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Abstract. In a ∗-ring, an idempotent e ∈ R is called ∗-quarter-central (or ∗-q-central for short) if e∗R(1−e)Re∗ = 0.
If all idempotents in a ∗-ring R are ∗-q-central, R is said to be a ∗-quasi-normal ring. In the paper, we prove
that in a ∗-ring, each ∗-q-central idempotent must be q-central, and the converse of the conclusion is not true.
Moreover, we give some equivalent conditions to claim when a q-central idempotent is ∗-q-central. From
the viewpoint of currently prevailing generalizations of rings in the literature, ∗-q-central idempotents and
∗-quasi-normal rings are the generalizations of q-central idempotents and quasi-normal rings, respectively.

1. Introduction

In classical ring theory, idempotents play an important role. A ring R is called abelian if each idempotent
e ∈ R is central, i.e., ae = eae = ea for any a ∈ R. In [8], Chase firstly used ea = eae (e is an idempotent in
R and a ∈ R) to study the generalizations of triangular matrix rings. Then, Birkenmeier in [4] defined an
idempotent e ∈ R to be left semicentral (resp. right semicentral) if ae = eae (resp. ea = eae) for any a ∈ R. An
idempotent e ∈ R is called semicentral if it is either left semicentral or right semicentral. Based on previous
papers, Chen defined a ring R to be semiabelian if every idempotent in R is semicentral [9]. For the works of
semicentral idempotents and semiabelian rings, one can refer to [5, 6, 11, 13–15, 21–23]. As the generalization
of left or right semicentral idempotent in rings, Lam in [16] defined an idempotent e ∈ R to be q-central if
eR(1 − e)Re = 0, and a ring R to be q-abelian if all idempotents in R are q-central. Coincidentally, q-central
idempotents have first appeared under the name of “inner Peirce trivial idempotents” in [2]. Moreover, in
[21], Wei defined quasi-normal rings, which are q-abelian rings. We need to point out that in [12, 18, 20],
q-central idempotents and q-abelian rings are seen as “2-central rings” and “2-Abelian rings”, respectively.

A ring R is said to be an involution ring (or a ∗-ring for short) if there exists a bijection ∗ : R→ R of R such
that for any a, b ∈ R,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

In this paper, we generalize the notions of q-central idempotents and q-abelian rings from a ring to a
∗-ring. An idempotent e in a ∗-ring R is said to be ∗-quarter-central (or ∗-q-central shortly) if e∗R(1− e)Re∗ = 0.
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In a ∗-ring, it is turned out that any ∗-q-central idempotent is q-central. However, the converse of the
conclusion is not true. We consider when a q-central idempotent is ∗-q-central. A ∗-ring is said to ∗-quasi-
normal if e∗R(1 − e)Re∗ = 0 for any idempotent e ∈ R. Moreover, we give some new characterizations of
∗-quasi-normal rings. It is worth mentioning that some examples that appear in this paper are inspired by
Chen’s work [10].

Throughout the paper, all rings are associative and unital. In a ∗-ring, the symbols E(R), N(R), Z(R),
Sl(R), Sr(R), PE(R), RPI, q-idem(R) and Zn stand for the set of all idempotents of R, the set of all nilpotent
elements of R, the center of R, the set of all left semicentral idempotents of R, the set of all right semicentral
idempotents of R, the set of all projections of R, the set of all partial isometries of R, the set of all q-central
idempotents of R, and the ring of integers modulo a positive integer n, respectively.

2. ∗-q-central idempotent

In this section, we will give the definition of ∗-q-central idempotents, and give some characterizations.

Definition 2.1. Let R be a ∗-ring. An idempotent e ∈ E(R) is called ∗-q-central if e∗R(1 − e)Re∗ = 0.

Here, we give an example to show that there exists a ∗-ring that has non-trivial ∗-q-central idempotents.

Example 2.2. Let R = Z2[x]/(x3
− 1) and define ∗ : a1 + a2x + a3x2

7→ a1 + a3x + a2x2, where a1, a2, a3 ∈ Z2. Then
R is a ∗-ring. It is easy to check that e = x + x2

∈ E(R) and e∗(1 − e) = (x + x2)∗(1 − x − x2) = 0. Hence, x + x2 is
∗-q-central. Similarly, one can prove that 1 + x + x2

∈ E(R) and it is ∗-q-central.

In a ring R, for any x, y ∈ R, let [x, y] denote the additive commutator xy− yx. It follows from [20, Lemma
1, Claim 2] that e[e,R] = [e,R](1 − e) and [e,R]e = (1 − e)[e,R] for any idempotent e ∈ R.

Proposition 2.3. Let R be a ∗-ring and e ∈ E(R) be a ∗-q-central idempotent. Then
(1) e = ee∗e.
(2) e∗e[e,R][R, e]e∗ = 0.
(3) e∗[e,R][R, e]ee∗ = 0.
(4) e ∈ q-idem(R), that is, e is q-central.

Proof. (1) By assumption, e∗(1 − e)e∗ = 0, i.e., e∗ = e∗ee∗, which gives e = ee∗e.
(2) By e[e,R] = [e,R](1 − e) for any e ∈ E(R), we have

e∗e[e,R][R, e]e∗ = e∗[e,R](1 − e)[R, e]e∗ ⊆ e∗R(1 − e)Re∗ = 0.

Hence, e∗e[e,R][R, e]e∗ = 0.
(3) By [e,R]e = (1 − e)[e,R] for any e ∈ E(R), we have

e∗[e,R][R, e]ee∗ = e∗[e,R][e,R]ee∗ = e∗[e,R](1 − e)[e,R]e∗ ⊆ e∗R(1 − e)Re∗ = 0.

(4) By (2), we have e∗ex(1 − e)yee∗ = 0 for any x, y ∈ R. Then by (1), ex(1 − e)ye = e(e∗ex(1 − e)yee∗)e = 0. It
follows that eR(1 − e)Re = 0, and so e is q-central.

The following conclusion arises from Proposition 2.3 immediately.

Corollary 2.4. Let R be a ∗-ring and e ∈ E(R) be ∗-q-central. Then
(1) e∗R(1 − e) and eR(1 − e)∗ are both right ideals of R.
(2) (1 − e)Re∗ and (1 − e)∗Re are both left ideals of R.

In Proposition 2.3, we show that a ∗-q-central idempotent must be q-central, the following example will
show that the converse of the statement is not true.
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Example 2.5. Let R = Z[x]/(x2 + x) and the involution ∗ defined by (a1 + a2x)∗ = a1 − a2 − a2x, where a1, a2 ∈ Z
and {1, x} is a Z-basis of Z[x]/(x2 + x). Then R is a ∗-ring and E(R) = {0, 1,−x, 1 + x} [7]. Taking e = −x ∈ E(R),
then eR(1− e)Re = 0. This is because −x(1+x)(−x) = x2(1+x) = −x(1+x) = −(x2+x) = 0. Hence, −x is q-central.
However, eR(1 − e)∗Re cannot be equal to 0. This is since −x(1 + x)∗(−x) = x2(−x) = −x3 = −x , 0. It follows that
−x is not ∗-q-central.

The following conclusion is evident.

Corollary 2.6. Let R be a ∗-ring and e ∈ E(R). Then the following statements are equivalent:
(1) e is ∗-q-central.
(2) e∗xye∗ = e∗xeye∗ for any x, y ∈ R.
(3) exye = exe∗ye for any x, y ∈ R.

In the following, we denote the set of all ∗-q-central idempotents of a ∗-ring R by q∗-idem(R) simply. Let R
be a ring and e ∈ q-idem(R), consider the map φ : R→ eRe determined by φ(r) = ere. Then φ(N(R)) ⊆ N(R),
φ(E(R)) ⊆ E(R), φ(Sl(R)) ⊆ Sl(R), φ(Sr(R)) ⊆ Sr(R) and φ(q-idem(R)) ⊆ q-idem(R), see [2] or [16].

Proposition 2.7. Let R be a ∗-ring and e ∈ q∗-idem(R). Then φ(q∗-idem(R)) ⊆ q∗-idem(R).

Proof. On one hand, it follows from Proposition 2.3 (4) that exye = exeye for any x, y ∈ R. Assume that
f ∈ q∗-idem(R), then (e f e)2 = e f ee f e = e f e f e = e f 2e = e f e, which implies e f e ∈ E(R). On the other hand, for
any x, y ∈ R, we have

e∗xye∗ = e∗xeye∗.

Similarly,

f ∗xy f ∗ = f ∗x f y f ∗, ∀x, y ∈ R.

We need to show (e f e)∗R(1 − e f e)R(e f e)∗ = 0, i.e., e∗ f ∗e∗xye∗ f ∗e∗ = e∗ f ∗e∗xe f eye∗ f ∗e∗ for any x, y ∈ R. In fact,

e∗ f ∗(e∗xye∗) f ∗e∗ = e∗( f ∗e∗xeye∗ f ∗)e∗

= e∗( f ∗(e∗xe)(eye∗) f ∗)e∗

= e∗ f ∗e∗xe f eye∗ f ∗e∗.

This gives the desired result.
Example 2.5 states that a q-central idempotent may not be ∗-q-central. The following result shows that

when a q-central idempotent is ∗-q-central, which is immediate from Proposition 2.3.

Corollary 2.8. Let R be a ∗-ring and e ∈ E(R). Then e ∈ q∗-idem(R) if and only if e ∈ q-idem(R) and e = ee∗e.

The following example states that Corollary 2.8 can be used to check whether an idempotent e ∈ E(R) in
a ∗-ring R is ∗-q-central or not.

Example 2.9. Let R = T2(C). Then it is easy to check that E(R) = {
(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 x
0 0

)
,

(
0 x
0 1

)
|x ∈ C}.

Define
(
a b
0 c

)∗
=

(
c b
0 a

)
, then R is a ∗-ring. Taking e =

(
1 x
0 0

)
, where x ∈ C. It is easy to compute ee∗e =(

1 x
0 0

) (
0 x
0 1

) (
1 x
0 0

)
=

(
0 2x
0 0

) (
1 x
0 0

)
= 0 , e. Hence, e is not ∗-q-central by Corollary 2.8. Similarly for

(
0 x
0 1

)
,

where x ∈ C.

In a ∗-ring R and e ∈ q∗-idem(R), we have the following conclusion.
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Lemma 2.10. Let R be a ∗-ring and e ∈ q∗-idem(R). Then
(1) e∗R(1 − ee∗)Re∗ = 0.
(2) e∗R(1 − e∗e)Re∗ = 0.

Proof. By Corollary 2.8, we have e = ee∗e. Hence,
(1) Since e∗xye∗ = e∗xeye∗ and exye = exeye for any x, y ∈ R, we have

e∗xye∗ = e∗xeye∗ = e∗(xee∗)eye∗ = e∗xee∗ye∗.

This infers e∗R(1 − ee∗)Re∗ = 0.
(2) For any x, y ∈ R, we have e∗xye∗ = e∗xeye∗ and exye = exeye. So,

e∗xye∗ = e∗xe(e∗ey)e∗ = e∗xe∗eye∗,

which implies e∗R(1 − ee∗)Re∗ = 0.

Proposition 2.11. Let R be a ∗-ring and e ∈ q∗-idem(R). Then ee∗, e∗e ∈ q∗-idem(R).

Proof. On one hand, by e = ee∗e, we have (ee∗)2 = (ee∗e)e∗ = ee∗, and so ee∗ ∈ E(R). On the other hand, by
Lemma 2.10 (1), e∗R(1−ee∗)Ree∗ = e∗R(1−ee∗)Re1e∗ = e∗R(1−ee∗)Re∗ = 0, which shows that e(e∗R(1−ee∗)Ree∗ = 0.
This infers ee∗ ∈ q∗-idem(R). Similarly, we can prove that e∗e ∈ q∗-idem(R).

Conversely, if ee∗ ∈ q∗-idem(R) or e∗e ∈ q∗-idem(R), we cannot obtain e ∈ q∗-idem(R).

Example 2.12. Let R = M2(Z2) and ∗ be the transposition of a matrix. Taking e =
(
1 1
0 0

)
, then e ∈ E(R). Notice

that ee∗ =
(
1 1
0 0

) (
1 0
1 0

)
= 0, so ee∗ ∈ q∗-idem(R). However, ee∗e = 0 , e. Hence, e < q∗-idem(R) by Corollary 2.8.

Similarly, taking e′ =
(
1 0
1 0

)
, then we can check that (e′)∗e′ = 0 ∈ q∗-idem(R) and e′ < q∗-idem(R).

Proposition 2.13. Let R be a ∗-ring and e ∈ q∗-idem(R). Then e − ee∗, e − e∗e ∈ N(R).

Proof. Since e = ee∗e, (e − ee∗)2 = (e − ee∗)(e − ee∗) = e − ee∗ − ee∗e + ee∗ee∗ = 0. Hence, e − ee∗ ∈ N(R). Similarly,
one can show e − e∗e ∈ N(R).

In general, the converse of Proposition 2.13 is not true.

Example 2.14. Let R = M2(Z4) = {
(
a b
c d

)
|a, b, c, d ∈ Z4} and the involution ∗ be the transposition of a matrix.

Taking e =
(
1 2
0 0

)
, then e ∈ E(R). Notice that e − ee∗ =

(
1 2
0 0

)
−

(
1 2
0 0

) (
1 0
2 0

)
=

(
1 2
0 0

)
−

(
1 0
0 0

)
=

(
0 2
0 0

)
, so

e − ee∗ ∈ N(R). However,
(
1 2
0 0

) (
1 0
0 0

) (
0 2
0 1

) (
0 0
1 0

) (
1 2
0 0

)
=

(
2 0
0 0

)
, 0, which implies that e is not q-central.

Hence, by Proposition 2.3 (4), e is not q∗-central. Similarly, taking e′ =
(
1 0
2 0

)
, then e′ − (e′)∗e′ =

(
0 0
2 0

)
∈ N(R).

Moreover, e′ < q∗-idem(R).

It is well-known that PE(R) ⊆ RPI, so Example 2.14 shows that e − ee∗ ∈ N(R) or e − e∗e ∈ N(R) cannot
yield e ∈ PE(R). Here, we give a new example to show this statement.



L. Cao, J. Wei / Filomat 39:5 (2025), 1573–1583 1577

Example 2.15. Let R = M3(Z2) and ∗ be the transposition of R. Taking e =

1 1 1
0 0 0
0 0 0

, then f = e − ee∗ =1 1 1
0 0 0
0 0 0

 −
1 1 1
0 0 0
0 0 0


1 0 0
1 0 0
1 0 0

 =
0 1 1
0 0 0
0 0 0

. One can easily compute f 2 =

0 1 1
0 0 0
0 0 0


0 1 1
0 0 0
0 0 0

 = 0, which

infers f ∈ N(R). However, e∗ =

1 0 0
1 0 0
1 0 0

 , e. Similarly, if we set e′ =

1 0 0
1 0 0
1 0 0

, then f ′ = e′ − (e′)∗e′ =0 0 0
1 0 0
1 0 0

 ∈ N(R) and (e′)∗ , e′.

Proposition 2.16. Let R be a ∗-ring and e ∈ E(R). Then
(1) e ∈ q-idem(R) if and only if e∗ ∈ q-idem(R).
(2) e ∈ q∗-idem(R) if and only if e∗ ∈ q∗-idem(R).

Proof. It follows from a straightforward verification.
By Proposition 2.16, Lemma 2.10 can be replaced by the following formula.

Theorem 2.17. Let R be a ∗-ring and e ∈ E(R). Then e ∈ q∗-idem(R) if and only if one of the following two conditions
hold:

(1) e ∈ q-idem(R) and e∗R(1 − ee∗)Re∗ = 0.
(2) e ∈ q-idem(R) and e∗R(1 − e∗e)Re∗ = 0.

Proof. (1) (⇒) e ∈ q-idem(R) and e∗R(1 − ee∗)Re∗ = 0 follows from Proposition 2.3 (4) and Lemma 2.10 (1),
respectively.

(⇐) On one hand, by e ∈ q-idem(R) and Proposition 2.16 (1), we have e∗xye∗ = e∗xe∗ye∗ for any x, y ∈ R.
On the other hand, e∗R(1 − ee∗)Re∗ = 0 implies e∗xye∗ = e∗xee∗ye∗. Hence,

e∗xye∗ = e∗(xe)e∗ye∗ = e∗xeye∗.

It follows that e ∈ q∗-idem(R).
(2) Similarly, we can prove this conclusion.
The following result is a generalization of [16, Proposition 2.13].

Proposition 2.18. Let R be a ∗-ring and e, f ∈ q∗-idem(R). Then
(1) If e f ∈ E(R) (resp. f e ∈ E(R)), then e f ∈ q∗-idem(R) (resp. f e ∈ q∗-idem(R)).
(2) (e f )2 = (e f )n

∈ q∗-idem(R) (( f e)2 = ( f e)n
∈ q∗-idem(R)) for any 3 ≤ n ∈ Z.

Proof. (1) We need to show (e f )∗xy(e f )∗ = (e f )∗xe f y(e f )∗, that is, f ∗e∗xy f ∗e∗ = f ∗e∗xe f y f ∗e∗. In fact,

f ∗(e∗xe) f y f ∗e∗ = f ∗(e∗x)e(y f ∗)e∗ = f ∗e∗xy f ∗e∗.

This gives the desired result.
(2) By exye = exeye, f xy f = f x f y f , e∗xye∗ = e∗xeye∗ and f ∗xy f ∗ = f ∗x f y f ∗, one can easily prove this

statement.

Theorem 2.19. Let R be a ∗-ring and e ∈ E(R). Then e ∈ q∗-idem(R) if and only if (ex − xe∗)(e∗y − ye)e = 0 for any
x, y ∈ R.

Proof. (⇒) Since e ∈ q∗-idem(R), exye = exe∗ye for any x, y ∈ R. Then (ex − xe∗)(e∗y − ye)e = exe∗ye − exye −
xe∗ye + xe∗ye = 0.

(⇐) By a direct computation, for any x, y ∈ R, we have (ex−xe∗)(e∗y− ye)e = exe∗ye− exye−xe∗ye+xe∗ye =
exe∗ye − exye = 0, which implies exe∗ye = exye. Hence, by Corollary 2.6 (3), e ∈ q∗-idem(R).

Corollary 2.20. Let R be a ∗-ring and e ∈ E(R). Then e ∈ q∗-idem(R) if and only if (e∗x − xe)(ey − ye∗)e∗ = 0.
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3. New characterizations of quasi-normal rings

The aim of this section is to give some new characterizations of quasi-normal rings (or q-abelian rings).

Theorem 3.1. Let R be a ring. Then R is quasi-normal if and only if eN(R)(1 − e)Re = 0.

Proof. (⇒) is clear.
(⇐) For any a ∈ R, we have ea(1 − e) ∈ N(R). By hypothesis, e(ea(1 − e))(1 − e)Re = 0, i.e., ea(1 − e)Re = 0,

this gives eR(1 − e)Re = 0.

Let R be a ring and I be an ideal of R, denote T2(R, I) = {
(
a b
0 c

)
|a, c ∈ R, b ∈ I}. Then it is easy to check

that T2(R, I) is a ring. The following result is inspired by [20, Theorem 4].

Theorem 3.2. Let R be a ring and I be an ideal of R containing E(R). Then R is Abelian if and only if T2(R, I) is
quasi-normal.

Proof. (⇒) For any A =
(
a b
0 c

)
∈ T2(R, I) and E =

(
e1 e2
0 e3

)
∈ E(T2(R, I)) satisfying AE = 0. Then we have

AE =
(

ae1 ae2 + be3
0 ce3

)
= 0;

(
e1 e2
0 e3

)
= E = E2 =

(
e2

1 e1e2 + e2e3
0 e2

3

)
.

Hence, e1, e3 ∈ E(R) and


ae1 = ce3 = 0,
ae2 + be3 = 0,
e2 = e1e2 + e2e3.

We need to show EAT2(R, I)E = 0. Taking B =
(
x y
0 z

)
∈ T2(R, I). By a straightforward computation,

EABE =
(
e1 e2
0 e3

) (
a b
0 c

) (
x y
0 z

) (
e1 e2
0 e3

)
=

(
e1a e1b + e2c
0 e3c

) (
xe1 xe2 + ye3
0 xe3

)
=

(
e1axe1 e1axe2 + e1aye3 + e1bxe3 + e2cxe3

0 e3cxe3

)
.

Since R is Abelian,



(e1a)xe1 = (ae1)xe1 = 0,
(e1a)xe2 = (ae1)xe2 = 0,
(e1a)ye3 = (ae1)ye3 = 0,
e2c(xe3) = e2(ce3)x = 0,
e3c(xe3) = e3(ce3)x = 0.

Moreover, e1b(xe3) = e1(be3)x = −(e1a)e2x = −(ae1)e2x = 0. Hence, EABE = 0, i.e., EAT2(R, I)E = 0. It follows
that T2(R, I) is quasi-normal.

(⇐) For any e ∈ E(R), we have
(
1 0
0 e

)
∈ E(T2(R, I)) and

(
0 1 − e
0 0

) (
1 0
0 e

)
= 0. Since T2(R, I) is quasi-

normal,
(
1 0
0 e

) (
0 1 − e
0 0

)
T2(R, I)

(
1 0
0 e

)
= 0. For any a ∈ R, we have



L. Cao, J. Wei / Filomat 39:5 (2025), 1573–1583 1579(
0 1 − e
0 0

) (
0 0
0 a

) (
1 0
0 e

)
=

(
0 (1 − e)a
0 0

) (
1 0
0 e

)
=

(
0 (1 − e)ae
0 e

)
= 0.

Hence, (1 − e)ae = 0 for any a ∈ R, i.e., ae = eae. It follows that e is left semicentarl, and so R is Abelian.
Recall [17], idempotents e and f of a ring R are said to be similar if there exist x, y ∈ R such that e = xy

and f = yx, which is written by e ∼ f .

Theorem 3.3. Let R be a ring. Then R is quasi-normal if and only if for any e, f ∈ E(R), e ∼ f implies f R(1−e)R f = 0.

Proof. (⇒) Since e ∼ f , there exist x, y such that e = xy and f = yx. It is easy to compute f = f 2 = y(xy)x = yex.
Now, f R(1 − e)R f = y(exR(1 − e)Rye)x ⊆ y(eR(1 − e)Re)x = 0.

(⇐) For any e ∈ E(R), we have e ∼ e. So by hypothesis, eR(1 − e)Re = 0.
Let e ∈ E(R). Define Ie = {x ∈ R|ex(1 − e)Re = 0}, then it is clear 0, 1, e, 1 − e ∈ Ie.

Theorem 3.4. Let R be a ring. Then the following statements are equivalent:
(1) R is quasi-normal.
(2) Ie = R for any e ∈ E(R).
(3) Ie ◁ R for any e ∈ E(R).

Proof. (1)⇒(2) By R is quasi-normal, we have eR(1 − e)Re = 0. This gives (2).
(2)⇒(3) Clear.
(3)⇒(1) Notice that e ∈ Ie, we have eR(1 − e)Re = e(eR(1 − e)Re) ⊆ e(IeR(1 − e)Re) ⊆ eIe(1 − e)Re = 0. It

follows that R is quasi-normal.

Let R be a ring, and L2(R) = {
(
a 0
b a − b

)
|a, b ∈ R}. Then it is easy to check that R is a ring.

Theorem 3.5. Let R be a ring. Then R is Abelian if and only if E(L2(R)) = {
(
e 0
1 e − 1

)
|e2 = e, 1 = 2e1 − 12

}.

Proof. (⇒) Let E =
(
e 0
1 e − 1

)
∈ E(L2(R)). Then E = E2, i.e.,

(
e 0
1 e − 1

)
=

(
e2 0

1e + (e − 1)1 (e − 1)2

)
.

This gives

e = e2,

1 = 1e + e1 − 12.

Since R is Abelian, e ∈ Z(R), and so 1e = e1. Hence, 1 = 2e1 − 12.
(⇐) Let f ∈ E(R). Then for any x ∈ R, let 1 = (1 − f )x f and e = 1 − f = e2, we have 1e = 0, e1 = 1 and

12 = 0. So, (
e 0
1 e − 1

)2

=

(
e2 0

1e + (e − 1)1 (e − 1)2

)
=

(
e 0
1 e − 1

)
.

By e1 = 1 and 12 = 0, we have 1 = 2e1 − 12 = 21. This infers 1 = 0, i.e., (1 − f )x f = 0. It follows that f is left
semicentral, and hence R is Abelian.

Similar to Theorem 2.19 and Corollary 2.20, we have the following conclusion.
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Proposition 3.6. Let R be a ∗-ring and e ∈ E(R). Then the following statements are equivalent.
(1) e ∈ q-idem(R).
(2) (ex − xe)(ey − ye)e = 0 for any x, y ∈ R.
(3) (e∗x − xe∗)(e∗y − ye∗)e∗ = 0 for any x, y ∈ R.

The following result is a direct conclusion from Proposition 3.6 or [16, Theorem 4.5].

Corollary 3.7. Let R be a ring. Then R is quasi-normal if and only if (ex − xe)(ey − ye)e = 0 for any e ∈ E(R) and
x, y ∈ R.

In [19], the authors defined a class of matrix by Sn(R, I) = {


a b12 a13 a14 · · · a1n
0 a b23 a24 · · · a2n
0 0 0 b34 · · · a3n
...
...

...
...
. . .

...
0 0 0 0 · · · a


|a, ai j ∈ R, bi j ∈ I}

to study quasi-∗-IFP in a ∗-ring, where n ≥ 3. Here, we will use the simplest condition: n = 3 to describe
quasi-normal rings. Moreover, we think the following result can be generalized to arbitrary n > 3.

Theorem 3.8. Let R be a Abelian ring. Then S3(R, I) is quasi-normal.

Proof. For any A =

a b c
0 a d
0 0 a

 ∈ S3(R, I) and E =

e1 e2 e3
0 e1 e4
0 0 e1

 ∈ E(S3(R, I)) satisfying AE = 0. Then

AE =

 ae1 ae2 + be1 ae3 + be4 + ce1
0 ae1 ae4 + de1
0 0 ae1

 = 0;

 e2
1 e1e2 + e2e1 e1e3 + e2e4 + e3e1
0 e2

1 e1e4 + e4e1
0 0 e2

1

 = E2 = E =

 e1 e2 e3
0 e1 e4
0 0 e1

 .
Hence, e1 ∈ E(R) and



ae1 = 0,
ae2 + be1 = 0,
ae3 + be4 + ce1 = 0,
ae4 + de1 = 0,
e1e2 + e2e1 = e2,

e1e3 + e2e4 + e3e1 = e3,

e1e4 + e4e1 = e4.

(1)

Since e1 ∈ E(R) and R is Abelian,


e1e2 + e2e1 = 2e1e2,

e1e3 + e3e1 = 2e1e3,

e1e4 + e4e1 = 2e1e4.

(2)

By (2),


ae2 = 2(ae1)e2 = 0,
ae3 = 2(ae1)e3 = 0,
ae4 = 2(ae1)e4 = 0.

(3)
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By (3), (1) can be reduced as follows


ae1 = be1 = de1 + be4 = ce1 = 0,
2e1e2 = e2,

2e1e4 = e4,

2e1e3 + e2e4 = e3.

(4)

A direct computation shows

EA =

 e1a e1b + e2a e1c + e2d + e3a
0 e1a e1d + e4a
0 0 e1a

 .
By (4), e3a = (2e1e3 + e2e4)a = 0. Hence, EA = 0, which implies EABE = 0 for any B ∈ S3(R, I). It follows that
EAS3(R, I)E = 0, and so S3(R, I) is quasi-normal.

4. Characterizations of ∗-quasi-normal rings

In this section, we will study ∗-quasi-normal rings. The following conclusion is proved by us in another
paper.

Lemma 4.1. Let R be a ∗-ring. Then R is ∗-quasi-normal if and only if R is quasi-normal and E(R) ⊆ RPI.

Proof. (⇒) It follows from e = ee∗e and R is quasi-normal.
(⇐) For any e ∈ E(R), we have e∗R(1 − e)∗Re∗ = 0 because R is quasi-normal and e∗ ∈ E(R). Noting that

e∗eR(1 − e)∗Ree∗ ⊆ e∗R(1 − e)∗Re∗. Then e∗eR(1 − e)∗Ree∗ = 0 and so e(e∗eR(1 − e)∗Ree∗)e = 0. Since E(R) ⊆ RPI,
e = ee∗e, we have eR(1 − e)∗Re = 0. It follows that R is ∗-quasi-normal.

Theorem 4.2. Let R be a ∗-ring. Then R is ∗-quasi-normal if and only if eR(1 − ee∗e)Re = 0 for any e ∈ E(R).

Proof. (⇒) Since R is ∗-quasi-normal, e = ee∗e and R is quasi-normal. Hence, eR(1− ee∗e)Re = eR(1− e)Re = 0.
(⇐) By eR(1 − ee∗e)Re = 0, we have e = ee∗e. This gives R is quasi-normal and E(R) ⊆ RPI. It follows that

R is ∗-quasi-normal by Lemma 4.1.
Lemma 4.1 can be used to check whether a quasi-normal ring is ∗-quasi-normal or not. In Theorem

3.5, assume that R is commutative, define ∗ : L2(R) → L2(R),
(
a 0
b a − b

)
7→

(
a − b 0
−b a

)
. Then one can check

that L2(R) is a ∗-ring. Moreover, if R is commutative, then L2(R) is commutative, and a straightforward

computation shows E(L2(R)) = {
(
a 0
b a − b

)
|a = a2, b = 2ab − b2, a, b ∈ R}. In particular, taking R = Z, R = Q,

R = R, or R = C, we have E(L2(R)) = {0,
(
1 0
0 1

)
,

(
0 0
−1 1

)
,

(
1 0
1 0

)
}.

Example 4.3. Consider L2(C), then by the commutativity of L2(C), eR(1− e)Re = 0 if and only if e(1− e)e = 0, where

e ∈ E(L2(C)). When e =
(

0 0
−1 1

)
, it is easy to compute e(1 − e)e =

(
0 0
−1 1

) (
1 0
1 0

) (
0 0
−1 1

)
= 0. Similarly, one can

check that e(1 − e)e = 0 if e = 0, or e =
(
1 0
0 1

)
, or e =

(
1 0
1 0

)
. It follows that L2(C) is quasi-normal. However, L2(C)

is not ∗-quasi-normal, this is since if e =
(

0 0
−1 1

)
, or e =

(
1 0
1 0

)
, ee∗e = 0 , e. Meanwhile, it follows that

(
0 0
−1 1

)
and

(
1 0
1 0

)
are not ∗-q-central.
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Remark 4.4. In Example 4.3, if we set R = Z,Q,R, then the conclusions all hold.

Theorem 4.5. Let R be a ∗-ring. Then R is ∗-quasi-normal if and only if eR(1 − e∗ee∗)Re = 0.

Proof. (⇒) is clear.
(⇐) By hypothesis, eabe = eae∗ee∗be for any a, b ∈ R. If a = b = e, then e = ee∗ee∗e, if a = b = e∗, then

ee∗e = ee∗ee∗e. So, we have e = ee∗ee∗e = ee∗e. Now, eR(1 − ee∗e)Re = eR(1 − e)∗Re = 0. This implies R is
∗-quasi-normal.

Theorem 4.6. Let R be a ∗ ring and ae = 0 implies e∗aRe∗ = 0. Then R is ∗-quasi-normal.

Proof. By (1 − e)e = 0, we have e∗(1 − e)Re∗ = 0. In particular, e∗ = e∗ee∗, i.e., e = ee∗e. Since x(1 − e)e = 0 for
any x ∈ R, e∗x(1 − e)Re∗ = 0, that is, e∗R(1 − e)Re∗ = 0. This gives R is ∗-quasi-normal.

Theorem 4.7. Let R be a ∗ ring and ae = 0 implies e∗aN(R)e∗ = 0. Then R is ∗-quasi-normal.

Proof. Since x(1− e)e = 0 and (1− e)ye∗e ∈ N(R), e∗x(1− e)(1− e)ye∗ee∗ = e∗x(1− e)ye∗ = 0, i.e., e∗R(1− e)Re∗ = 0.
Hence, R is ∗-quasi-normal.

Recall that an element in a ∗-ring is left ∗-cancellable (resp. right ∗-cancellable) if aa∗x = aa∗y implies
a∗x = a∗y (resp. xa∗a = ya∗a implies xa∗ = ya∗). An involution ∗ is called proper (resp. semiproper) if any
nonzero element a ∈ R, aa∗ = 0 (resp. aRa∗ = 0) implies a = 0. Clearly, a proper involution is semiproper
[1, 3].

Theorem 4.8. Let R be a ∗-ring with ∗ being semiproper. Then if ae = 0 implies eaRe∗ = 0 for any e ∈ E(R), we have
that R is ∗-quasi-normal.

Proof. Since x(1 − e)e = 0 for any x ∈ R, ex(1 − e)Re∗ = 0. It follows that eR(1 − e)Re∗ = 0. Since

(e − ee∗e)R(e − ee∗e)∗ = (e − ee∗e)R(e∗ − e∗ee∗) = e(1 − e∗e)Re∗(1 − e)1e∗ ⊆ eR(1 − e)Re∗ = 0,

e = ee∗e by ∗ is semiproper. Note that for any x ∈ R, e∗x(1 − e)e = 0, so ee∗x(1 − e)Re∗ = 0. This gives
e∗(ee∗x(1 − e)Re∗) = e∗x(1 − e)Re∗ = 0, i.e., e∗R(1 − e)Re∗ = 0. It follows that R is ∗-quasi-normal.

Theorem 4.9. Let R be a ∗-ring with ∗ being proper. Then if ae = 0 implies eaN(R)e∗ = 0 for any e ∈ E(R), we have
that R is ∗-quasi-normal.

Proof. Since e∗(1−e)e = 0, ee∗(1−e)N(R)e∗ = 0. It is noted that (1−e)xe ∈ N(R) for any x ∈ R, so ee∗(1−e)xee∗ = 0.
Taking x = e∗, we have ee∗ee∗ = ee∗ee∗ee∗. By a straightforward computation, we have

(ee∗ − ee∗ee∗)(ee∗ − ee∗ee∗)∗ = (ee∗ − ee∗ee∗)(ee∗ − ee∗ee∗)
= ee∗ee∗ − ee∗ee∗ee∗ − ee∗ee∗ee∗ + (ee∗ee∗ee∗)ee∗

= 0.

Note that ∗ is proper, so ee∗ = ee∗ee∗. By the proof of Theorem 4.8, we know that e = ee∗e. Since e∗x(1− e)e = 0
and (1 − e)ye∗e ∈ N(R) for any x, y ∈ R, ee∗x(1 − e)(1 − e)ye∗ee∗ = ee∗x(1 − e)ye∗ = 0, i.e., ee∗R(1 − e)Re∗ = 0. This
infers e∗R(1 − e)Re∗ = e∗(ee∗R(1 − e)Re∗) = 0. It follows that R is ∗-quasi-normal.

Theorem 4.10. Let R be a ∗-ring with ∗ being proper, and e∗R(1 − e)∗Re = 0. Then R is ∗-quasi-normal.
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Proof. By e∗R(1 − e)∗Re = 0, we have e∗e = e∗ee∗e. It is easy to compute

(e∗ − e∗ee∗)(e∗ − ee∗e)∗ = (e∗ − e∗ee∗)(e − ee∗e)
= e∗e − e∗ee∗e − e∗ee∗e + (e∗ee∗e)e∗e
= 0.

Since ∗ is proper, e∗ = e∗ee∗, that is, e = ee∗e. Again, by e∗R(1 − e)∗Re = 0, we have e∗ex(1 − e)∗Re = 0 for any
x ∈ R. This implies e(e∗ex(1 − e)∗Re) = ex(1 − e)∗Re = 0, which infers eR(1 − e)∗Re = 0. This shows that R is
∗-quasi-normal.

By Theorem 2.19, we get the following result.

Proposition 4.11. Let R be a ∗-ring. Then R is ∗-quasi-normal if and only if (ex−xe∗)(e∗y− ye)e = 0 for any e ∈ E(R)
and x, y ∈ R.
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