha$.

(3) \Longrightarrow (1) Suppose that $\Delta_{\alpha} = \{\beta \in \mathcal{PD}_n : \operatorname{dom}(\beta) \subseteq [n - r + 1, n]\}$. Notice that $\alpha = 1_n \alpha 1_n \in \Delta_{\alpha}$ and $|\operatorname{im}(\alpha)| = r$. Then $\operatorname{dom}(\alpha) = [n - r + 1, n]$. Let $\xi \in \Delta_{\alpha}$ be arbitrary. Then $\operatorname{dom}(\xi) \subseteq [n - r + 1, n]$. Take $\varepsilon \in E(\mathcal{PD}_n)$ such that $\operatorname{ker}(\varepsilon) = \operatorname{ker}(\xi)$. Then clearly $(\varepsilon, \xi) \in \mathscr{R}^{\mathcal{PT}_n}$ and $\operatorname{dom}(\varepsilon) = \operatorname{dom}(\xi) \subseteq [n - r + 1, n]$. Then $\varepsilon \in \{\beta \in \mathcal{PD}_n : \operatorname{dom}(\beta) \subseteq [n - r + 1, n]\} = \Delta_{\alpha}$ and so $\varepsilon \in E(\Delta_{\alpha})$. Thus $\varepsilon \in \mathscr{R}^*_{\varepsilon}(\Delta_{\alpha}) \cap E(\Delta_{\alpha})$.

Theorem 3.11. Let $\alpha \in \mathcal{PD}_n$. Then Δ_α is abundant if and only if $\alpha = \theta_n$ or $\alpha = 1_n$.

Proof. Suppose that Δ_{α} is abundant. Then, by Lemma 3.8, α is an idempotent. We claim that $|\operatorname{im}(\alpha)| = r \in \{0, n\}$. Notice that $\alpha = 1_n \alpha 1_n \in \Delta_{\alpha}$. Assume that $1 \le r \le n - 1$, then, by Theorems 3.9 and 3.10, $\operatorname{im}(\alpha) = [1, r]$ and dom $(\alpha) = [n - r + 1, n]$. Since α is an idempotent, we have $x\alpha = x$, for $x \in \operatorname{im}(\alpha)$. It follows that $\operatorname{im}(\alpha) \subseteq \operatorname{dom}(\alpha)$ and so $[1, r] = \operatorname{im}(\alpha) \subseteq \operatorname{dom}(\alpha) = [n - r + 1, n]$, a contradiction. Thus $r \in \{0, n\}$. If r = 0, then clearly $\alpha = \theta_n$. If r = n, then clearly $\alpha = 1_n$.

Conversely, if $\alpha = 1_n$, then $\Delta_{\alpha} = \mathcal{PD}_n$. Thus, by Lemma 3.2, $\Delta_{\alpha} = \mathcal{PD}_n$ is abundant. On the other hand, if $\alpha = \theta_n$, then clearly $\Delta_{\alpha} = \{\theta_n\}$ is abundant. \Box

Acknowledgments: The authors would wish to express their appreciation to the referee for the valuable comments and suggestions which improved the presentation of this paper.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

- I. Dimitrova, J. Koppitz, On the maximal susbsemigroup of some transformation semigroups, Asian-Eur. J. Math., 1(2)(2008), 189–202.
- [2] I. Dimitrova, J. Koppitz, On the maximal regular subsemigroups of ideals of order-preserving or order-reversing transformations, Semigroup Forum, 82(1)(2011), 172–180.
- [3] I. Dimitrova, J. Koppitz, On the monoid of all partial order-preserving exitensive transformations, Comm. Algebra, 40(5)(2012), 1821–1826.
- [4] I. Dimitrova, V.H Fernandes, J. Koppitz, The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain, Publicationes Mathematicae Debrecen, 81(1-2)(2012), 11–29.
- [5] J.B. Fountain, Abundant semigroups, Proc. London Math. Soc., 44(1)(1982), 103-129.
- [6] J.M. Howie, Fundamentals of semigroup theory, Oxford University Press, Oxford, 2003.
- [7] J.M. Howie, Idempotent generators in finite full transformation semigroups, Proc. Royal Soc. Edinburgh A, 81(1978) 317–323.
- [8] A. Laradji, A. Umar, On certain finite semigroups of order-decreasing transformations I, Semigroup Forum, 69(2)(2004), 184–200.
 [9] D.B. Li, W.T. Zhang, Y.F. Luo, The monoid of all orientation-preserving and extensive full transformations on a finite chain, J. Algebra Appl., 21(5)(2022): 2250105(16 pages)
- [10] J.E. Pin, Varieties of Formal Languages, North Oxford, London, 1986.
- [11] A. Umar, On the semigroups of order-decreasing finite full transformations, Proc. Roy. Soc. Edinburgh Sect. A, 120(1-2)(1992), 129–142.
- [12] A. Umar, Semigroups of order-decreasing transformations, Ph.D. Thesis, University of St Andrews, 1992.
- M. Yağci, On nilpotent subsemigroups of the order-decreasing transformation semigroups, Bull. Malays. Math. Sci. Soc., 46, 53(2023) https://doi.org/10.1007/s40840-022-01447-1
- [14] P. Zhao, H.B. Hu, Y.Y. Qu, The ideals of the monoid of all partial order-preserving extensive transformations, Semigroup Forum, 104(2)(2022), 494–508.
- [15] P. Zhao, H.B. Hu, The monoid of all orientation-preserving and extensive partial transformations on a finite chain, Semigroup Forum, 106(3)(2023), 7204–746
- [16] P. Zhao, H.B. Hu, The monoid of all order-decreasing full transformations, Commun. Algebra, 52(11)(2024), 4834–4843.