Filomat 39:5 (2025), 1585–1594 https://doi.org/10.2298/FIL2505585L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Reversibility of *T_k***-topological spaces and the universality problem for the collection of** *T_k***-topological spaces**

Sik Lee^a, Sang-Eon Han^{b,*}

^aDepartment of Mathematics Education, Chonnam National University, Gwangju 61186, Republic of Korea ^bDepartment of Mathematics Education, Jeonbuk National University, Jeonju-City Jeonbuk, 54896, Republic of Korea

Abstract. As a generalization of the Khalimsky line topological space, consider the topological space (\mathbb{Z}, T_k) (resp. (\mathbb{Z}, T'_k)) on the set of integers, where the topology T_k (resp. T'_k) is generated by the set S_k (resp. S'_k) as a subbase, $k \in \mathbb{Z}$, and $S_k := \{S_{k,t} | S_{k,t} := \{2t, 2t + 1, 2t + 2k + 1\}, t \in \mathbb{Z}\}$ (resp. $S'_k := \{S'_{k,t} | S'_{k,t} := \{2t, 2t + 1, 2t + 2k + 1\}, t \in \mathbb{Z}\}$). For $k \in \mathbb{Z} \setminus \{0\}$, each of the T_k - and T'_k -topological space indeed satisfies the $T_{\frac{1}{2}}$ -separation axiom. Besides, for $k \in \mathbb{Z} \setminus \{0\}$, each of (\mathbb{Z}, T_k) and (\mathbb{Z}, T'_k) is an Alexandroff space and is neither a Kuratowski space nor a regular space. The paper initially proves that each of (\mathbb{Z}, T_k) and (\mathbb{Z}, T'_k) , $k \in \mathbb{Z}$, is reversible. Next, let \mathcal{T} be the collection of T_k -topological spaces $\{(\mathbb{Z}, T_k), k \in \mathbb{Z} \setminus \{0\}\}$. Then the paper deals with an existence problem of a universal element in \mathcal{T} and \mathcal{T}' .

1. Introduction

In the present paper, we follow the notations \mathbb{N} and \mathbb{Z} that are the sets of positive integers (i.e., natural numbers) and integers, respectively. Besides, for distinct integers $a, b \in \mathbb{Z}$ we take the notation $[a, b]_{\mathbb{Z}} := \{t \in \mathbb{Z} \mid a \leq t \leq b\}$ and " \subset " (resp. $\sharp X$) which denotes a 'proper subset or equal' (resp. the cardinality of the set X). In addition, the notation " :=" is used to introduce a new term. For $k \in \mathbb{N}$ and $i \in [0, k - 1]_{\mathbb{Z}}$, we take the notation $k\mathbb{Z} + i := \{kt + i \mid t \in \mathbb{Z}\}$. Besides, \mathbb{N}_- and \mathbb{N}_0 indicate the set of negative integers and the first infinite cardinality, respectively.

A topological space (*X*, *T*) is called an Alexandroff space [1, 2] if each $x \in X$ has a minimal open neighborhood, i.e., there is the smallest open set containing *x*. Since the paper is strongly associated with the Khalimsky (*K*-, for brevity) topological line, let us first recall the *K*-topological line and its product topology on \mathbb{Z}^n for the *n*-dimensional *K*-topological space, $n \in \mathbb{N}$. The *K*-topology κ on \mathbb{Z} , denoted by (\mathbb{Z}, κ), is generated by the set { $[2t-1, 2t+1]_{\mathbb{Z}}$, {2t+1} | $t \in \mathbb{Z}$ } as a base [22]. Furthermore, the product topology on \mathbb{Z}^n induced by (\mathbb{Z}, κ) is called an *n*-dimensional *K*-topological space and denoted by (\mathbb{Z}^n, κ^n) [23] and it turns out that it

Received: 24 July 2024; Revised: 18 October 2024; Accepted: 23 October 2024

* Corresponding author: Sang-Eon Han

²⁰²⁰ Mathematics Subject Classification. Primary 54B99; Secondary 54C25, 54A05, 54B05, 54C05.

Keywords. Alexandroff topology, Khalimsky topology, digital topology, T_k - or T'_k -topological space, topological embedding, universality, reversibility.

Communicated by Ljubiša D. R. Kočinac

The corresponding author (Sang-Eon Han) was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2019R1I1A3A03059103).

Email addresses: slee@jnu.ac.kr (Sik Lee), sehan@jbnu.ac.kr (Sang-Eon Han)

is an Alexandroff topological space. Indeed, the papers [5, 10–19] include the study of its various properties.

In order to address an open problem related to the generalization of the *K*-topological line [15, 16], the recent papers [16, 17] studied infinitely many types of topological structures on \mathbb{Z} , say (\mathbb{Z} , T_k) and (\mathbb{Z} , T'_k), $k \in \mathbb{Z}$, where the topologies T_k and T'_k are, respectively, generated by the sets S_k and S'_k in (1.1) below as subbases [15].

$$\begin{cases} S_k := \{S_{k,t} \mid S_{k,t} := \{2t, 2t+1, 2t+2k+1\}, t \in \mathbb{Z}\} \text{ and} \\ S'_k := \{S'_{k,t} \mid S'_{k,t} := \{2t, 2t+1, 2t+2k\}, t \in \mathbb{Z}\}. \end{cases}$$
(1.1)

Owing to the subbases of (1.1), it is clear that both (\mathbb{Z}, T_k) and (\mathbb{Z}, T'_k) , $k \in \mathbb{Z}$, are Alexandroff spaces [16]. Furthermore, in case $k \in \mathbb{Z} \setminus \{1, -1\}$, it turns out that each (\mathbb{Z}, T_k) is not homeomorphic with the *K*-topological line [15]. Indeed, (\mathbb{Z}, T_{-1}) is equal to (\mathbb{Z}, κ) and (\mathbb{Z}, T_1) is not equal to (\mathbb{Z}, κ) but homeomorphic with (\mathbb{Z}, κ) [15]. Besides, it turns out that (\mathbb{Z}, T_k) is connected if and only if $k \in \{-1, 1\}$ [16]. Even though (\mathbb{Z}, T_k) is neither a regular space nor a Kuratowski space (see Proposition 2.5), it was proved that it satisfies the $T_{\frac{1}{2}}$ -separation axiom (see Corollary 2.4 of [16]).

Hereinafter, in the space (\mathbb{Z} , T_k), for $X \subset \mathbb{Z}$, (X, (T_k)_X) denotes the subspace induced from (\mathbb{Z} , T_k). Let us now recall the notion of a topological embedding (embedding, for brevity) [24]. Given two topological spaces X and Y, we say that an embedding of X to Y is a function $f : X \to Y$ that maps X homeomorphically to the subspace f(X) in Y.

Indeed, owing to (1.1), the space (\mathbb{Z}, T_0) has \aleph_0 connected components $P_{2m} := \{2m, 2m + 1\}, m \in \mathbb{Z}$, which are both closed and open in (\mathbb{Z}, T_0) . Hence (\mathbb{Z}, T_0) cannot be embedded into any $(\mathbb{Z}, T_k), k \neq 0$, because $(\mathbb{Z}, T_k), k \neq 0$ does not have any subspace which is homeomorphic with (\mathbb{Z}, T_0) . Then we may raise an interesting query related to both the reversibility of $(\mathbb{Z}, T_k), k \in \mathbb{Z}$, and the existence problem of a universal element in the collection of T_k -topological spaces, $k \in \mathbb{Z} \setminus \{0\}$. First of all, for $k \in \mathbb{Z} \setminus \{0\}$, based on the topological structures of (\mathbb{Z}, T_k) and (\mathbb{Z}, T'_k) , the present paper initially establishes the following maps $h_{(p,q)}$ and $h'_{(p,q)'}$ where $p, q \in \mathbb{Z} \setminus \{0\}$ and |q| = |p| + 1, as embeddings.

 $\begin{cases} (1) h_{(p,q)} : (\mathbb{Z}, T_p) \to (\mathbb{Z}, T_q) \text{ and} \\ (2) h'_{(p,q)} : (\mathbb{Z}, T'_p) \to (\mathbb{Z}, T'_q). \end{cases}$ (1.2)

Then, based on (1.2), we will prove that

 $\begin{cases} (\mathbb{Z}, \kappa) \text{ is homeomorphic with each of the subspaces} \\ (1) (\mathbb{Z} \setminus Im(h_{(p,q)}), (T_q)_{\mathbb{Z} \setminus Im(h_{(p,q)})}) \text{ induced from } (\mathbb{Z}, T_q) \text{ and} \\ (2) (\mathbb{Z} \setminus Im(h'_{(p,q)}), (T'_q)_{\mathbb{Z} \setminus Im(h'_{(p,q)})}) \text{ induced from } (\mathbb{Z}, T'_q), \end{cases}$ (1.3)

where "*Im*" indicates the image of a given map.

Using the embedding of (1.2) and some properties of (1.3), we deal with the universality problem in the sets $\mathcal{T} := \{(\mathbb{Z}, T_k) | k \in \mathbb{Z} \setminus \{0\}\}$ and $\mathcal{T}' := \{(\mathbb{Z}, T'_k) | k \in \mathbb{Z} \setminus \{0\}\}$.

This paper is organized as follows: Section 2 provides some basic notions associated with T_k - or T'_k topological spaces, $k \in \mathbb{Z}$. Section 3 studies the reversibility of the topological spaces (\mathbb{Z}, T_k) and (\mathbb{Z}, T'_k) ,
respectively, where $k \in \mathbb{Z}$. Section 4 studies the existence problem of a universal element in \mathcal{T} and \mathcal{T}' , where \mathcal{T} is the collection of T_k -topological spaces (\mathbb{Z}, T_k) , and \mathcal{T}' is the set of T'_k -topological spaces (\mathbb{Z}, T'_k) , $k \in \mathbb{Z} \setminus \{0\}$.
Section 5 concludes the paper with summary and further work.

1586

2. Some properties of the T_k -topological spaces

Owing to the subbases in (1.1) for the topologies T_k and T'_k , the following are obtained [15, 16].

Remark 2.1. ([16]) *For* $k \in \mathbb{Z} \setminus \{0\}$,

$$\mathcal{B} := \{S_{k,t} \mid t \in \mathbb{Z}\} \cup \{\{2t+1\} \mid t \in \mathbb{Z}\}$$
(2.1)

is a base for (\mathbb{Z}, T_k) .

For $A \subset \mathbb{Z}$, owing to the Alexandorff topological structures of (\mathbb{Z}, T_k) and (\mathbb{Z}, T'_k) , we consider the smallest open set of a point x in (\mathbb{Z}, T_k) (resp. (\mathbb{Z}, T'_k)) or a subspace $(A, (T_k)_A)$ (resp. $(A, (T'_k)_A)$). Then we take only the notation $SN_k(x)$ (resp. $SN'_k(x)$) if there is no danger of ambiguity. Similarly, for $B \subset A \subset \mathbb{Z}$, since we also consider the closure of a subset B in (\mathbb{Z}, T_k) (resp. (\mathbb{Z}, T'_k)) or $(A, (T_k)_A)$ (resp. $(A, (T'_k)_A)$), we take only the notation $Cl_k(B)$ (resp. $Cl'_k(B)$) if there is no danger of confusion (see Lemma 2.2 below). By Remark 2.1, the following properties are obtained.

Lemma 2.2. ([16]) (1) For $k \in \mathbb{Z} \setminus \{0\}$, under (\mathbb{Z}, T_k) , for each $t \in \mathbb{Z}$, we have

 $\begin{cases} SN_k(2t) = S_{k,t}, SN_k(2t+1) = \{2t+1\} \ and \\ Cl_k(\{2t+1\}) = \{2t, 2t+1, 2t-2k\} = S'_{-k,t'}, Cl_k(\{2t\}) = \{2t\}. \end{cases}$

(2) With (\mathbb{Z}, T_0) , for each $t \in \mathbb{Z}$, $SN_0(2t) = SN_0(2t+1) = \{2t, 2t+1\} = Cl_0(\{2t\}) = Cl_0(\{2t+1\})$.

By Lemma 2.2(2), it is clear that (\mathbb{Z}, T_0) is not a Kolmogoroff space.

Lemma 2.3. ([16]) For $k \in \mathbb{Z} \setminus \{0\}$, the spaces (\mathbb{Z}, T_k) , (\mathbb{Z}, T'_k) , (\mathbb{Z}, T_{-k}) , and (\mathbb{Z}, T'_{-k}) are homeomorphic.

We say that a topological space (*X*, *T*) satisfies the $T_{\frac{1}{2}}$ -separation axiom ($T_{\frac{1}{2}}$ -space, for brevity) if each singleton is either a closed or an open set in (*X*, *T*) [6].

Corollary 2.4. (1) For $k \in \mathbb{Z} \setminus \{0\}$, the space (\mathbb{Z}, T_k) satisfies the $T_{\frac{1}{2}}$ -separation axiom [15]. (2) The product space $(\mathbb{Z}^n, (T_k)^n)$, $n \ge 2$, does not satisfy the $T_{\frac{1}{2}}$ -separation axiom (see Lemma 5.1 of [12]).

Since Corollary 2.4 plays an important role in studying the universality problem in Section 4, we just recall the non-satisfaction of the $T_{\frac{1}{2}}$ -separation axiom of $(\mathbb{Z}^2, (T_k)^2)$. To be specific, with $(\mathbb{Z}^2, (T_k)^2)$, for $t_1, t_2 \in \mathbb{Z}$, consider the set

 $\{2t_1, 2t_1 + 1, 2t_1 + 2k + 1\} \times \{2t_2, 2t_2 + 1, 2t_2 + 2k + 1\}$

which is the smallest open set containing the point $(2t_1, 2t_2)$. Then take the point $p := (2t_1, 2t_2 + 1)$ in $(\mathbb{Z}^2, (T_k)^2)$, owing to Lemma 2.2, it is clear that the singleton $\{p\}$ is neither a closed nor an open set in $(\mathbb{Z}^2, (T_k)^2)$.

As for the regularity [24] of (\mathbb{Z} , T_k), we obtain the following

Proposition 2.5. For $k \in \mathbb{Z} \setminus \{0\}$, each of (\mathbb{Z}, T_k) and (\mathbb{Z}, T'_k) is neither a Kuratowski space nor a regular space.

Proof. For each even integer *x*, since $SN_k(x)$ should include the odd integer x + 1 (see Lemma 2.2(1)), (\mathbb{Z} , T_k) is not a Kuratowski space.

Next, with (\mathbb{Z}, T_k) , since the singleton $\{x\}, x \in 2\mathbb{Z}$, is a closed set (see Lemma 2.2), take a point $x + 1 \notin \{x\}$. Then there are not disjoint open sets U and V in (\mathbb{Z}, T_k) such that $x + 1 \in U$ and $\{x\} \subset V$ (see Lemma 2.2(1)). Hence (\mathbb{Z}, T_k) is neither a Kuratowski space nor a regular space. By Lemma 2.3, the proof is completed. \Box

1587

3. Reversibility of T_k -topological spaces and dense subsets of T_k -topological subspaces

It is well known that a finite topological space or a discrete topological space or any space with cofinite topology is reversible [25]. Hence, when studying the reversibility of a topological space, we need to focus on the infinite topological spaces without discrete topology and a space without cofinite topology. This section proves that each of (\mathbb{Z}, T_k) and (\mathbb{Z}, T'_k) , $k \in \mathbb{Z}$, is reversible.

Definition 3.1. ([25]) We say that a topological space is reversible if every continuous self-bijection is a homeomorphism.

Theorem 3.2. For $k \in \mathbb{Z}$, (\mathbb{Z}, T_k) is reversible.

Proof. (Case 1) Assume the case k = 0, i.e., (\mathbb{Z}, T_0) . Then we obtain a partition $\{P_{2m} | m \in \mathbb{Z}, P_{2m} = \{2m, 2m+1\}\}$ of \mathbb{Z} up to connectedness, i.e., $\exists \aleph_0$ connected components $P_{2m} m \in \mathbb{Z}$, so that each P_{2m} is both closed and open in (\mathbb{Z}, T_0) . With the hypothesis of a continuous self-bijection of $f : (\mathbb{Z}, T_0) \to (\mathbb{Z}, T_0)$, assume $x \in P_{2m_1}$ and $f(x) \in P_{2m_2}$. Then the element $x'(\neq x) \in P_{2m_1}$ should be mapped by f into P_{2m_2} such that

if
$$f(x) = 2m_2$$
, then $f(x') = 2m_2 + 1$ and
if $f(x) = 2m_2 + 1$, then $f(x') = 2m_2$.

Hence we have $f(P_{2m_1}) = P_{2m_2}$ which implies that the map f is an open map so that f is a homeomorphism. (Case 2) Assume the case $k \in \mathbb{N}$, i.e., (\mathbb{Z}, T_k) . Let us recall that for a point x in (\mathbb{Z}, T_k) we have the property: $\{\sharp SN_k(x) | x \in \mathbb{Z}\} = \{1, 3\}$ (see Lemma 2.2). Let us now consider a continuous bijection $f : (\mathbb{Z}, T_k) \to (\mathbb{Z}, T_k)$. Then, based on the map f, for $x \in \mathbb{Z}_e$, f(x) should be mapped into \mathbb{Z}_e , where \mathbb{Z}_e is the set of even integers. If not, we have a contradiction to the given continuous bijection f. More precisely, on the contrary, suppose that $f(x) \in \mathbb{Z}_o$, where \mathbb{Z}_o is the set of odd integers. Then, owing to the continuity of f, we obtain $f(SN_k(x)) \subset SN_k(f(x))$ such that $\sharp SN_k(x) = 3$ and $\sharp SN_k(f(x)) = 1$, which invokes a contradiction to the bijection of f because $SN_k(f(x)) = \{f(x)\}$ is an open set in (\mathbb{Z}, T_k) and $SN_k(x) = \{x, x + 1, x + 2k + 1\}$.

Hence, for $x \in \mathbb{Z}_e$, owing to $\sharp SN_k(x) = 3 = \sharp SN_k(f(x))$, we obtain

$$\begin{cases} f(SN_k(x)) = SN_k(f(x)) = \{f(x), f(x) + 1, f(x) + 2k + 1\}, \\ \text{where } SN_k(x) = \{x, x + 1, x + 2k + 1\} \text{ and } f(x) \in \mathbb{Z}_e. \end{cases}$$
(3.1)

Next, for $x \in \mathbb{Z}_0$ we obtain $f(x) \in \mathbb{Z}_0$. If not, we have a contradiction to the given continuous bijection f. More precisely, suppose that $f(x) \in \mathbb{Z}_e$, where $x \in \mathbb{Z}_0$. Then we obtain

$$f(Cl_k({x})) \not\subseteq Cl_k({f(x)})$$
 since $\#Cl_k({x}) = 3$ and $\#Cl_k({f(x)}) = 1$ (see Lemma 2.2), (3.2)

which leads to a contradiction.

Hence, for $x \in \mathbb{Z}_0$, since $SN_k(x) = \{x\}$, owing to $\sharp SN_k(x) = 1 = \sharp SN_k(f(x))$, we have

$$(f(SN_k(x)) \subset SN_k(f(x)) = \{f(x)\}) \Rightarrow (f(SN_k(x)) = SN_k(f(x))).$$

$$(3.3)$$

Based on (3.1) and (3.3), for any *x* in (\mathbb{Z} , T_k) we eventually have $f(SN_k(x)) = SN_k(f(x))$, which implies that *f* is an open map, i.e., *f* is a homeomorphism.

(Case 3) Assume the case $k \in \mathbb{N}_{-1}$. By using a method similar to (Case 2) above, a given continuous bijection f is also an open map, which implies that the map f is a homeomorphism. \Box

Corollary 3.3. For $k \in \mathbb{Z}$, (\mathbb{Z}, T'_{k}) is reversible.

Proof. Since reversibility is a topological property [25], by Lemma 2.3, and Theorem 3.2, the proof is completed. \Box

Since (\mathbb{Z}, T_{-1}) is equal to (\mathbb{Z}, κ) , by Theorem 3.2, the following is obtained.

Corollary 3.4. ([5]) (\mathbb{Z} , κ) *is reversible.*

The following fact plays an important role in studying T_k -topological spaces.

Proposition 3.5. ([17])

With the topological space $(\mathbb{Z}, T_k), k \in \mathbb{N}$, a partition $\{P_i | i \in [1, k]_{\mathbb{Z}}\}$ of \mathbb{Z} exists up to connectedness, i.e., each P_i is a component of (\mathbb{Z}, T_k) , where $P_i = \bigcup_{t \in 2k\mathbb{Z}+2(i-1)} \{t, t+1, t+2k+1\}$. Then, in $(\mathbb{Z}, T_k), k \in \mathbb{N}$, the following are

obtained,

 $\begin{cases} (1) (P_i, (T_k)_{P_i}) \text{ is homeomorphic with } (P_j, (T_k)_{P_j}), i, j \in [1, k]_{\mathbb{Z}}. \\ (2) \text{ For any } i \in [1, k]_{\mathbb{Z}}, (P_i, (T_k)_{P_i}) \text{ is homeomorphic with } (\mathbb{Z}, \kappa). \end{cases}$

By Proposition 3.5(2), since topological features of (\mathbb{Z}, T_k) are totally influenced by the corresponding properties of the subspaces $(P_i, (T_k)_{P_i}), i \in [1, k]_{\mathbb{Z}}$, we need to characterize topological features of $(P_i, (T_k)_{P_i})$, as follows:

Theorem 3.6. With Proposition 3.5, the following are obtained. (1) Each $(P_i, (T_k)_{P_i}), i \in [1, k]_{\mathbb{Z}}$, has the dense subset $2k\mathbb{Z} + 2i - 1$. (2) The set $2k\mathbb{Z} + 2(i - 1)$ is a nowhere dense subset of $(P_i, (T_k)_{P_i})$.

Proof. (1) With the topological space $(P_i, (T_k)_{P_i})$, for each element $x \in 2k\mathbb{Z} + 2(i-1) \subset P_i$, $SN_k(x)$ contains the odd integer x + 1, i.e., $SN_k(x) \cap (2k\mathbb{Z} + 2i - 1) \neq \emptyset$, which implies that $Cl_k(2k\mathbb{Z} + 2i - 1) = P_i$. (2) Since $Cl_k(2k\mathbb{Z} + 2(i-1)) = 2k\mathbb{Z} + 2(i-1)$, each nonempty subset of $2k\mathbb{Z} + 2(i-1)$ is not an open subset of $(P_i, (T_k)_{P_i})$. Namely, $Int_k(Cl_k(2k\mathbb{Z} + 2(i-1))) = \emptyset$. \Box

Example 3.7. (1) The sets $6\mathbb{Z}+1$, $6\mathbb{Z}+3$, and $6\mathbb{Z}+5$ are, respectively, dense subsets of $(P_1, (T_3)_{P_1}), (P_2, (T_3)_{P_2}),$ and $(P_3, (T_3)_{P_3})$.

(2) The sets $6\mathbb{Z}$, $6\mathbb{Z} + 2$, and $6\mathbb{Z} + 4$ are, respectively, nowhere dense subsets of $(P_1, (T_3)_{P_1}), (P_2, (T_3)_{P_2})$, and $(P_3, (T_3)_{P_3})$.

4. The universality problem for a collection of T_k -topological spaces, $k \in \mathbb{Z} \setminus \{0\}$

The study of the universality problem has been studied in the set of regular or almost regular spaces [3, 4, 7–9, 20, 21]. Since the regularity is independent of the $T_{\frac{1}{2}}$ -separation axiom, it is very meaningful to study the universality problem in the set \mathcal{T} : the collection of T_k -topological spaces, $k \in \mathbb{Z} \setminus \{0\}$ (see Proposition 2.5), which can play an important role in pure and applied topology. This section investigates some conditions that for $k_1, k_2 \in \mathbb{Z} \setminus \{0\}$, $(\mathbb{Z}, T_{|k_1|})$ is topologically embedded into $(\mathbb{Z}, T_{|k_2|})$. Besides, it also develops various properties associated with this embedding.

Definition 4.1. ([20, 21]) Let *C* be a class of topological spaces. Then we say that a topological space (*X*, *T*) is universal in *C* if the following conditions are satisfied. (1) (*X*, *T*) \in *C* and

(2) for each $(Y, T') \in C$, there exists an embedding of (Y, T') into (X, T).

As mentioned in the previous part, since (\mathbb{Z}, T_0) is not embedded into any (\mathbb{Z}, T_k) , $k \in \mathbb{Z} \setminus \{0\}$, let us consider the following:

Lemma 4.2. Let us consider the collection of T_k -topological spaces (\mathbb{Z}, T_k) , $k \in \mathbb{Z} \setminus \{0\}$. Then each topological space (\mathbb{Z}, T_k) , $k \notin \{-1, 1\}$, is not embedded into (\mathbb{Z}, T_1) , (\mathbb{Z}, T_{-1}) , (\mathbb{Z}, T'_1) , and (\mathbb{Z}, T'_{-1}) .

Proof. By Lemma 2.3 and the topological property of reversibility, without loss of generality, we may consider the case $k \in \mathbb{N} \setminus \{1\}$. Suppose that there is an embedding h from $(\mathbb{Z}, T_k), k \neq 1$, into (\mathbb{Z}, T_1) . By Proposition 3.5, (\mathbb{Z}, T_k) has k components such as the partition $\{P_i | i \in [1, k]_{\mathbb{Z}}\}$ of \mathbb{Z} and further, the subspace $(P_i, (T_k)_{P_i})$ is homeomorphic with (\mathbb{Z}, T_1) which is homeomorphic with (\mathbb{Z}, κ) . Thus, for any $i, j \in [1, k]_{\mathbb{Z}}$

with $i \neq j$, the images $h(P_i)$ and $h(P_j)$ should be nonempty, disjoint, and each of them is connected in (\mathbb{Z}, T_1) . However, owing to the embedding h, we have $h(P_i) = \mathbb{Z}$ so that $h(P_j) = \emptyset$, which invokes a contradiction. In a similar way, by Lemma 2.3, we prove a non-embedding from (\mathbb{Z}, T_k) to $(\mathbb{Z}, T_{-1}), (\mathbb{Z}, T'_1)$, and $(\mathbb{Z}, T'_{-1}), k \notin \{-1, 1\}$. \Box

Since the study of the universality problem of a class of topological spaces is related to the notion of weight of a topological space, let us now recall the notion. We say that the weight of a topological space is the minimum possible cardinality of a basis for the topological space [3].

In Proposition 3.5, since the homeomorphism between (\mathbb{Z}, κ) and $(P_i, (T_k)_{P_i})$ plays a crucial role in the present paper, let us now develop a new homeomorphism between them, which makes the approach used in [17] more advanced, as follows:

Remark 4.3. With the given partition $\{P_i | i \in [1, k]_{\mathbb{Z}}\}$ of \mathbb{Z} of Proposition 3.5, there is a homeomorphism $\mu_i : (\mathbb{Z}, \kappa) \to (P_i, (T_k)_{P_i})$, where $P_i = \bigcup_{t \in 2k \mathbb{Z} + 2(i-1)} \{t, t+1, t+2k+1\}$ (see Proposition 3.5), defined by

$$\mu_i(x) = \begin{cases} kx + 2(i-1), x \in 2\mathbb{Z}, \text{ and} \\ kx + k + 1 + 2(i-1), x \in 2\mathbb{Z} + 1. \end{cases}$$

Then it is clear that the map μ_i is a continuous bijection and an open map, which leads to a homeomorphism between them.

Example 4.4. With the topological space (\mathbb{Z} , T_4), by Proposition 3.5, consider four components of (\mathbb{Z} , T_4), i.e., a partition $\{P_i | i \in [1, 4]_{\mathbb{Z}}\}$ of \mathbb{Z} up to connectedness, where $P_i = \bigcup_{t \in \mathbb{Z} + 2(i-1)} \{t, t + 1, t + 9\}$. We obtain the

following homeomorphism $\mu_i : (\mathbb{Z}, \kappa) \to (P_i, (T_4)_{P_i}), i \in [1, 4]_{\mathbb{Z}}$ (see Figure 1),

$$\mu_i(x) = \begin{cases} 4x + 2(i-1), x \in 2\mathbb{Z}, \text{ and} \\ 4x + 5 + 2(i-1), x \in 2\mathbb{Z} + 1. \end{cases}$$

For instance, $\mu_4 : (\mathbb{Z}, \kappa) = (\mathbb{Z}, T_{-1}) \rightarrow (P_4, (T_4)_{P_4})$ (see Figure 1), defined by

$$\mu_4(x) = \begin{cases} 4x + 6, x \in 2\mathbb{Z}, \text{ and} \\ 4x + 11, x \in 2\mathbb{Z} + 1. \end{cases}$$

Figure 1: Configuration of the homeomorphism $\mu_4 : (\mathbb{Z}, \kappa) = (\mathbb{Z}, T_{-1}) \rightarrow (P_4, (T_4)_{P_4})$ stated in Example 4.4. The black dots and squares mean that the singleton consisting of a black dot (resp. a square) is an open (resp. closed) set in the given topological space.

By Lemma 2.3 and Proposition 3.5, since (\mathbb{Z}, T_0) cannot be embedded into $(\mathbb{Z}, T_k), k \in \mathbb{Z} \setminus \{0\}$, we need to focus on the other cases. In [14], we proved that for $k_1, k_2 \in \mathbb{N}$, there is an embedding of (\mathbb{Z}, T_{k_1}) into (\mathbb{Z}, T_{k_2}) if and only if $k_1 \le k_2$. As a generalization of this approach, the following is obtained.

Theorem 4.5. For $k_1, k_2 \in \mathbb{Z} \setminus \{0\}$, there is an embedding of (\mathbb{Z}, T_{k_1}) into (\mathbb{Z}, T_{k_2}) if and only if $|k_1| \le |k_2|$.

Before proving the assertion, if Theorem 4.5 is affirmative, by Lemma 2.3, we obtain the following embeddings for the numbers $p, q \in \mathbb{Z} \setminus \{0\}$, where |q| = |p| + 1

$$\begin{cases} (1) h_{(p,q)} : (\mathbb{Z}, T_p) \to (\mathbb{Z}, T_q) \text{ and} \\ (2) h'_{(p,q)} : (\mathbb{Z}, T'_p) \to (\mathbb{Z}, T'_q). \end{cases}$$
(4.1)

Namely, by Lemma 2.3, we obtain the series of embeddings which support the assertion.

$$\begin{cases} (1) T_1 \xrightarrow{h_{(1,2)}} T_2 \xrightarrow{h_{(2,3)}} \cdots \longrightarrow T_{k-1} \xrightarrow{h_{(k-1,k)}} T_k \xrightarrow{h_{(k,k+1)}} T_{k+1} \xrightarrow{h_{(k+1,k+2)}} \cdots, \\ (2) T_{-1} \xrightarrow{h_{(-1,-2)}} T_{-2} \xrightarrow{h_{(-2,-3)}} \cdots \longrightarrow T_{-k} \xrightarrow{h_{(-k,-k-1)}} T_{-k-1} \xrightarrow{h_{(-k-1,-k-2)}} \cdots, \\ (3) T'_1 \xrightarrow{h'_{(1,2)}} T'_2 \xrightarrow{h'_{(2,3)}} \cdots \longrightarrow T'_{k-1} \xrightarrow{h'_{(k-1,k)}} T'_k \xrightarrow{h'_{(k,k+1)}} T'_{k+1} \xrightarrow{h'_{(k+1,k+2)}} \cdots, \\ (4) T'_{-1} \xrightarrow{h'_{(-1,-2)}} T'_{-2} \xrightarrow{h'_{(-2,-3)}} \cdots \longrightarrow T'_{-k} \xrightarrow{h'_{(-k,-k-1)}} T'_{-k-1} \xrightarrow{h'_{(-k,-1,-k-2)}} \cdots, \\ \text{and so on} \end{cases}$$

Motivated by the maps in (4.1) and (4.2), we now prove the assertion.

Proof. (\Rightarrow) Using the contrapositive law, we prove that in case $|k_1| \ge |k_2|$, no embedding of (\mathbb{Z}, T_{k_1}) into (\mathbb{Z}, T_{k_2}) exists. On the contrary, suppose that there is an embedding from (\mathbb{Z}, T_{k_1}) into (\mathbb{Z}, T_{k_2}) , where $|k_1| \ge |k_2|$. By Lemma 2.3, it suffices to prove the case $k_1 \ge k_2$, where $k_1, k_2 \in \mathbb{N}$. Suppose that an embedding of (\mathbb{Z}, T_{k_1}) into (\mathbb{Z}, T_{k_2}) exists. As a convenience, let us denote by $h : (\mathbb{Z}, T_{k_1}) \to (\mathbb{Z}, T_{k_2})$ the embedding. Besides, by Proposition 3.5, we may assume that the set \mathbb{Z} of (\mathbb{Z}, T_{k_1}) (resp. (\mathbb{Z}, T_{k_2})) is partitioned by $P_i | i \in [1, k_1]_{\mathbb{Z}}$ (resp. $\{Q_i, | i \in [1, k_2]_{\mathbb{Z}}\}$). Then, owing to the embedding h, there is a non-empty set $M := \{i_1, i_2, \dots, i_{k_2}\} \subseteq [1, k_1]_{\mathbb{Z}}$ such that

$$h(\bigcup_{i\in M} P_i) = \mathbb{Z} = \bigcup_{i\in[1,k_2]_{\mathbb{Z}}} Q_i,$$

so that

$$h(\bigcup_{i\in[1,k_1]_{\mathbb{Z}}\setminus M}P_i)=\emptyset$$

which implies that the map *h* is not an embedding, which invokes a contradiction to the hypothesis. (\Leftarrow) (Case 1) In case $|k_1| = |k_2|$, by Lemma 2.3, the proof is straightforward.

(Case 2) Let us now consider the case $|k_1| \leq |k_2|$. Then we can consider the following four cases.

(Case 2-1) In case $k_1, k_2 \in \mathbb{N}$ such that $k_1 \leq k_2$, we obtain the following embedding [14] (motivated by the case of (1) of (4.2))

$$h_{(k_1,k_2)}: (\mathbb{Z}, T_{k_1}) \to (\mathbb{Z}, T_{k_2})$$
 (4.3)

defined by

$$h_{(k_1,k_2)}(x) = \begin{cases} \frac{k_2}{k_1}x, x \in 2k_1\mathbb{Z}, \\ \frac{k_2}{k_1}(x-1) + 1, x \in 2k_1\mathbb{Z} + 1, \\ \frac{k_2}{k_1}(x-2) + 2, x \in 2k_1\mathbb{Z} + 2, \\ \frac{k_2}{k_1}(x-3) + 3, x \in 2k_1\mathbb{Z} + 3, \\ \dots \\ \frac{k_2}{k_1}(x-(2k_1-1)) + 2k_1 - 1, x \in 2k_1\mathbb{Z} + 2k_1 - 1. \end{cases}$$

$$(4.4)$$

(Case 2-2) In case $k_1, k_2 \in \mathbb{N}_-$ such that $|k_1| \leq |k_2|$, we have the embedding (motivated by the case of (2) of (4.2))

$$g_2 \circ h_{(-k_1,-k_2)} \circ g_1 : (\mathbb{Z}, T_{k_1}) \to (\mathbb{Z}, T_{k_2})$$

in terms of the composite

$$(\mathbb{Z}, T_{k_1}) \xrightarrow{g_1} (\mathbb{Z}, T_{-k_1}) \xrightarrow{h_{(-k_1, -k_2)}} (\mathbb{Z}, T_{-k_2}) \xrightarrow{g_2} (\mathbb{Z}, T_{k_2}),$$

where $h_{(-k_1,-k_2)}$ is the map of (4.4) and

$$g_1: (\mathbb{Z}, T_{k_1}) \to (\mathbb{Z}, T_{-k_1}) \tag{4.5}$$

(4.6)

defined by

$$g_1(x) = \begin{cases} x, x \in 2\mathbb{Z}, \text{ and} \\ x - 2k_1, x \in 2\mathbb{Z} + 1, \end{cases}$$
$$g_2 : (\mathbb{Z}, T_{-k_2}) \to (\mathbb{Z}, T_{k_2})$$

given by

and

$$g_2(x) = \begin{cases} x, x \in 2\mathbb{Z}, \text{ and} \\ x + 2k_2, x \in 2\mathbb{Z} + 1. \end{cases}$$

(Case 2-3) In case $k_1 \in \mathbb{N}$ and $k_2 \in \mathbb{N}_-$ such that $|k_1| \leq |k_2|$, we have the following composite as an embedding

 $g_3 \circ h_{(k_1,-k_2)} : (\mathbb{Z},T_{k_1}) \to (\mathbb{Z},T_{-k_2}) \to (\mathbb{Z},T_{k_2}),$

where $h_{(k_1,-k_2)}$ is the map of (4.4) and

$$g_3:(\mathbb{Z},T_{-k_2})\to(\mathbb{Z},T_{k_2})$$

defined by

$$g_3(x) = \begin{cases} x, x \in 2\mathbb{Z}, \text{ and} \\ x + 2k_2, x \in 2\mathbb{Z} + 1. \end{cases}$$

(Case 2-4) In case $k_1 \in \mathbb{N}_-$ and $k_2 \in \mathbb{N}$ such that $|k_1| \leq |k_2|$, we have the composite as an embedding.

 $h_{(-k_1,k_2)} \circ g_4: (\mathbb{Z},T_{k_1}) \rightarrow (\mathbb{Z},T_{-k_1}) \rightarrow (\mathbb{Z},T_{k_2}),$

where $h_{(-k_1,k_2)}$ is the map of (4.4) and

$$g_4:(\mathbb{Z},T_{k_1})\to(\mathbb{Z},T_{-k_1})$$

defined by

$$g_4(x) = \begin{cases} x, x \in 2\mathbb{Z}, \text{ and} \\ x - 2k_1, x \in 2\mathbb{Z} + 1. \end{cases}$$

To qualify the embedding $h_{(-k_1,-k_2)}, k_1, k_2 \in \mathbb{Z}$, we now refer to the case of $h_{(-2,-3)}$, as follows:

Example 4.6. Based on (Case 2-2) in the proof of Theorem 4.5, the map $h_{(-2,-3)} := g_2 \circ h_{(2,3)} \circ g_1 : (\mathbb{Z}, T_{-2}) \rightarrow (\mathbb{Z}, T_{-3})$ is an embedding, where g_1 (resp. g_2 and $h_{(2,3)}$) is the map of (4.5) (resp. (4.6) and (4.4)). In detail, the embedding $h_{(-2,-3)} = g_2 \circ h_{(2,3)} \circ g_1$ maps $SN_{-2}(0) = \{0, 1, -3\}$ onto $SN_{-3}(0) = \{0, 1, -5\}$, $SN_{-2}(2) = \{2, 3, -1\}$ onto $SN_{-3}(2) = \{2, 3, -3\}$, and so forth.

By Lemma 2.3 and Theorem 4.5, we define the following.

Definition 4.7. Given two spaces (\mathbb{Z}, T_{k_1}) and $(\mathbb{Z}, T_{k_2}), k_1, k_2 \in \mathbb{Z} \setminus \{0\}$, we define a relation between them as follows: We say that $T_{k_1} \leq T_{k_2}$ if $|k_1| \leq |k_2|$. Namely, we obtain a relation set (\mathcal{T}, \leq) , where $\mathcal{T} = \{(\mathbb{Z}, T_k) \mid k \in \mathbb{Z}\}$ $\mathbb{Z} \setminus \{0\}\}.$

Remark 4.8. (1) If $T_{k_1} \leq T_{k_2}$, by Theorem 4.5, there is an embedding from (\mathbb{Z}, T_{k_1}) to (\mathbb{Z}, T_{k_2}) . (2) The relation set (\mathcal{T}, \leq) of Definition 4.7 need not be a partially ordered set but it is a preordered set (see Theorem 4.5).

Theorem 4.9. Not every indexed collection S of topological spaces satisfying the $T_{\frac{1}{2}}$ -separation axiom with weight which is less than or equal to \aleph_0 always has a universal element.

Proof. Consider the relation set (N, \leq) induced from (\mathcal{T}, \leq) , where $N := \{(\mathbb{Z}, T_k), k \in \mathbb{N}\}$. Then, by Theorem 4.5, we observe that (N, \leq) does not have a universal element. \Box

Theorem 4.10. Let \mathcal{T}_M be the set $\{(\mathbb{Z}, T_k) | k \in M \subset \mathbb{Z} \setminus \{0\}\}$. Then \mathcal{T}_M has a universal element if and only if M is finite.

Proof. (\Rightarrow) If *M* is infinite, as mentioned in Theorem 4.9, \mathcal{T}_M does not have a universal element. (\Leftarrow) With \mathcal{T}_M , rearrange all topologies T_α in \mathcal{T}_M as a sequence as follows:

$$\{T_{\alpha_1}, T_{\alpha_2}, \cdots, T_{\alpha_m}, \cdots ||\alpha_1| \le |\alpha_2| \le \cdots \le |\alpha_m| \le \cdots\}.$$
(4.7)

In (4.7), it is clear that (\mathbb{Z} , T_{α_i}) is embedded into (\mathbb{Z} , T_{α_i}), where $|\alpha_i| \leq |\alpha_j|$. Then, by Theorems 4.5 and 4.9, in order for the set of (4.7) to have a universal element, the set of (4.7) should be finite, i.e., M is finite.

By Lemma 2.3 and Theorem 4.10, the following is obtained.

Corollary 4.11. Let \mathcal{T}'_M be the set $\{(\mathbb{Z}, T'_k) | k \in M \subset \mathbb{Z} \setminus \{0\}\}$. Then \mathcal{T}'_M has a universal element if and only if M is finite.

5. Summary and further work

We initially proved that each of (\mathbb{Z}, T_k) and $(\mathbb{Z}, T'_k), k \in \mathbb{Z}$, is reversible. Based on the satisfaction of the $T_{\frac{1}{2}}$ -separation axiom of T_k - and T'_k -topological spaces, in the sets $\mathcal{T} := \{(\mathbb{Z}, T_k) | k \in \mathbb{Z} \setminus \{0\}\}$ and $\mathcal{T}' := \{(\mathbb{Z}, T'_{\nu}) | k \in \mathbb{Z} \setminus \{0\}\}, \text{ we have studied an existence problem of a universal element in <math>\mathcal{T}$ and \mathcal{T}' . As a futher work, we will study some another connected topological structures on \mathbb{Z} which are not homeomorphic with both (\mathbb{Z} , T_k) and (\mathbb{Z} , T'_k), $k \in \mathbb{Z}$. Then we will deal with the universality problem in the category of these spaces. Besides, some properties of these space regarding a cut-point space, irreducibility, embedding, and so on will be investigated.

Acknowledgements

The paper has been presented at the international conference on "Analysis, Topology and Applications (ATA, for brevity) 2024" held in Serbia during June 29-July 03, 2024. The authors really thank all the members of the organizing committee and the scientific committee of ATA 2024 for their hospitality.

References

- [1] P. Alexandorff, Uber die Metrisation der im Kleinen kompakten topologischen Räume, Mathematische Annalen 92(3-4) (1924), 294–301.
- [2] P. Alexandorff, Diskrete Räume, Mat. Sb. 2 (1937), 501-518.
- [3] A.V. Arkhangel'skii, Topological function spaces, Kluwer (1991) (Translated from Russian).
- [4] A. V. Arhangel'skii, Topological homogeneity. Topological groups and their continuous images, Russian Math. Surveys 42 (1987), 83–131.
- [5] V.A. Chatyrko, S.-E. Han, Y. Hattori, The small inductive dimension of subsets of Alexandroff spaces, Filomat 30(11) (2016), 3007-3014.
- [6] W. Dunham, T₁-spaces, Kyungpook Math. J. **17** (1977), 161–169.
- [7] D. N. Georgiou, A. C. Megaritis, F. Sereti, Base dimension-like function of the type Dind and universality, Topol. Appl. 281 (2020), 107201(11 pp).
- [8] D. N. Georgiou, A. C. Megaritis, I. Naidoo, F. Sereti, A study of universal elements in classes of bases of topological spaces, Commentationes Mathematicae Universitatis Carolinae 62(4) (2021), 491-506.
- [9] A. C. Megaritis, F. Sereti, Almost regular spaces and universal elements, Houston Journal of mathematics 49(4) (2023), 953–969.
- [10] S.-E. Han, Semi-separation axioms of the Khalimsky topological sphere, Topol. Appl. 275 (2020), 107006.
- [11] S.-E. Han, Low-level separation axioms from the viewpoint of computational topology, Filomat 33(7) (2019), 1889–1901.
- [12] S.-E. Han, Adjacency relations induced by some Alexandroff topologies on \mathbb{Z}^n , AIMS(Mathematics) 7(7) (2022), 11581–11596.
- [13] S.-E. Han, I.-K. Na, Topologies associated with the one point compactification of Khalimsky topological spaces, Topol. Appl. 241 (2018), 333-344.
- [14] S.-E. Han and J.-H. Kim, *Embeddings of the Tk-topological spaces*, Bulletin of the Korean Mathematical Society (Submitted) (2024), 1 - 14.
- [15] S.-E. Han, S. Jafari and J.-M. Kang, Topologies on \mathbb{Z}^n that are not homeomorphic to the n-dimensional Khalimsky topological space, Mathematics 7(1072) (2019), doi:10.3390/math711072.
- [16] S.-E. Han, S. Jafari, J.-M. Kang, and S. Lee, Remarks on topological spaces on \mathbb{Z}^n which are related to the Khalimsky *n*-dimensional space, AIMS(Mathematics) 7(1) (2021), 1224-1240.
- [17] S.-E. Han, Jewoo Lee, Wei Yao, Junhui Kim, Existence of a proper subspace of $(\mathbb{Z}^n, (T_k)^n)$ which is homeomorphic to the n-dimensional Khalimsky topological space, Topol. Appl. 344 (2024), 108812.
- [18] S.-E. Han, S.Özçağ, The semi-T₃-separation axiom of Khalimsky topological spaces, Filomat 37(8) (2023), 2539–2559.
- [19] S.-E. Han, A. Šostak, A compression of digital images derived from a Khalimsky topological structure, Computational and Applied Mathematics 32 (2013), 521–536.
- [20] S. D. Iliadis, A construction of containing spaces, Topol. Appl. 107(1-2) (2000) 97-116.
- [21] S. D. Iliadis, Universal spaces and mappings, North-Holland Mathematics Studies, 198. Elsevier Science B.V., Amsterdam, 2005.
- [22] E. Khalimsky, Topological structures in computer science, J. Appl. Math. Simulation 1(1) (1987), 25–40.
- [23] E. Khalimsky, R. Kopperman, P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topol. Appl. 36(1) (1990), 1 - 17
- [24] J.R. Munkres, Topology A First Course (second edition), Prentice-Hall, Inc., Upper Saddle, 1975.
- [25] M. Rajagopalan and A. Wilansky, Reversible topological spaces, J. Austral. Math. Soc. 6 (1966), 129–138.