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Abstract. LetNbe the set of all positive integers, and let a, b, c be nonzero integers such that gcd(a, b, c) = 1.
We prove the following three results. Firstly, we show that the solvability of the matrix equation aXm+bYn =
cI2, m, n ∈N in M2(Z) can be reduced to the solvability of a corresponding Diophantine equation when the
matrices X and Y do not commute, i.e., XY , YX. Alternatively, when X and Y commute, i.e., XY = YX, the
solvability of this matrix equation can be reduced to the solvability of the equation axm + byn = c, m, n ∈N
in quadratic fields. Secondly, we determine all solutions of the matrix equation Xn +Yn = cnI2, n ∈N, n ≥ 3
in M2(Z) when X and Y do not commute. Moreover, when X and Y commute, we show that the solvability
of this matrix equation can be reduced to the solvability of the equation xn + yn = cn, n ∈ N, n ≥ 3 in
quadratic fields. Finally, we determine all solutions of the matrix equation aX2 + bY2 = cI2 in M2(Z).

1. Introduction

In [12], Vaserstein suggested solving some classical number theory problems in matrices. He considered
a few classical problems of number theory with the ring Z substituted by the ring M2(Z) of 2 × 2 integral
matrices, that is 2 × 2-matrices over Z. Some classical Diophantine equations, such as Fermat’s equation,
Catalan’s equation and Pell’s equation, to matrix equations were studied by number of authors such as
[2–9, 11].

Let us recall that the Pell’s equation is a Diophantine equation of the form

x2
− dy2 = 1,

where d is a positive integer which is not a perfect square. It is well-known that the Pell’s equation has
infinitely many solutions in positive integers x and y. Recently, A. Grytczuk and I. Kurzydło [5] considered
the solvability of the matrix negative Pell’s equation

X2
− dY2 = −I2, X, Y ∈M2(Z),
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where d is a positive integer. They gave a necessary and sufficient condition for the solvability of this
matrix equation for nonsingular matrices X, Y ∈ M2(Z). In [3], B. Cohen considered the solvability of the
generalized matrix Pell’s equation

X2
− dY2 = cI2, X, Y ∈M2(Z), (1)

where d is a square-free integer and c is an arbitrary integer. He determined all solutions of equation (1) for
c = ±1, as well as all non-commutative solutions for an arbitrary integer c. Moreover, he proposed an open
problem: how about the commutative solutions of equation (1) for an arbitrary integer c ? In this paper, we
give complete answers to this open problem.

The rest of this paper is organized as follows. In Section 2, we mainly study the solvability of the matrix
equation

aXm + bYn = cI2, X, Y ∈M2(Z), m, n ∈N, (2)

where a, b, c are nonzero integers such that gcd (a, b, c) = 1. Let λ be a nonzero integer and let n ≥ 3 be a
positive integer. Let a = b = 1, c = λn and m = n. Then equation (2) becomes the matrix equation

Xn + Yn = λnI2, X, Y ∈M2(Z), n ∈N, n ≥ 3. (3)

In Section 3, we mainly study the solvability of the matrix equation (3). Let m = n = 2. Then equation (2)
becomes the matrix equation

aX2 + bY2 = cI2, X, Y ∈M2(Z). (4)

In Section 4, we mainly study the solvability of the matrix equation (4), and we determine all solutions of
this matrix equation.

2. The solvability of aXm + bYn = cI2, X, Y ∈ M2(Z)

In this section, we will study separately commutative and non-commutative solutions of equation (2),
i.e., solutions satisfying XY = YX or XY , YX, respectively. We first study the non-commutative solutions
of equation (2).

Lemma 2.1. ([10, Theorem 1]) Let A =
(
e f
1 h

)
be an arbitrary 2 × 2-matrix and let T = e + h denote its trace and

D = eh − f1 its determinant. Let yn =
∑
⌊n/2⌋
i=0

(n−i
i
)
Tn−2i(−D)i. Then, for n ≥ 1,

An =

(
yn − hyn−1 f yn−1
1yn−1 yn − eyn−1

)
.

Theorem 2.2. Let a, b, c be nonzero integers such that gcd (a, b, c) = 1 and let m, n be positive integers. If there
are two matrices X, Y ∈M2(Z) such that

aXm + bYn = cI2, XY , YX,

then Xm and Yn are scalar matrices.

Proof. Note that Xm is a scalar matrix if and only if Yn is a scalar matrix. So we only need to show that Yn is
a scalar matrix. Let J be the Jordan canonical form of X. Then there is a nonsingular matrix P ∈M2(C) such
that P−1XP = J. The assumption aXm + bYn = cI2 implies that a

(
P−1XP

)m
+ b

(
P−1YP

)n
= cI2, i.e.,

aJm + b
(
P−1YP

)n
= cI2. (5)
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Let P−1YP =
(
e f
1 h

)
. By Lemma 2.1, we have

(
P−1YP

)n
=

(
yn − hyn−1 f yn−1
1yn−1 yn − eyn−1

)
,

where yn =
∑
⌊n/2⌋
i=0

(n−i
i
)

(tr(Y))n−2i (−det(Y))i. From (5), it follows that

aJm + b
(
yn − hyn−1 f yn−1
1yn−1 yn − eyn−1

)
= cI2. (6)

Case 1: J =
(
x1 0
0 x2

)
, where x1 and x2 are the eigenvalues of X.

By (6), we have

a
(
xm

1 0
0 xm

2

)
+ b

(
yn − hyn−1 f yn−1
1yn−1 yn − eyn−1

)
=

(
c 0
0 c

)
.

Comparing both sides, we have f yn−1 = 1yn−1 = 0. If yn−1 , 0, then f = 1 = 0, which implies that

P−1YP =
(
e 0
0 h

)
. Since P−1XP = J =

(
x1 0
0 x2

)
, we obtain XY = YX, a contradiction. Therefore, yn−1 = 0.

Then
(
P−1YP

)n
= ynI2. This implies that Yn = ynI2.

Case 2: J =
(
λ 1
0 λ

)
, where λ is the eigenvalue of X.

By (6), we obtain

a
(
λm

∗

0 λm

)
+ b

(
yn − hyn−1 f yn−1
1yn−1 yn − eyn−1

)
=

(
c 0
0 c

)
.

Comparing both sides, we have 1yn−1 = (e − h)yn−1 = 0. If yn−1 , 0, then 1 = 0 and e = h, which imply that

P−1YP =
(
e f
0 e

)
. Since P−1XP = J =

(
λ 1
0 λ

)
, we obtain XY = YX, a contradiction. Therefore, yn−1 = 0. Then(

P−1YP
)n
= ynI2. This implies that Yn = ynI2.

If we replace the cI2 by
(
c1 0
0 c2

)
in Theorem 2.2 and let XY = YX, then we have the following proposition.

Proposition 2.3. Let a, b be nonzero integers and let m, n be positive integers. Let c1 and c2 be integers such that
c1 , c2. Let X and Y be 2 × 2-matrices over Z. Then

aXm + bYn =

(
c1 0
0 c2

)
, XY = YX (7)

if and only if

X =
(
x1 0
0 x2

)
, Y =

(
y1 0
0 y2

)
,

where x1, x2, y1, y2 ∈ Z satisfy axm
i + byn

i = ci, i = 1, 2.

Proof. The sufficiency is clear. We next prove necessity.
Case 1: X and Y are diagonalizable.
From XY = YX, it follows that they are simultaneously diagonalizable. Then there is a nonsingular

matrix P =
(
p11 p12
p21 p22

)
∈M2(C) such that

P−1XP =
(
x1 0
0 x2

)
, P−1YP =

(
y1 0
0 y2

)
,
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where xi, yi, i = 1, 2 are the eigenvalues of X and Y, respectively. The assumption aXm + bYn =

(
c1 0
0 c2

)
implies that a

(
P−1XP

)m
+ b

(
P−1YP

)n
= P−1

(
c1 0
0 c2

)
P. Then

a
(
xm

1 0
0 xm

2

)
+ b

(
yn

1 0
0 yn

2

)
=

1
p11p22 − p12p21

(
p11p22c1 − p12p21c2 p12p22 (c1 − c2)

p11p21 (c2 − c1) p11p22c2 − p12p21c1

)
.

Comparing both sides, we have p12p22 = p11p21 = 0.
If p12 = 0, then det (P) = p11p22 − p12p21 = p11p22. Since det (P) , 0 and p11p21 = 0, we have p21 = 0. Then

X = P
(
x1 0
0 x2

)
P−1 =

(
p11 0
0 p22

) (
x1 0
0 x2

) (
p11 0
0 p22

)−1

=

(
x1 0
0 x2

)
.

Likewise, Y =
(
y1 0
0 y2

)
. Since X, Y ∈ M2(Z), we have x1, x2, y1, y2 ∈ Z. The assumption aXm + bYn =(

c1 0
0 c2

)
implies that axm

i + byn
i = ci, i = 1, 2.

If p22 = 0, then det (P) = p11p22 − p12p21 = −p12p21. Since det (P) , 0 and p11p21 = 0, we have p11 = 0. Then

X = P
(
x1 0
0 x2

)
P−1 =

(
0 p12

p21 0

) (
x1 0
0 x2

) (
0 p12

p21 0

)−1

=

(
x2 0
0 x1

)
.

Likewise, Y =
(
y2 0
0 y1

)
. Since X, Y ∈ M2(Z), we have x1, x2, y1, y2 ∈ Z. The assumption aXm + bYn =(

c1 0
0 c2

)
implies that axm

2 + byn
2 = c1 and axm

1 + byn
1 = c2.

Case 2: X and Y are not both diagonalizable.
Without loss of generality, we can assume that X is not diagonalizable. Let J be the Jordan canonical

form of X. Then J =
(
λ 1
0 λ

)
, where λ is the eigenvalue of X. Moreover, there is a nonsingular matrix

P =
(
p11 p12
p21 p22

)
∈ M2(C) such that P−1XP = J =

(
λ 1
0 λ

)
. Since XY = YX, we have

(
P−1XP

)
·

(
P−1YP

)
=(

P−1YP
)
·

(
P−1XP

)
, i.e., J ·

(
P−1YP

)
=

(
P−1YP

)
· J. This implies that P−1YP =

(
y1 y2
0 y1

)
, where y1, y2 ∈ C. The

assumption aXm + bYn =

(
c1 0
0 c2

)
implies that a

(
P−1XP

)m
+ b

(
P−1YP

)n
= P−1

(
c1 0
0 c2

)
P. Then

a
(
λm

∗

0 λm

)
+ b

(
yn

1 ∗

0 yn
1

)
=

1
p11p22 − p12p21

(
p11p22c1 − p12p21c2 p12p22 (c1 − c2)

p11p21 (c2 − c1) p11p22c2 − p12p21c1

)
.

Comparing both sides, we have p11p21 = p11p22 + p12p21 = 0. This implies that det (P) = p11p22 − p12p21 = 0, a
contradiction.

Remark 2.4. All commutative solutions of equation (7) are given by Proposition 2.3. How about the non-
commutative solutions of equation (7)? This is an interesting problem that lies out of the scope of this
paper.

About scalar matrices, we have the following lemma and proposition.

Lemma 2.5. ([13]) Let X be a 2 × 2-matrix over Z such that Xn is a scalar matrix for some n ∈ N, and let k be the
smallest positive integer with such property. Then the following statements hold.
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1) k ∈ {1, 2, 3, 4, 6};
2)

(i) k = 1 if and only if X = aI2, a ∈ Z;

(ii) k = 2 if and only if X =
(
a b
c −a

)
, where a, b, c ∈ Z satisfy a2 + b2 + c2 , 0. Moreover, X2 =

(
a2 + bc

)
I2;

(iii) k = 3 if and only if X =
(
a b
c d

)
, where a, b, c, d ∈ Z satisfy (a + d)2 = ad − bc and a + d , 0. Moreover,

X3 = − (a + d)3 I2;

(iv) k = 4 if and only if X =
(
a b
c d

)
, where a, b, c, d ∈ Z satisfy (a + d)2 = 2 (ad − bc) and a + d , 0.

Moreover, X4 = −4
(

a+d
2

)4
I2 = − (ad − bc)2 I2;

(v) k = 6 if and only if X =
(
a b
c d

)
, where a, b, c, d ∈ Z satisfy (a + d)2 = 3 (ad − bc) and a + d , 0.

Moreover, X6 = − (ad − bc)3 I2.

Proposition 2.6. Let X ∈M2(Z) be a nonsingular matrix such that Xn is a scalar matrix for some n ∈N, and let k
be the smallest positive integer with such property. Then for m ∈N, Xm is a scalar matrix if and only if k | m.

Proof. The sufficiency is clear. We next prove necessity. Since Xm and Xk are scalar matrices, we have
Xm = λI2 and Xk = µI2 for some λ, µ ∈ Z\{0}. Let m = kq + r, where q, r ∈ Z and 0 ≤ r < k. Then

Xr = Xm−kq = Xm
·

(
Xk

)−q
= λI2 ·

(
µI2

)−q =
λ
µq I2.

If r , 0, then we obtain a contradiction to the minimality of k. Thus, r = 0. This means that k | m.

About commutative 2 × 2 integral matrices, we have the following lemma.

Lemma 2.7. Let X =
(
t1 t2
t3 t4

)
and Y =

(
s1 s2
s3 s4

)
be 2 × 2-matrices over Z. Then XY = YX if and only if the vectors

−→
t = (t1 − t4, t2, t3) and −→s = (s1 − s4, s2, s3) are linearly dependent over Q.

Proof. By a direct computation, we have

XY − YX =
(

t2s3 − s2t3 (t1 − t4)s2 − (s1 − s4)t2
(s1 − s4)t3 − (t1 − t4)s3 s2t3 − t2s3

)

=


∣∣∣∣∣t2 t3
s2 s3

∣∣∣∣∣ ∣∣∣∣∣t1 − t4 t2
s1 − s4 s2

∣∣∣∣∣
−

∣∣∣∣∣t1 − t4 t3
s1 − s4 s3

∣∣∣∣∣ −

∣∣∣∣∣t2 t3
s2 s3

∣∣∣∣∣
 .

Let
−→
i = (1, 0, 0),

−→
j = (0, 1, 0) and

−→
k = (0, 0, 1). Then XY = YX if and only if∣∣∣∣∣t2 t3

s2 s3

∣∣∣∣∣ = ∣∣∣∣∣t1 − t4 t2
s1 − s4 s2

∣∣∣∣∣ = ∣∣∣∣∣t1 − t4 t3
s1 − s4 s3

∣∣∣∣∣ = 0

if and only if

−→
t × −→s =

∣∣∣∣∣∣∣∣
−→
i

−→
j
−→
k

t1 − t4 t2 t3
s1 − s4 s2 s3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣t2 t3
s2 s3

∣∣∣∣∣−→i − ∣∣∣∣∣t1 − t4 t3
s1 − s4 s3

∣∣∣∣∣−→j + ∣∣∣∣∣t1 − t4 t2
s1 − s4 s2

∣∣∣∣∣−→k = −→0
if and only if the vectors

−→
t and −→s are linearly dependent over Q.
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From Theorem 2.2, Lemmas 2.5, 2.7 and Proposition 2.6, we conclude that finding the non-commutative
solutions of equation (2) can be reduced to finding the solutions of the corresponding Diophantine equation.
Next, we give an example to illustrate it, i.e., Proposition 2.8.

Proposition 2.8. Let a, b, c be nonzero integers such that gcd (a, b, c) = 1. Let X and Y be 2 × 2-matrices over Z.
Then the following statements hold.

1)
aX2 + bY2 = cI2, XY , YX

if and only if

X =
(
t1 t2
t3 −t1

)
, Y =

(
s1 s2
s3 −s1

)
,

where t1, t2, t3, s1, s2, s3 ∈ Z satisfy a
(
t2
1 + t2t3

)
+ b

(
s2

1 + s2s3

)
= c and the vectors

−→
t = (t1, t2, t3) and

−→s = (s1, s2, s3) are linearly independent over Q;
2)

X4 + Y4 = c4I2, XY , YX

if and only if

X =
(
t1 t2
t3 −t1

)
, Y =

(
s1 s2
s3 −s1

)
,

where t1, t2, t3, s1, s2, s3 ∈ Z satisfy
(
t2
1 + t2t3

)2
+

(
s2

1 + s2s3

)2
= c4 and the vectors

−→
t = (t1, t2, t3) and

−→s = (s1, s2, s3) are linearly independent over Q.

Proof. 1) Sufficiency follows from Lemma 2.5 2) (ii) and Lemma 2.7. We next prove necessity. From Theorem
2.2, it follows that X2 and Y2 are scalar matrices. Since XY , YX, X and Y are not scalar matrices. By Lemma
2.5 2) (ii), we have

X =
(
t1 t2
t3 −t1

)
, Y =

(
s1 s2
s3 −s1

)
,

where t1, t2, t3, s1, s2, s3 are integers. Moreover, X2 =
(
t2
1 + t2t3

)
I2 and Y2 =

(
s2

1 + s2s3

)
I2. The assumption

aX2 + bY2 = cI2 implies that a
(
t2
1 + t2t3

)
+ b

(
s2

1 + s2s3

)
= c. Let

−→
t = (t1, t2, t3) and −→s = (s1, s2, s3). Then it

follows from Lemma 2.7 that
−→
t and −→s are linearly independent over Q.

2) Sufficiency follows from Lemma 2.5 2) (ii) and Lemma 2.7. We next prove necessity. From Theorem
2.2, it follows that X4 and Y4 are scalar matrices. Let k and l be the smallest positive integers such that Xk

and Yl are scalar matrices, respectively. Since XY , YX, we have k, l , 1. By Lemma 2.5 and Proposition
2.6, we have k, l ∈ {2, 4}.

Case 1: k = l = 2.
By Lemma 2.5, we have

X =
(
t1 t2
t3 −t1

)
, Y =

(
s1 s2
s3 −s1

)
,

where t1, t2, t3, s1, s2, s3 are integers. Moreover, X2 =
(
t2
1 + t2t3

)
I2 and Y2 =

(
s2

1 + s2s3

)
I2. The assumption

X4 + Y4 = c4I2 implies that
(
t2
1 + t2t3

)2
+

(
s2

1 + s2s3

)2
= c4. Let

−→
t = (t1, t2, t3) and −→s = (s1, s2, s3). Then it

follows from Lemma 2.7 that
−→
t and −→s are linearly independent over Q.

Case 2: k = 2, l = 4.
By Lemma 2.5, we have X2 = uI2 and Y4 = −4v4I2 for some u ∈ Z and v ∈ Z\{0}. The assumption

X4 + Y4 = c4I2 implies that c4 + 4v4 = u2, which is impossible.
Case 3: k = 4, l = 2.
This case is also impossible, where the reason is similar to Case 2.
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Case 4: k = l = 4.
By Lemma 2.5, we have X4 = −4u4I2 and Y4 = −4v4I2 for some u, v ∈ Z\{0}. The assumption X4+Y4 = c4I2

implies that −4u4
− 4v4 = c4, which is impossible.

We now study the commutative solutions of equation (2).

Proposition 2.9. If (X, Y) is a solution of equation (2), then

axm
i + byn

i = c, i = 1, 2, (8)

where xi, yi, i = 1, 2 are the eigenvalues of X and Y, respectively.

Proof. Suppose that
(
x1 ∗

0 x2

)
is the Jordan canonical form of X. Then there is a nonsingular matrix P ∈M2(C)

such that P−1XP =
(
x1 ∗

0 x2

)
. The assumption aXm + bYn = cI2 implies that a

(
P−1XP

)m
+ b

(
P−1YP

)n
= cI2.

Then we obtain
(
axm

1 ∗

0 axm
2

)
+ b

(
P−1YP

)n
= cI2, which implies that

bYn = P
(
c − axm

1 ∗

0 c − axm
2

)
P−1. (9)

Comparing the eigenvalues of both sides of (9), we have axm
i + byn

i = c, i = 1, 2.

If the eigenvalues of X and Y are integers, then equation (8) becomes the Diophantine equation axm+byn =

c, x, y ∈ Z. So we can assume that the eigenvalues of X or Y are not integers. Let A =
(
e f
1 0

)
∈M2 (Z) be a

given matrix such that f1 , 0 and gcd(e, f , 1) = 1, and let C(A) = {B ∈M2(Z) : AB = BA}. In [9], we showed
that the solvability of the matrix equation

aXm + bYn = cI2, XY = YX, m, n ∈N (10)

in M2(Z) can be reduced to the solvability of the matrix equation

aXm + bYn = cI2, m, n ∈N (11)

in C(A), and finally to the solvability of the equation

axm + byn = c, m, n ∈N (12)

in quadratic fields. As a corollary of [9, Theorem 3.1], we have the following theorem.

Theorem 2.10. Let A =
(
e f
1 0

)
∈ M2 (Z) be a given matrix such that f1 , 0 and gcd(e, f , 1) = 1. Let

K = Q
(√

e2 + 4 f1
)

and let OK be its ring of integers. Then the following statements hold.

1) If e2 + 4 f1 is a square, then equation (11) has a non-trivial solution in C(A) if and only if equation (12) has a
non-trivial solution in Z;

2) If e2 + 4 f1 is not a square and D is the unique square-free integer such that e2 + 4 f1 = k2D for some k ∈ N,
then equation (11) has a non-trivial solution in C(A) if and only if equation (12) has a non-trivial solution(
x, y

)
in OK such that x, y can be written in the form

s + t
√

D
2

, s, t ∈ Z, k | t.

From Theorem 2.10, we conclude that the solvability of equation (10) in M2(Z) can be reduced to the
solvability of equation (12) in quadratic fields. However, the solvability of equation (12) in quadratic fields
is unsolved.
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3. The solvability of Xn + Yn = λnI2, X, Y ∈ M2(Z)

In this section, we mainly consider the non-trivial solutions of equation (3), i.e., solutions satisfying
det (XY) , 0. Indeed, suppose that (X, Y) is a solution of equation (3) such that det (XY) = 0. Without loss
of generality, we can assume that det (X) = 0. If the eigenvalues of X are both equal to zero, then X2 = O.
In this case, equation (3) becomes the matrix equation

Yn = λnI2, Y ∈M2(Z), n ∈N, n ≥ 3.

However, all solutions of this matrix equation can be given by Lemma 2.5. So we only need to consider the
non-trivial solutions of equation (3). In [8], we showed that equation (3) has no non-trivial solutions if the
eigenvalues of X or Y are integers. Moreover, we gave all non-trivial solutions of equation (3) for λ = ±1.
In this section, we will study separately commutative and non-commutative solutions of equation (3) for
an arbitrary nonzero integer λ. We first study the non-commutative solutions of equation (3).

Theorem 3.1. Equation (3) has no non-commutative non-trivial solutions for n , 4.

Proof. Suppose that (X, Y) is a non-commutative non-trivial solution of equation (3) for n , 4. Then we
have Xn + Yn = λnI2, XY , YX and det (XY) , 0. From Theorem 2.2, it follows that Xn and Yn are scalar
matrices. Let k and l be the smallest positive integers such that Xk and Yl are scalar matrices, respectively.
Since XY , YX, we have k, l , 1. By Lemma 2.5, we have k, l ∈ {2, 3, 4, 6}. From Proposition 2.6, it follows
that k | n and l | n. Let q be the least common multiple of k and l. Then q | n. Since k, l ∈ {2, 3, 4, 6}, we have
q ∈ {2, 3, 4, 6, 12}. If gcd (n, 6) = 1, then q ∤ n, a contradiction.

Case 1: n ≡ 0 (mod 6). Then n = 6m for some positive integer m.
Subcase 1.1: 2 | m.
Then m = 2t for some positive integer t, which implies that n = 12t. By Lemma 2.5, we have X12 = a3I2

and Y12 = b3I2 for some a, b ∈ Z\{0}. The assumption Xn + Yn = λnI2 implies that a3tI2 + b3tI2 = λ12tI2. Then(
at)3
+

(
bt)3
=

(
λ4t

)3
, which is impossible by Fermat’s last theorem.

Subcase 1.2: 2 ∤ m.
By Proposition 2.6, we have k, l ∈ {2, 3, 6}. By Lemma 2.5, we obtain X6 = a3I2 and Y6 = b3I2 for some

a, b ∈ Z\{0}. The assumption Xn + Yn = λnI2 implies that a3mI2 + b3mI2 = λ6mI2. Then (am)3 + (bm)3 =
(
λ2m

)3
,

which is impossible by Fermat’s last theorem.
Case 2: n ≡ 2 (mod 6). Then n = 2 + 6m for some positive integer m.
Subcase 2.1: 2 | m.
Then m = 2t for some positive integer t, which implies that n = 2 + 12t. By Proposition 2.6, we have

k = l = 2. By Lemma 2.5, we have X2 = aI2 and Y2 = bI2 for some a, b ∈ Z\{0}. The assumption Xn+Yn = λnI2

implies that a1+6tI2 + b1+6tI2 = λ2+12tI2. Then a1+6t + b1+6t =
(
λ2

)1+6t
, which is impossible by Fermat’s last

theorem.
Subcase 2.2: 2 ∤ m.
Then 1+3m = 2t for some positive integer t ≥ 2. Moreover, 3 ∤ t. We obtain n = 2+6m = 2 (1 + 3m) = 4t.

By Proposition 2.6, we have k, l ∈ {2, 4}. By Lemma 2.5, we obtain X4 = ±a2I2 and Y4 = ±b2I2 for

some a, b ∈ Z\{0}. The assumption Xn + Yn = λnI2 implies that
(
±a2

)t
I2 +

(
±b2

)t
I2 =

(
λ4

)t
I2. Then(

±a2
)t
+

(
±b2

)t
=

(
λ4

)t
, which is impossible by Fermat’s last theorem.

Case 3: n ≡ 3 (mod 6).
Then n = 3 + 6m for some non-negative integer m. By Proposition 2.6, we have k = l = 3. By Lemma

2.5, we have X3 = a3I2 and Y3 = b3I2 for some a, b ∈ Z\{0}. The assumption Xn + Yn = λnI2 implies that
anI2 + bnI2 = λnI2. Then an + bn = λn, which is impossible by Fermat’s last theorem.

Case 4: n ≡ 4 (mod 6). Since n , 4, we have n = 4 + 6m for some positive integer m.
Subcase 4.1: 2 ∤ m.
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By Proposition 2.6, we have k = l = 2. By Lemma 2.5, we obtain X2 = aI2 and Y2 = bI2 for some

a, b ∈ Z\{0}. The assumption Xn +Yn = λnI2 implies that a2+3mI2 + b2+3mI2 =
(
λ2

)2+3m
I2. Then a2+3m + b2+3m =(

λ2
)2+3m

, which is impossible by Fermat’s last theorem.
Subcase 4.2: 2 | m.
Then m = 2t for some positive integer t, which implies that n = 4 + 12t. By Proposition 2.6, we have

k, l ∈ {2, 4}. By Lemma 2.5, we have X4 = aI2 and Y4 = bI2 for some a, b ∈ Z\{0}. The assumption

Xn + Yn = λnI2 implies that a1+3tI2 + b1+3tI2 = λ4+12tI2. Then a1+3t + b1+3t =
(
λ4

)1+3t
, which is impossible by

Fermat’s last theorem.

Remark 3.2. All non-commutative solutions of equation (3) are given by Proposition 2.8 2) for n = 4.

We now study the commutative solutions of equation (3). If the eigenvalues of X and Y are integers,
then it follows from Proposition 2.9 that

xn
i + yn

i = λ
n, i = 1, 2, n ∈N, n ≥ 3,

where xi, yi ∈ Z\{0}, i = 1, 2 are the eigenvalues of X and Y, respectively. We know that this is impossible by

Fermat’s last theorem. Thus, we can assume that the eigenvalues of X or Y are not integers. Let A =
(
e f
1 0

)
∈

M2 (Z) be a given matrix such that f1 , 0 and gcd(e, f , 1) = 1, and let C(A) = {B ∈ M2(Z) : AB = BA}. In
[9], we showed that the solvability of the matrix equation

Xn + Yn = λnI2, XY = YX, n ∈N, n ≥ 3 (13)

in M2(Z) can be reduced to the solvability of the matrix equation

Xn + Yn = λnI2, n ∈N, n ≥ 3 (14)

in C(A), and finally to the solvability of the equation

xn + yn = λn, n ∈N, n ≥ 3 (15)

in quadratic fields. As a corollary of [9, Theorem 3.1], we have the following theorem.

Theorem 3.3. Let A =
(
e f
1 0

)
∈ M2 (Z) be a given matrix such that f1 , 0 and gcd(e, f , 1) = 1. Let K =

Q
(√

e2 + 4 f1
)

and let OK be its ring of integers. Then the following statements hold.

1) If e2 + 4 f1 is a square, then equation (14) has no non-trivial solutions in C(A);
2) If e2 + 4 f1 is not a square and D is the unique square-free integer such that e2 + 4 f1 = k2D for some k ∈ N,

then equation (14) has a non-trivial solution in C(A) if and only if equation (15) has a non-trivial solution(
x, y

)
in OK such that x, y can be written in the form

s + t
√

D
2

, s, t ∈ Z, k | t.

From Theorem 3.3, we conclude that the solvability of equation (13) in M2(Z) can be reduced to the
solvability of equation (15) in quadratic fields. However, the solvability of equation (15) in quadratic fields
is unsolved. We next list a known result about the solvability of the Fermat’s equation in quadratic fields.

Lemma 3.4. ([1]) The Fermat’s equation

xn + yn = zn, n ∈N, n ≥ 3

has no non-trivial solutions in quadratic fields for n = 6, 9.
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By Theorems 3.1, 3.3 and Lemma 3.4, we have the following proposition.

Proposition 3.5. Equation (3) has no non-trivial solutions in M2(Z) for n = 6, 9.

Proof. Directly from Theorems 3.1, 3.3 and Lemma 3.4.

Corollary 3.6. Letλ be a nonzero integer and let i, j, k be positive integers such that 6 | gcd
(
i, j, k

)
or 9 | gcd

(
i, j, k

)
.

Then the matrix equation

Xi + Y j = λkI2

has no non-trivial solutions in M2(Z).

Proof. Directly from Proposition 3.5.

4. All solutions of aX2 + bY2 = cI2, X, Y ∈ M2(Z)

Note that all non-commutative solutions of equation (4) are given by Proposition 2.8 1). Thus, in this
section, we only need to study the commutative solutions of equation (4).

Theorem 4.1. Let a, b, c be nonzero integers such that −ab is not a square and gcd (a, b, c) = 1. Let X and Y be
2 × 2-matrices over Z. Then

aX2 + bY2 = cI2, XY = YX

if and only if one of the following statements holds.

(i) X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy at2
1 + bt2

2 = c;

(ii) X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy at2

1 + b
(
t2
4 + t2t3

)
= c;

(iii) X = t1I2+
u−c
1

(
0 t2
t3 −k

)
and Y = t4I2+

va
1

(
0 t2
t3 −k

)
, where t1, t2, t3, t4, u, v, k ∈ Z, u , c, 1 = gcd (va, u − c)

and the following relations hold:

u2 + v2ab = c2, at2
1 + bt2

4 +
2act2t3

12
(c − u) = c,

(
1t1 + ck

)
(u − c) + vb1t4 = 0.

Proof. We now prove sufficiency. We need to verify the following three cases.
First, suppose that X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy at2

1 + bt2
2 = c. Then XY = YX and

aX2 + bY2 = at2
1I2 + bt2

2I2 = cI2.

Then, suppose that X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy at2

1 + b
(
t2
4 + t2t3

)
= c. Then

XY = YX and Y2 =
(
t2
4 + t2t3

)
I2. Moreover,

aX2 + bY2 = at2
1I2 + b

(
t2
4 + t2t3

)
I2 =

(
at2

1 + b
(
t2
4 + t2t3

))
I2 = cI2.

Finally, suppose that X = t1I2 +
u−c
1

(
0 t2
t3 −k

)
and Y = t4I2 +

va
1

(
0 t2
t3 −k

)
, where t1, t2, t3, t4, u, v, k ∈ Z

satisfy the above conditions. Then XY = YX. Moreover,

aX2 + bY2 =

(
at2

1 + bt2
4 +

2act2t3

12
(c − u)

)
I2 +

2a
12

[(
1t1 + ck

)
(u − c) + vb1t4

] (0 t2
t3 −k

)
=

(
at2

1 + bt2
4 +

2act2t3

12
(c − u)

)
I2 = cI2.
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We next prove necessity. Let X =
(
x1 x2
x3 x4

)
and Y =

(
y1 y2
y3 y4

)
. Then the assumption aX2 + bY2 = cI2

implies that a2X2 + abY2 = acI2. Since XY = YX, we have(
aX +

√

−abY
) (

aX −
√

−abY
)
= acI2. (16)

Note that

aX +
√

−abY =
(
ax1 + y1

√
−ab ax2 + y2

√
−ab

ax3 + y3
√
−ab ax4 + y4

√
−ab

)
and

aX −
√

−abY =
(
ax1 − y1

√
−ab ax2 − y2

√
−ab

ax3 − y3
√
−ab ax4 − y4

√
−ab

)
.

By a direct computation, we have

det
(
aX +

√

−abY
)
= a

(
u + v

√

−ab
)

and det
(
aX −

√

−abY
)
= a

(
u − v

√

−ab
)
,

where u = a (x1x4 − x2x3)− b
(
y1y4 − y2y3

)
and v = x1y4 + x4y1 − x2y3 − x3y2. By computing the determinants

of both sides of (16), we have u2 + v2ab = c2. From (16), it follows that(
aX +

√

−abY
)−1
=

1
ac

(
aX −

√

−abY
)
=

1
ac

(
ax1 − y1

√
−ab ax2 − y2

√
−ab

ax3 − y3
√
−ab ax4 − y4

√
−ab

)
. (17)

Moreover,(
aX +

√

−abY
)−1
=

1

det
(
aX +

√
−abY

)adj
(
aX +

√

−abY
)

=
1

a
(
u + v

√
−ab

)  ax4 + y4
√
−ab −

(
ax2 + y2

√
−ab

)
−

(
ax3 + y3

√
−ab

)
ax1 + y1

√
−ab

 , (18)

where adj
(
aX +

√
−abY

)
is the adjugate of aX +

√
−abY. Comparing (17) and (18), we have

acx1 +
(
−y1c

) √
−ab =

(
aux4 + vaby4

)
+

(
uy4 − avx4

) √
−ab, (19a)

(−acx2) + y2c
√

−ab =
(
aux2 + vaby2

)
+

(
uy2 − avx2

) √
−ab, (19b)

(−acx3) + y3c
√

−ab =
(
aux3 + vaby3

)
+

(
uy3 − avx3

) √
−ab, (19c)

acx4 +
(
−y4c

) √
−ab =

(
aux1 + vaby1

)
+

(
uy1 − avx1

) √
−ab. (19d)

Case 1: u , ±c.
Then v , 0. By (19b) and (19c), we have y2c = uy2 − avx2 and y3c = uy3 − avx3. Then

y2 =
av

u − c
x2 and y3 =

av
u − c

x3. (20)

From (19a) and (19d), it follows that −y1c = uy4 − avx4 and −y4c = uy1 − avx1, i.e.,(
c u
u c

) (
y1
y4

)
=

(
avx4
avx1

)
.

Then we have

y1 =
av

c2 − u2
(cx4 − ux1) and y4 =

av
c2 − u2

(cx1 − ux4) . (21)



H. Li, P. Yuan / Filomat 39:5 (2025), 1551–1571 1562

Therefore, from (20), (21) and u2 + v2ab = c2, it follows that

Y =
av

c2 − u2

(
cx4 − ux1 − (u + c) x2
− (u + c) x3 cx1 − ux4

)
=

1
vb

(
cx4 − ux1 − (u + c) x2
− (u + c) x3 cx1 − ux4

)
. (22)

Since Y ∈M2(Z), we have yi ∈ Z, i = 1, 2, 3, 4. Then
vb | (cx4 − ux1) , (23a)
vb | (− (u + c) x2) , (23b)
vb | (− (u + c) x3) , (23c)
vb | (cx1 − ux4) . (23d)

From (23a) and (23d), we obtain vb | (− (u + c) (x1 − x4)). Then there is an integer s such that− (u + c) (x1 − x4) =
vbs. Since u2 + v2ab = c2, we have

x1 − x4 =
−vbs
u + c

=
vbs (u − c)

c2 − u2 =
s (u − c)

va
.

Since x1 − x4 ∈ Z, we obtain va | (s (u − c)). Let 1 = gcd (va, u − c). Then va
1
| s. So there is an integer k such

that s = va
1

k. Thus,

x1 − x4 =
s (u − c)

va
=

va
1

k ·
(u − c)

va
=

u − c
1

k. (24)

Likewise, there are integers t2 and t3 such that

x2 =
u − c
1

t2 and x3 =
u − c
1

t3. (25)

From (24) and (25), we conclude that

X = x1I2 +
u − c
1

(
0 t2
t3 −k

)
. (26)

From − (u + c) (x1 − x4) = vbs, s = va
1

k and (22), it follows that

va
1

k = s =
− (u + c) (x1 − x4)

vb
=

cx4 − ux1 − (cx1 − ux4)
vb

= y1 − y4. (27)

From x2 =
u−c
1

t2, u2 + v2ab = c2 and (22), it follows that

y2 =
− (u + c) x2

vb
=

(
c2
− u2

)
x2

vb (u − c)
=

va
u − c

x2 =
va

u − c
·

u − c
1

t2 =
va
1

t2. (28)

Similarly, we obtain

y3 =
va
1

t3. (29)

From (27), (28) and (29), we conclude that

Y = y1I2 +
va
1

(
0 t2
t3 −k

)
. (30)
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By (26) and (30), we have

aX2 + bY2 = tI2 +
2a
12 r

(
0 t2
t3 −k

)
,

where t = ax2
1 + by2

1 +
2act2t3
12 (c − u) and r =

(
1x1 + ck

)
(u − c)+ vb1y1. From the assumption aX2 + bY2 = cI2, it

follows that t = c and rk = rt2 = rt3 = 0. If k = t2 = t3 = 0, then X = x1I2 and Y = y1I2, where ax2
1 + by2

1 = c. If
k, t2, t3 are not all equal to zero, then r = 0 and t = c.

Case 2: u = −c.
Then v = 0. From (19a), (19b) and (19c), it follows that x1 = −x4, y1 = y4 and y2 = y3 = 0. Then

X =
(
x1 x2
x3 −x1

)
and Y = y1I2. The assumption aX2 + bY2 = cI2 implies that a

(
x2

1 + x2x3

)
+ by2

1 = c. Note that

the matrices and the condition which we obtain in this case can be obtained by taking u = −c in Case 1.
Indeed, let u = −c in Case 1. Then v = 0 and 1 = gcd (va, u − c) = 2|c|. By Case 1, we obtain

X =
(

t1 −
c
|c| t2

−
c
|c| t3 −t1

)
and Y = t4I2,

where t1, t2, t3, t4 ∈ Z satisfy a
(
t2
1 + t2t3

)
+ bt2

4 = c. If c > 0, then let t1 = x1, t2 = −x2, t3 = −x3 and t4 = y1.

Otherwise, let t1 = x1, t2 = x2, t3 = x3 and t4 = y1. Then we can obtain X =
(
x1 x2
x3 −x1

)
and Y = y1I2, where

a
(
x2

1 + x2x3

)
+ by2

1 = c.
Case 3: u = c.
Then v = 0. From (19a), (19b) and (19c), it follows that x1 = x4, y1 = −y4 and x2 = x3 = 0. Then X = x1I2

and Y =
(
y1 y2
y3 −y1

)
. The assumption aX2 + bY2 = cI2 implies that ax2

1 + b
(
y2

1 + y2y3

)
= c.

About Theorem 4.1, we have the following equivalent statement.

Theorem 4.2. Let a, b, c be nonzero integers such that −ab is not a square and gcd (a, b, c) = 1. Let X and Y be
2 × 2-matrices over Z. Then

aX2 + bY2 = cI2, XY = YX

if and only if one of the following statements holds.

(i) X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy at2
1 + bt2

2 = c;

(ii) X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy at2

1 + b
(
t2
4 + t2t3

)
= c;

(iii) X =

 t1
u−c
1

t2
u−c
1

t3
ut1+vbt4

c

 and Y =

 t4
va
1

t2
va
1

t3
vat1−ut4

c

, where t1, t2, t3, t4, u, v ∈ Z, u , c, 1 = gcd (va, u − c) and

the following relations hold:

u2 + v2ab = c2, at2
1 + bt2

4 +
2act2t3

12
(c − u) = c, c | (ut1 + vbt4) , c | (vat1 − ut4) .

Proof. We only need to show that (iii) is equivalent to Theorem 4.1 (iii).
We now prove sufficiency. By Theorem 4.1 (iii), we have k = 1

c(c−u) [(u − c) t1 + vbt4]. Then

X = t1I2 +
u − c
1

(
0 t2
t3 −k

)
=

 t1
u−c
1

t2
u−c
1

t3
ut1+vbt4

c


and

Y = t4I2 +
va
1

(
0 t2
t3 −k

)
=

 t4
va
1

t2
va
1

t3
vat1−ut4

c

 .
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Since k ∈ Z, we have c | (ut1 + vbt4) and c | (vat1 − ut4).
We next prove necessity. By (iii), we have

X =

 t1
u−c
1

t2
u−c
1

t3
ut1+vbt4

c

 = t1I2 +
u − c
1

(
0 t2
t3 −k

)
and

Y =

 t4
va
1

t2
va
1

t3
vat1−ut4

c

 = t4I2 +
va
1

(
0 t2
t3 −k

)
,

where k = 1

c(c−u) [(u − c) t1 + vbt4]. To complete the proof we need to show that k ∈ Z and
(
1t1 + ck

)
(u − c) +

vb1t4 = 0. Since c | (ut1 + vbt4) and c | (vat1 − ut4), we have u−c
1

k, va
1

k ∈ Z. Then c | ((u − c) t1 + vbt4) and
c−u
1
|

(
va
1
·

(u−c)t1+vbt4
c

)
. Since gcd

(
va
1
, c−u
1

)
= 1, we obtain c−u

1
|

(u−c)t1+vbt4
c . Hence, k ∈ Z. Moreover, by a direct

computation, we have
(
1t1 + ck

)
(u − c) + vb1t4 = 0.

By Theorem 4.2, we can get all solutions of some matrix equations for given nonzero integers a, b, c.

Proposition 4.3. Let p be a prime such that p ≡ 3 (mod 4). Then all solutions of the matrix equations

X2 + Y2 = ±pI2, X, Y ∈M2(Z) (31)

are given by the following five parts.

(i) X =
(
t1 t2
t3 −t1

)
and Y =

(
s1 s2
s3 −s1

)
, where t1, t2, t3, s1, s2, s3 ∈ Z satisfy t2

1 + t2t3 + s2
1 + s2s3 = ±p;

(ii) X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2
4 + t2t3 = ±p;

(iii) X =
(
t1 t2
t3 −t1

)
and Y = t4I2, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2
4 + t2t3 = ±p;

(iv) X =
(
t1 t2
t3 t4

)
and Y =

(
t4 −t2
−t3 t1

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2
4 + 2t2t3 = ±p;

(v) X =
(
t1 t2
t3 −t4

)
and Y =

(
t4 t2
t3 −t1

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2
4 + 2t2t3 = ±p.

Proof. We can prove this proposition simultaneously for the equations X2 + Y2 = pI2 and X2 + Y2 = −pI2,
where the upper signs refer to the first equation and the lower signs refer to the second equation. From
Proposition 2.8 1), it follows that all non-commutative solutions of equations (31) are given by (i). We next
find commutative solutions of equations (31). By Theorem 4.2, we only need to consider the following three
cases.

Case 1: X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy t2
1 + t2

2 = ±p.
Obviously, t2

1 + t2
2 = −p is impossible. Since p is a prime such that p ≡ 3 (mod 4), it follows that p cannot

be represented as a sum of two squares. This means that t2
1 + t2

2 = p is impossible. Therefore, this case is
impossible.

Case 2: X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2
4 + t2t3 = ±p.

Then we can get the solutions (ii) in this case.

Case 3: X =

 t1
u∓p
1

t2
u∓p
1

t3
ut1+vt4
±p

 and Y =

 t4
v
1
t2

v
1
t3

vt1−ut4
±p

, where t1, t2, t3, t4, u, v ∈ Z, u , ±p, 1 = gcd
(
v, u ∓ p

)
and the following relations hold:

u2 + v2 = p2, t2
1 + t2

4 +
2pt2t3

12

(
p ∓ u

)
= ±p, p | (ut1 + vt4) , p | (vt1 − ut4) .
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In this case, we need to solve the Diophantine equation u2 + v2 = p2 in integers u, v. Note that p is a
prime such that p ≡ 3 (mod 4). Then it follows from u2 + v2 = p2 that p | u and p | v. Thus, we obtain
(u, v) ∈ {

(
∓p, 0

)
,
(
0, p

)
,
(
0, −p

)
}.

We now consider the matrix equation X2 + Y2 = pI2. Then we have

(u, v) ∈ {
(
−p, 0

)
,
(
0, p

)
,
(
0, −p

)
}.

For (u, v) =
(
−p, 0

)
, we have X =

(
t1 t2
t3 −t1

)
and Y = t4I2, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2
4 + t2t3 = p. For

(u, v) =
(
0, p

)
, we have X =

(
t1 t2
t3 t4

)
and Y =

(
t4 −t2
−t3 t1

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2
4 + 2t2t3 = p. For

(u, v) =
(
0, −p

)
, we have X =

(
t1 t2
t3 −t4

)
and Y =

(
t4 t2
t3 −t1

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2
4 + 2t2t3 = p.

We next consider the matrix equation X2 + Y2 = −pI2. Then we obtain

(u, v) ∈ {
(
p, 0

)
,
(
0, −p

)
,
(
0, p

)
}.

For (u, v) =
(
p, 0

)
, we have X =

(
t1 t2
t3 −t1

)
and Y = t4I2, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2
4 + t2t3 = −p. For

(u, v) =
(
0, −p

)
, we have X =

(
t1 t2
t3 t4

)
and Y =

(
t4 −t2
−t3 t1

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1+t2
4+2t2t3 = −p. For

(u, v) =
(
0, p

)
, we have X =

(
t1 t2
t3 −t4

)
and Y =

(
t4 t2
t3 −t1

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1+ t2
4+2t2t3 = −p.

Proposition 4.4. Let p be a prime such that p ≡ 5 or 7 (mod 8). Then all solutions of the matrix equations

X2 + 2Y2 = ±pI2, X, Y ∈M2(Z) (32)

are given by the following three parts.

(i) X =
(
t1 t2
t3 −t1

)
and Y =

(
s1 s2
s3 −s1

)
, where t1, t2, t3, s1, s2, s3 ∈ Z satisfy t2

1 + t2t3 + 2
(
s2

1 + s2s3

)
= ±p;

(ii) X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + 2
(
t2
4 + t2t3

)
= ±p;

(iii) X =
(
t1 t2
t3 −t1

)
and Y = t4I2, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2t3 + 2t2
4 = ±p.

Proof. We can prove this proposition simultaneously for the equations X2 + 2Y2 = pI2 and X2 + 2Y2 = −pI2,
where the upper signs refer to the first equation and the lower signs refer to the second equation. From
Proposition 2.8 1), it follows that all non-commutative solutions of equations (32) are given by (i). We next
find commutative solutions of equations (32). By Theorem 4.2, we only need to consider the following three
cases.

Case 1: X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy t2
1 + 2t2

2 = ±p.
Obviously, t2

1+2t2
2 = −p is impossible. We claim that t2

1+2t2
2 = p is also impossible. Indeed, if t2

1+2t2
2 = p,

then gcd
(
p, t1t2

)
= 1. Otherwise, we have p | t1 and p | t2. This is impossible by t2

1 + 2t2
2 = p. So

gcd
(
p, t1t2

)
= 1. Then there is an integer t′2 such that t2t′2 ≡ 1 (mod p). From t2

1 + 2t2
2 = p, it follows that(

t1t′2
)2
+ 2

(
t2t′2

)2
= p

(
t′2
)2

. Then
(
t1t′2

)2
≡ −2 (mod p). This means that

(
−2
p

)
= 1, where

(
·

p

)
is the Legendre

symbol. However, for p ≡ 5 or 7 (mod 8), we have
(
−2
p

)
= −1, a contradiction.

Case 2: X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + 2
(
t2
4 + t2t3

)
= ±p.

Then we can get the solutions (ii) in this case.
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Case 3: X =

 t1
u∓p
1

t2
u∓p
1

t3
ut1+2vt4
±p

and Y =

 t4
v
1
t2

v
1
t3

vt1−ut4
±p

, where t1, t2, t3, t4, u, v ∈ Z, u , ±p, 1 = gcd
(
v, u ∓ p

)
and the following relations hold:

u2 + 2v2 = p2, t2
1 + 2t2

4 +
2pt2t3

12

(
p ∓ u

)
= ±p, p | (ut1 + 2vt4) , p | (vt1 − ut4) .

In this case, we need to solve the Diophantine equation u2+2v2 = p2 in integers u, v. From u2+2v2 = p2,
it follows that 2 |

(
p − u

) (
p + u

)
. Then p and u have the same parity. Moreover, 2 | v. By u2 + 2v2 = p2, we

have

2
(v

2

)2
=

p − u
2
·

p + u
2
. (33)

If v = 0, then we obtain (u, v) =
(
∓p, 0

)
. Let us now assume that v , 0. Let 1 = gcd

( p−u
2 ,

p+u
2

)
. Then 1 | p. If

1 = 1, then it follows from (33) that there are integers y1 and y2 such that

p − u
2
= 2y2

1,
p + u

2
= y2

2 or
p − u

2
= y2

1,
p + u

2
= 2y2

2.

Then we have p = 2y2
1 + y2

2 or p = y2
1 + 2y2

2, which is impossible by the argument of Case 1. Therefore, 1 = p.

Then p | u, so p | v. From u2 + 2v2 = p2, it follows that (u, v) =
(
∓p, 0

)
. Then we have X =

(
t1 t2
t3 −t1

)
and

Y = t4I2, where t1, t2, t3, t4 ∈ Z satisfy t2
1 + t2t3 + 2t2

4 = ±p.

Let c = ±1 in Theorem 4.2. Then we have the following corollary.

Corollary 4.5. Let a, b be nonzero integers such that −ab is not a square and let X, Y ∈M2(Z). Then

aX2 + bY2 = ±I2, XY = YX

if and only if one of the following statements holds.

(i) X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy at2
1 + bt2

2 = ±1;

(ii) X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy at2

1 + b
(
t2
4 + t2t3

)
= ±1;

(iii) X =

 t1
u∓1
1

t2
u∓1
1

t3 ± (ut1 + vbt4)

 and Y =
(

t4
va
1

t2
va
1

t3 ± (vat1 − ut4)

)
, where t1, t2, t3, t4, u, v ∈ Z, u , ±1, 1 =

gcd (va, u ∓ 1) and the following relations hold:

u2 + v2ab = 1, at2
1 + bt2

4 +
2at2t3

12
(1 ∓ u) = ±1.

Remark 4.6. Let d be a square-free integer and let a = 1, b = −d. Then Corollary 4.5 becomes [3, Theorem
2.1].

By Corollary 4.5, we have the following proposition.

Proposition 4.7. Let b be a nonzero integer such that −b is not a square. Suppose that b has a prime divisor of the
form 4k + 3. Then all solutions of the matrix equation

X2 + bY2 = −I2, X, Y ∈M2(Z) (34)

are given by the following two parts.
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(i) X =
(
t1 t2
t3 −t1

)
and Y =

(
s1 s2
s3 −s1

)
, where t1, t2, t3, s1, s2, s3 ∈ Z satisfy t2

1 + t2t3 + b
(
s2

1 + s2s3

)
= −1;

(ii) For b > 0, let X =
(
t1 t2
t3 −t1

)
and Y = t4I2, where t1, t2, t3, t4 ∈ Z satisfy t2

1+t2t3+bt2
4 = −1. Otherwise, let X = t1

u+1
1

t2
u+1
1

t3 − (ut1 + vbt4)

 and Y =
(

t4
v
1
t2

v
1
t3 ut4 − vt1

)
, where t1, t2, t3, t4, u, v ∈ Z, u , −1, 1 = gcd (v, u + 1)

and the following relations hold:

u2 + v2b = 1, t2
1 + bt2

4 +
2t2t3

12
(1 + u) = −1.

Proof. From Proposition 2.8 1), it follows that all non-commutative solutions of equation (34) are given by
(i). We next find commutative solutions of equation (34). Suppose that p ≡ 3 (mod 4) is the prime divisor
of b. Then

(
−1
p

)
= −1, where

(
·

p

)
is the Legendre symbol. By Corollary 4.5, we only need to consider the

following three cases.
Case 1: X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy t2

1 + bt2
2 = −1.

We claim that t2
1 + bt2

2 = −1 is impossible. Indeed, if t2
1 + bt2

2 = −1, then t2
1 ≡ −1 (mod p). This means that(

−1
p

)
= 1, a contradiction.

Case 2: X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + b
(
t2
4 + t2t3

)
= −1.

However, this case is also impossible, where the reason is similar to Case 1.

Case 3: X =

 t1
u+1
1

t2
u+1
1

t3 − (ut1 + vbt4)

 and Y =
(

t4
v
1
t2

v
1
t3 ut4 − vt1

)
, where t1, t2, t3, t4, u, v ∈ Z, u , −1, 1 =

gcd (v, u + 1) and the following relations hold:

u2 + v2b = 1, t2
1 + bt2

4 +
2t2t3

12
(1 + u) = −1.

If b > 0, then it follows from u2 + v2b = 1 that u = 1 and v = 0. Then we have X =
(
t1 t2
t3 −t1

)
and Y = t4I2,

where t1, t2, t3, t4 ∈ Z satisfy t2
1 + t2t3 + bt2

4 = −1. If b < 0, then u2 + v2b = 1 is the Pell’s equation. We know
that it has infinitely many solutions in integers u and v.

Example 4.8. Let b = −3 in Proposition 4.7. Then all solutions of the matrix equation

X2
− 3Y2 = −I2, X, Y ∈M2(Z) (35)

are given by the following two parts.

(i) X =
(
t1 t2
t3 −t1

)
and Y =

(
s1 s2
s3 −s1

)
, where t1, t2, t3, s1, s2, s3 ∈ Z satisfy t2

1 + t2t3 − 3
(
s2

1 + s2s3

)
= −1;

(ii) X =

 t1
u+1
1

t2
u+1
1

t3 3vt4 − ut1

and Y =
(

t4
v
1
t2

v
1
t3 ut4 − vt1

)
, where t1, t2, t3, t4, u, v ∈ Z, u , −1, 1 = gcd (v, u + 1)

and the following relations hold:

u2
− 3v2 = 1, t2

1 − 3t2
4 +

2t2t3

12
(1 + u) = −1.

For example, let u = 7 and v = 4 in (ii). Then we can get a family of solutions to equation (35):(
t1 2t2
2t3 12t4 − 7t1

)2

− 3
(
t4 t2
t3 7t4 − 4t1

)2

= −I2,

where t1, t2, t3, t4 ∈ Z satisfy t2
1 − 3t2

4 + t2t3 = −1.
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Let c = ±2 in Theorem 4.2. Then we have the following corollary.

Corollary 4.9. Let a, b be nonzero integers such that −ab is not a square and let X, Y ∈M2(Z). Then

aX2 + bY2 = ±2I2, XY = YX

if and only if one of the following statements holds.

(i) X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy at2
1 + bt2

2 = ±2;

(ii) X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy at2

1 + b
(
t2
4 + t2t3

)
= ±2;

(iii) X =

 t1
u∓2
1

t2
u∓2
1

t3
ut1+vbt4
±2

 and Y =

 t4
va
1

t2
va
1

t3
vat1−ut4
±2

, where t1, t2, t3, t4, u, v ∈ Z, u , ±2, 1 = gcd (va, u ∓ 2)

and the following relations hold:

u2 + v2ab = 4, at2
1 + bt2

4 +
4at2t3

12
(2 ∓ u) = ±2.

Proof. By Theorem 4.2, we only need to show that 2 | (ut1 + vbt4) and 2 | (vat1 − ut4) in (iii). To see that
1 = gcd (va, u ∓ 2), the proof is divided into the following two cases, depending on whether 1 is even or
not.

Case 1: 2 | 1.
Then 2 | va and 2 | u. Therefore, 2 | (vat1 − ut4). If 2 | v, then 2 | (ut1 + vbt4). Otherwise, by u2 + v2ab = 4,

we have 4 | ab. If 2 | b, then 2 | (ut1 + vbt4). If 2 ∤ b, then 2 | a. From at2
1 + bt2

4 +
4at2t3
12 (2 ∓ u) = ±2, it follows

that vat2
1 + vbt2

4 +
4vat2t3
12 (2 ∓ u) = ±2v. Then 2 | t4, so 2 | (ut1 + vbt4).

Case 2: 2 ∤ 1.
From t1, t2, t3, t4, u, v ∈ Z and at2

1 + bt2
4 +

4at2t3
12 (2 ∓ u) = ±2, it follows that 12

| 4at2t3 (2 ∓ u). Since 2 ∤ 1,

we obtain 12
| at2t3 (2 ∓ u). Then from u2 + v2ab = 4 and at2

1 + bt2
4 +

4at2t3
12 (2 ∓ u) = ±2, it follows that

u2 + v2ab ≡ 0 (mod 4) and at2
1 + bt2

4 ≡ 0 (mod 2). (36)

If 2 | u, then it follows from (36) and 2 ∤ 1 that 2 ∤ va, 2 | b and 2 | t1. In this case, we have 2 | (ut1 + vbt4) and
2 | (vat1 − ut4). If 2 ∤ u, then it follows from (36) that 2 ∤ v and 2 ∤ ab. Then t1 and t4 have the same parity.
Therefore, in this case, we have

ut1 + vbt4 ≡ t1 + t4 ≡ 0 (mod 2) and vat1 − ut4 ≡ t1 + t4 ≡ 0 (mod 2).

By Corollary 4.9, we have the following two propositions.

Proposition 4.10. Let b , 3 be a nonzero integer such that −b is not a square. Suppose that b has a prime divisor of
the form 8k + 3 or 8k + 5. Then all solutions of the matrix equation

X2 + bY2 = 2I2, X, Y ∈M2(Z) (37)

are given by the following two parts.

(i) X =
(
t1 t2
t3 −t1

)
and Y =

(
s1 s2
s3 −s1

)
, where t1, t2, t3, s1, s2, s3 ∈ Z satisfy t2

1 + t2t3 + b
(
s2

1 + s2s3

)
= 2;
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(ii) For b > 0, let X =
(
t1 t2
t3 −t1

)
and Y = t4I2, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2t3 + bt2
4 = 2. Otherwise, let

X =

 t1
u−2
1

t2
u−2
1

t3
ut1+vbt4

2

 and Y =

 t4
v
1
t2

v
1
t3

vt1−ut4
2

, where t1, t2, t3, t4, u, v ∈ Z, u , 2, 1 = gcd (v, u − 2) and the

following relations hold:

u2 + v2b = 4, t2
1 + bt2

4 +
4t2t3

12
(2 − u) = 2.

Proof. From Proposition 2.8 1), it follows that all non-commutative solutions of equation (37) are given by
(i). We next find commutative solutions of equation (37). Suppose that p ≡ 3 or 5 (mod 8) is the prime
divisor of b. Then

(
2
p

)
= −1, where

(
·

p

)
is the Legendre symbol. By Corollary 4.9, we only need to consider

the following three cases.
Case 1: X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy t2

1 + bt2
2 = 2.

We claim that t2
1 + bt2

2 = 2 is impossible. Indeed, if t2
1 + bt2

2 = 2, then t2
1 ≡ 2 (mod p). This means that(

2
p

)
= 1, a contradiction.

Case 2: X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + b
(
t2
4 + t2t3

)
= 2.

However, this case is also impossible, where the reason is similar to Case 1.

Case 3: X =

 t1
u−2
1

t2
u−2
1

t3
ut1+vbt4

2

 and Y =

 t4
v
1
t2

v
1
t3

vt1−ut4
2

, where t1, t2, t3, t4, u, v ∈ Z, u , 2, 1 = gcd (v, u − 2)

and the following relations hold:

u2 + v2b = 4, t2
1 + bt2

4 +
4t2t3

12
(2 − u) = 2.

If b > 0, then it follows from u2+v2b = 4 that u = −2 and v = 0. Then we have X =
(
t1 t2
t3 −t1

)
and Y = t4I2,

where t1, t2, t3, t4 ∈ Z satisfy t2
1 + t2t3 + bt2

4 = 2. If b < 0, then u2 + v2b = 4 is the Pell’s equation. We know
that it has infinitely many solutions in integers u and v.

Example 4.11. Let b = −5 in Proposition 4.10. Then all solutions of the matrix equation

X2
− 5Y2 = 2I2, X, Y ∈M2(Z) (38)

are given by the following two parts.

(i) X =
(
t1 t2
t3 −t1

)
and Y =

(
s1 s2
s3 −s1

)
, where t1, t2, t3, s1, s2, s3 ∈ Z satisfy t2

1 + t2t3 − 5
(
s2

1 + s2s3

)
= 2;

(ii) X =

 t1
u−2
1

t2
u−2
1

t3
ut1−5vt4

2

 and Y =

 t4
v
1
t2

v
1
t3

vt1−ut4
2

, where t1, t2, t3, t4, u, v ∈ Z, u , 2, 1 = gcd (v, u − 2) and

the following relations hold:

u2
− 5v2 = 4, t2

1 − 5t2
4 +

4t2t3

12
(2 − u) = 2.

For example, let u = 18 and v = 8 in (ii). Then we can get a family of solutions to equation (38):(
t1 2t2
2t3 9t1 − 20t4

)2

− 5
(
t4 t2
t3 4t1 − 9t4

)2

= 2I2,

where t1, t2, t3, t4 ∈ Z satisfy t2
1 − 5t2

4 − t2t3 = 2.
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Proposition 4.12. Let b be a nonzero integer such that −b is not a square. Suppose that b has a prime divisor of the
form 8k + 5 or 8k + 7. Then all solutions of the matrix equation

X2 + bY2 = −2I2, X, Y ∈M2(Z) (39)

are given by the following two parts.

(i) X =
(
t1 t2
t3 −t1

)
and Y =

(
s1 s2
s3 −s1

)
, where t1, t2, t3, s1, s2, s3 ∈ Z satisfy t2

1 + t2t3 + b
(
s2

1 + s2s3

)
= −2;

(ii) For b > 0, let X =
(
t1 t2
t3 −t1

)
and Y = t4I2, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + t2t3 + bt2
4 = −2. Otherwise, let

X =

 t1
u+2
1

t2
u+2
1

t3
ut1+vbt4
−2

 and Y =

 t4
v
1
t2

v
1
t3

vt1−ut4
−2

, where t1, t2, t3, t4, u, v ∈ Z, u , −2, 1 = gcd (v, u + 2) and

the following relations hold:

u2 + v2b = 4, t2
1 + bt2

4 +
4t2t3

12
(2 + u) = −2.

Proof. From Proposition 2.8 1), it follows that all non-commutative solutions of equation (39) are given by
(i). We next find commutative solutions of equation (39). Suppose that p ≡ 5 or 7 (mod 8) is the prime
divisor of b. Then

(
−2
p

)
= −1, where

(
·

p

)
is the Legendre symbol. By Corollary 4.9, we only need to consider

the following three cases.
Case 1: X = t1I2 and Y = t2I2, where t1, t2 ∈ Z satisfy t2

1 + bt2
2 = −2.

We claim that t2
1 + bt2

2 = −2 is impossible. Indeed, if t2
1 + bt2

2 = −2, then t2
1 ≡ −2 (mod p). This means that(

−2
p

)
= 1, a contradiction.

Case 2: X = t1I2 and Y =
(
t4 t2
t3 −t4

)
, where t1, t2, t3, t4 ∈ Z satisfy t2

1 + b
(
t2
4 + t2t3

)
= −2.

However, this case is also impossible, where the reason is similar to Case 1.

Case 3: X =

 t1
u+2
1

t2
u+2
1

t3
ut1+vbt4
−2

 and Y =

 t4
v
1
t2

v
1
t3

vt1−ut4
−2

, where t1, t2, t3, t4, u, v ∈ Z, u , −2, 1 = gcd (v, u + 2)

and the following relations hold:

u2 + v2b = 4, t2
1 + bt2

4 +
4t2t3

12
(2 + u) = −2.

If b > 0, then it follows from u2 + v2b = 4 that u = 2 and v = 0. Then we have X =
(
t1 t2
t3 −t1

)
and Y = t4I2,

where t1, t2, t3, t4 ∈ Z satisfy t2
1 + t2t3 + bt2

4 = −2. If b < 0, then u2 + v2b = 4 is the Pell’s equation. We know
that it has infinitely many solutions in integers u and v.

Example 4.13. Let b = −5 in Proposition 4.12. Then all solutions of the matrix equation

X2
− 5Y2 = −2I2, X, Y ∈M2(Z) (40)

are given by the following two parts.

(i) X =
(
t1 t2
t3 −t1

)
and Y =

(
s1 s2
s3 −s1

)
, where t1, t2, t3, s1, s2, s3 ∈ Z satisfy t2

1 + t2t3 − 5
(
s2

1 + s2s3

)
= −2;

(ii) X =

 t1
u+2
1

t2
u+2
1

t3
5vt4−ut1

2

 and Y =

 t4
v
1
t2

v
1
t3

vt1−ut4
−2

, where t1, t2, t3, t4, u, v ∈ Z, u , −2, 1 = gcd (v, u + 2)

and the following relations hold:

u2
− 5v2 = 4, t2

1 − 5t2
4 +

4t2t3

12
(2 + u) = −2.
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For example, let u = −18 and v = 8 in (ii). Then we can get a family of solutions to equation (40):(
t1 −2t2
−2t3 20t4 + 9t1

)2

− 5
(
t4 t2
t3 − (4t1 + 9t4)

)2

= −2I2,

where t1, t2, t3, t4 ∈ Z satisfy t2
1 − 5t2

4 − t2t3 = −2.
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