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Abstract. As a generalization of the Khalimsky line topological space, consider the topological space
(Z,Tk) (resp. (Z,T′k)) on the set of integers, where the topology Tk (resp. T′k) is generated by the set Sk

(resp. S′k) as a subbase, k ∈ Z, and Sk := {Sk,t |Sk,t := {2t, 2t + 1, 2t + 2k + 1}, t ∈ Z} (resp. S′k := {S′k,t |S
′

k,t :=
{2t, 2t + 1, 2t + 2k}, t ∈ Z}). For k ∈ Z \ {0}, each of the Tk- and T′k-topological space indeed satisfies the T 1

2
-

separation axiom. Besides, for k ∈ Z \ {0}, each of (Z,Tk) and (Z,T′k) is an Alexandroff space and is neither
a Kuratowski space nor a regular space. The paper initially proves that each of (Z,Tk) and (Z,T′k), k ∈ Z, is
reversible. Next, let T be the collection of Tk-topological spaces {(Z,Tk), k ∈ Z \ {0}}, and T ′ be the set of
T′k-topological spaces {(Z,T′k), k ∈ Z \ {0}}. Then the paper deals with an existence problem of a universal
element in T and T ′.

1. Introduction

In the present paper, we follow the notations N and Z that are the sets of positive integers (i.e.,
natural numbers) and integers, respectively. Besides, for distinct integers a, b ∈ Z we take the notation
[a, b]Z := {t ∈ Z | a ≤ t ≤ b} and “⊂” (resp. ♯X) which denotes a ‘proper subset or equal’ (resp. the cardinality
of the set X). In addition, the notation “ :=” is used to introduce a new term. For k ∈ N and i ∈ [0, k − 1]Z,
we take the notation kZ + i := {kt + i | t ∈ Z}. Besides, N− and ℵ0 indicate the set of negative integers and
the first infinite cardinality, respectively.

A topological space (X,T) is called an Alexandroff space [1, 2] if each x ∈ X has a minimal open neigh-
borhood, i.e., there is the smallest open set containing x. Since the paper is strongly associated with the
Khalimsky (K-, for brevity) topological line, let us first recall the K-topological line and its product topology
onZn for the n-dimensional K-topological space, n ∈N. The K-topology κ onZ, denoted by (Z, κ), is gener-
ated by the set {[2t−1, 2t+1]Z, {2t+1} | t ∈ Z} as a base [22]. Furthermore, the product topology onZn induced
by (Z, κ) is called an n-dimensional K-topological space and denoted by (Zn, κn) [23] and it turns out that it
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is an Alexandroff topological space. Indeed, the papers [5, 10–19] include the study of its various properties.

In order to address an open problem related to the generalization of the K-topological line [15, 16], the
recent papers [16, 17] studied infinitely many types of topological structures on Z, say (Z,Tk) and (Z,T′k),
k ∈ Z, where the topologies Tk and T′k are, respectively, generated by the sets Sk and S′k in (1.1) below as
subbases [15].

Sk := {Sk,t |Sk,t := {2t, 2t + 1, 2t + 2k + 1}, t ∈ Z} and
S′k := {S′k,t | S

′

k,t := {2t, 2t + 1, 2t + 2k}, t ∈ Z}.
(1.1)

Owing to the subbases of (1.1), it is clear that both (Z,Tk) and (Z,T′k), k ∈ Z, are Alexandroff spaces [16].
Furthermore, in case k ∈ Z\{1,−1}, it turns out that each (Z,Tk) is not homeomorphic with the K-topological
line [15] . Indeed, (Z,T−1) is equal to (Z, κ) and (Z,T1) is not equal to (Z, κ) but homeomorphic with (Z, κ)
[15]. Besides, it turns out that (Z,Tk) is connected if and only if k ∈ {−1, 1} [16]. Even though (Z,Tk) is
neither a regular space nor a Kuratowski space (see Proposition 2.5), it was proved that it satisfies the
T 1

2
-separation axiom (see Corollary 2.4 of [16]).

Hereinafter, in the space (Z,Tk), for X ⊂ Z, (X, (Tk)X) denotes the subspace induced from (Z,Tk). Let
us now recall the notion of a topological embedding (embedding, for brevity) [24]. Given two topological
spaces X and Y, we say that an embedding of X to Y is a function f : X→ Y that maps X homeomorphically
to the subspace f (X) in Y.

Indeed, owing to (1.1), the space (Z,T0) has ℵ0 connected components P2m := {2m, 2m+1},m ∈ Z, which
are both closed and open in (Z,T0). Hence (Z,T0) cannot be embedded into any (Z,Tk), k , 0, because
(Z,Tk), k , 0 does not have any subspace which is homeomorphic with (Z,T0). Then we may raise an
interesting query related to both the reversibility of (Z,Tk), k ∈ Z, and the existence problem of a universal
element in the collection of Tk-topological spaces, k ∈ Z \ {0}. First of all, for k ∈ Z \ {0}, based on the
topological structures of (Z,Tk) and (Z,T′k), the present paper initially establishes the following maps h(p,q)
and h′(p,q), where p, q ∈ Z \ {0} and |q| = |p| + 1, as embeddings.

(1) h(p,q) : (Z,Tp)→ (Z,Tq) and
(2) h′(p,q) : (Z,T′p)→ (Z,T′q).

(1.2)

Then, based on (1.2), we will prove that
(Z, κ) is homeomorphic with each of the subspaces
(1) (Z \ Im(h(p,q)), (Tq)Z\Im(h(p,q))) induced from (Z,Tq) and
(2) (Z \ Im(h′(p,q)), (T

′
q)Z\Im(h′(p,q))

) induced from (Z,T′q),
(1.3)

where “Im” indicates the image of a given map.

Using the embedding of (1.2) and some properties of (1.3), we deal with the universality problem in the
sets T := {(Z,Tk) | k ∈ Z \ {0}} and T ′ := {(Z,T′k) | k ∈ Z \ {0}}.

This paper is organized as follows: Section 2 provides some basic notions associated with Tk- or T′k-
topological spaces, k ∈ Z. Section 3 studies the reversibility of the topological spaces (Z,Tk) and (Z,T′k),
respectively, where k ∈ Z. Section 4 studies the existence problem of a universal element inT andT ′, where
T is the collection of Tk-topological spaces (Z,Tk), andT ′ is the set of T′k-topological spaces (Z,T′k), k ∈ Z\{0}.
Section 5 concludes the paper with summary and further work.
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2. Some properties of the Tk-topological spaces

Owing to the subbases in (1.1) for the topologies Tk and T′k, the following are obtained [15, 16].

Remark 2.1. ([16]) For k ∈ Z \ {0},

B := {Sk,t | t ∈ Z} ∪ {{2t + 1} | t ∈ Z} (2.1)

is a base for (Z,Tk).

For A ⊂ Z, owing to the Alexandorff topological structures of (Z,Tk) and (Z,T′k), we consider the
smallest open set of a point x in (Z,Tk) (resp. (Z,T′k)) or a subspace (A, (Tk)A) (resp. (A, (T′k)A)). Then we
take only the notation SNk(x) (resp. SN′k(x)) if there is no danger of ambiguity. Similarly, for B ⊂ A ⊂ Z,
since we also consider the closure of a subset B in (Z,Tk) (resp. (Z,T′k)) or (A, (Tk)A) (resp. (A, (T′k)A)), we
take only the notation Clk(B) (resp. Cl′k(B)) if there is no danger of confusion (see Lemma 2.2 below). By
Remark 2.1, the following properties are obtained.

Lemma 2.2. ([16]) (1) For k ∈ Z \ {0}, under (Z,Tk), for each t ∈ Z, we haveSNk(2t) = Sk,t,SNk(2t + 1) = {2t + 1} and
Clk({2t + 1}) = {2t, 2t + 1, 2t − 2k} = S′

−k,t, Clk({2t}) = {2t}.

(2) With (Z,T0), for each t ∈ Z, SN0(2t) = SN0(2t + 1) = {2t, 2t + 1} = Cl0({2t}) = Cl0({2t + 1}).

By Lemma 2.2(2), it is clear that (Z,T0) is not a Kolmogoroff space.

Lemma 2.3. ([16]) For k ∈ Z \ {0}, the spaces (Z,Tk), (Z,T′k), (Z,T−k), and (Z,T′
−k) are homeomorphic.

We say that a topological space (X,T) satisfies the T 1
2
-separation axiom (T 1

2
-space, for brevity) if each

singleton is either a closed or an open set in (X,T) [6].

Corollary 2.4. (1) For k ∈ Z \ {0}, the space (Z,Tk) satisfies the T 1
2
-separation axiom [15].

(2) The product space (Zn, (Tk)n),n ≥ 2, does not satisfy the T 1
2
-separation axiom (see Lemma 5.1 of [12]).

Since Corollary 2.4 plays an important role in studying the universality problem in Section 4, we just
recall the non-satisfaction of the T 1

2
-separation axiom of (Z2, (Tk)2). To be specific, with (Z2, (Tk)2), for

t1, t2 ∈ Z, consider the set

{2t1, 2t1 + 1, 2t1 + 2k + 1} × {2t2, 2t2 + 1, 2t2 + 2k + 1}

which is the smallest open set containing the point (2t1, 2t2). Then take the point p := (2t1, 2t2 + 1) in
(Z2, (Tk)2), owing to Lemma 2.2, it is clear that the singleton {p} is neither a closed nor an open set in
(Z2, (Tk)2).

As for the regularity [24] of (Z,Tk), we obtain the following

Proposition 2.5. For k ∈ Z \ {0}, each of (Z,Tk) and (Z,T′k) is neither a Kuratowski space nor a regular space.

Proof. For each even integer x, since SNk(x) should include the odd integer x+ 1 (see Lemma 2.2(1)), (Z,Tk)
is not a Kuratowski space.
Next, with (Z,Tk), since the singleton {x}, x ∈ 2Z, is a closed set (see Lemma 2.2), take a point x + 1 < {x}.
Then there are not disjoint open sets U and V in (Z,Tk) such that x + 1 ∈ U and {x} ⊂ V (see Lemma 2.2(1)).
Hence (Z,Tk) is neither a Kuratowski space nor a regular space. By Lemma 2.3, the proof is completed.
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3. Reversibility of Tk-topological spaces and dense subsets of Tk-topological subspaces

It is well known that a finite topological space or a discrete topological space or any space with cofinite
topology is reversible [25]. Hence, when studying the reversibility of a topological space, we need to focus
on the infinite topological spaces without discrete topology and a space without cofinite topology. This
section proves that each of (Z,Tk) and (Z,T′k), k ∈ Z, is reversible.

Definition 3.1. ([25]) We say that a topological space is reversible if every continuous self-bijection is a
homeomorphism.

Theorem 3.2. For k ∈ Z, (Z,Tk) is reversible.

Proof. (Case 1) Assume the case k = 0, i.e., (Z,T0). Then we obtain a partition {P2m |m ∈ Z,P2m = {2m, 2m+1}}
of Z up to connectedness, i.e., ∃ ℵ0 connected components P2m m ∈ Z, so that each P2m is both closed and
open in (Z,T0). With the hypothesis of a continuous self-bijection of f : (Z,T0)→ (Z,T0), assume x ∈ P2m1

and f (x) ∈ P2m2 . Then the element x′(, x) ∈ P2m1 should be mapped by f into P2m2 such that if f (x) = 2m2, then f (x′) = 2m2 + 1 and
if f (x) = 2m2 + 1, then f (x′) = 2m2.

Hence we have f (P2m1 ) = P2m2 which implies that the map f is an open map so that f is a homeomorphism.
(Case 2) Assume the case k ∈N, i.e., (Z,Tk). Let us recall that for a point x in (Z,Tk) we have the property:
{♯SNk(x) | x ∈ Z} = {1, 3} (see Lemma 2.2). Let us now consider a continuous bijection f : (Z,Tk) → (Z,Tk).
Then, based on the map f , for x ∈ Ze, f (x) should be mapped into Ze, where Ze is the set of even
integers. If not, we have a contradiction to the given continuous bijection f . More precisely, on the contrary,
suppose that f (x) ∈ Zo, where Zo is the set of odd integers. Then, owing to the continuity of f , we obtain
f (SNk(x)) ⊂ SNk( f (x)) such that ♯SNk(x) = 3 and ♯SNk( f (x)) = 1, which invokes a contradiction to the
bijection of f because SNk( f (x)) = { f (x)} is an open set in (Z,Tk) and SNk(x) = {x, x + 1, x + 2k + 1}.

Hence, for x ∈ Ze, owing to ♯SNk(x) = 3 = ♯SNk( f (x)), we obtain{
f (SNk(x)) = SNk( f (x)) = { f (x), f (x) + 1, f (x) + 2k + 1},
where SNk(x) = {x, x + 1, x + 2k + 1} and f (x) ∈ Ze.

}
(3.1)

Next, for x ∈ Zo we obtain f (x) ∈ Zo. If not, we have a contradiction to the given continuous bijection f .
More precisely, suppose that f (x) ∈ Ze, where x ∈ Zo. Then we obtain

f (Clk({x})) ⊈ Clk({ f (x)}) since ♯Clk({x}) = 3 and ♯Clk({ f (x)}) = 1 (see Lemma 2.2), (3.2)

which leads to a contradiction.
Hence, for x ∈ Zo, since SNk(x) = {x}, owing to ♯SNk(x) = 1 = ♯SNk( f (x)), we have

( f (SNk(x)) ⊂ SNk( f (x)) = { f (x)})⇒ ( f (SNk(x)) = SNk( f (x))). (3.3)

Based on (3.1) and (3.3), for any x in (Z,Tk) we eventually have f (SNk(x)) = SNk( f (x)), which implies that f
is an open map, i.e., f is a homeomorphism.
(Case 3) Assume the case k ∈N−1. By using a method similar to (Case 2) above, a given continuous bijection
f is also an open map, which implies that the map f is a homeomorphism.

Corollary 3.3. For k ∈ Z, (Z,T′k) is reversible.

Proof. Since reversibility is a topological property [25], by Lemma 2.3, and Theorem 3.2, the proof is
completed.

Since (Z,T−1) is equal to (Z, κ), by Theorem 3.2, the following is obtained.
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Corollary 3.4. ([5]) (Z, κ) is reversible.

The following fact plays an important role in studying Tk-topological spaces.

Proposition 3.5. ([17])
With the topological space (Z,Tk), k ∈ N, a partition {Pi | i ∈ [1, k]Z} of Z exists up to connectedness, i.e., each

Pi is a component of (Z,Tk), where Pi =
⋃

t∈2kZ+2(i−1)
{t, t + 1, t + 2k + 1}. Then, in (Z,Tk), k ∈ N, the following are

obtained,(1) (Pi, (Tk)Pi ) is homeomorphic with (P j, (Tk)P j ), i, j ∈ [1, k]Z.
(2) For any i ∈ [1, k]Z, (Pi, (Tk)Pi ) is homeomorphic with (Z, κ).

By Proposition 3.5(2), since topological features of (Z,Tk) are totally influenced by the corresponding
properties of the subspaces (Pi, (Tk)Pi ), i ∈ [1, k]Z, we need to characterize topological features of (Pi, (Tk)Pi ),
as follows:

Theorem 3.6. With Proposition 3.5, the following are obtained.
(1) Each (Pi, (Tk)Pi ), i ∈ [1, k]Z, has the dense subset 2kZ + 2i − 1.
(2) The set 2kZ + 2(i − 1) is a nowhere dense subset of (Pi, (Tk)Pi ).

Proof. (1) With the topological space (Pi, (Tk)Pi ), for each element x ∈ 2kZ+ 2(i− 1) ⊂ Pi, SNk(x) contains the
odd integer x + 1, i.e., SNk(x) ∩ (2kZ + 2i − 1) , ∅, which implies that Clk(2kZ + 2i − 1) = Pi.
(2) Since Clk(2kZ+ 2(i− 1)) = 2kZ+ 2(i− 1), each nonempty subset of 2kZ+ 2(i− 1) is not an open subset of
(Pi, (Tk)Pi ). Namely, Intk(Clk(2kZ + 2(i − 1))) = ∅.

Example 3.7. (1) The sets 6Z+1, 6Z+3, and 6Z+5 are, respectively, dense subsets of (P1, (T3)P1 ), (P2, (T3)P2 ),
and (P3, (T3)P3 ).
(2) The sets 6Z, 6Z + 2, and 6Z + 4 are, respectively, nowhere dense subsets of (P1, (T3)P1 ), (P2, (T3)P2 ), and
(P3, (T3)P3 ).

4. The universality problem for a collection of Tk-topological spaces, k ∈ Z \ {0}

The study of the universality problem has been studied in the set of regular or almost regular spaces
[3, 4, 7–9, 20, 21]. Since the regularity is independent of the T 1

2
-separation axiom, it is very meaningful

to study the universality problem in the set T : the collection of Tk-topological spaces, k ∈ Z \ {0} (see
Proposition 2.5), which can play an important role in pure and applied topology. This section investigates
some conditions that for k1, k2 ∈ Z \ {0}, (Z,T|k1 |) is topologically embedded into (Z,T|k2 |). Besides, it also
develops various properties associated with this embedding.

Definition 4.1. ([20, 21]) Let C be a class of topological spaces. Then we say that a topological space (X,T)
is universal in C if the following conditions are satisfied.
(1) (X,T) ∈ C and
(2) for each (Y,T′) ∈ C, there exists an embedding of (Y,T′) into (X,T).

As mentioned in the previous part, since (Z,T0) is not embedded into any (Z,Tk), k ∈ Z \ {0}, let us
consider the following:

Lemma 4.2. Let us consider the collection of Tk-topological spaces (Z,Tk), k ∈ Z \ {0}. Then each topological space
(Z,Tk), k < {−1, 1}, is not embedded into (Z,T1), (Z,T−1), (Z,T′1), and (Z,T′

−1).

Proof. By Lemma 2.3 and the topological property of reversibility, without loss of generality, we may
consider the case k ∈ N \ {1}. Suppose that there is an embedding h from (Z,Tk), k , 1, into (Z,T1). By
Proposition 3.5, (Z,Tk) has k components such as the partition {Pi | i ∈ [1, k]Z} ofZ and further, the subspace
(Pi, (Tk)Pi ) is homeomorphic with (Z,T1) which is homeomorphic with (Z, κ). Thus, for any i, j ∈ [1, k]Z
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with i , j, the images h(Pi) and h(P j) should be nonempty, disjoint, and each of them is connected in (Z,T1).
However, owing to the embedding h, we have h(Pi) = Z so that h(P j) = ∅, which invokes a contradiction.
In a similar way, by Lemma 2.3, we prove a non-embedding from (Z,Tk) to (Z,T−1), (Z,T′1), and (Z,T′

−1), k <
{−1, 1}.

Since the study of the universality problem of a class of topological spaces is related to the notion of
weight of a topological space, let us now recall the notion. We say that the weight of a topological space is
the minimum possible cardinality of a basis for the topological space [3].

In Proposition 3.5, since the homeomorphism between (Z, κ) and (Pi, (Tk)Pi ) plays a crucial role in the
present paper, let us now develop a new homeomorphism between them, which makes the approach used
in [17] more advanced, as follows:

Remark 4.3. With the given partition {Pi | i ∈ [1, k]Z} of Z of Proposition 3.5, there is a homeomorphism
µi : (Z, κ)→ (Pi, (Tk)Pi ), where Pi =

⋃
t∈2kZ+2(i−1)

{t, t + 1, t + 2k + 1} (see Proposition 3.5), defined by

µi(x) =
{

kx + 2(i − 1), x ∈ 2Z, and
kx + k + 1 + 2(i − 1), x ∈ 2Z + 1.

}
Then it is clear that the map µi is a continuous bijection and an open map, which leads to a homeomorphism
between them.

Example 4.4. With the topological space (Z,T4), by Proposition 3.5, consider four components of (Z,T4),
i.e., a partition {Pi | i ∈ [1, 4]Z} of Z up to connectedness, where Pi =

⋃
t∈8Z+2(i−1)

{t, t + 1, t + 9}. We obtain the

following homeomorphism µi : (Z, κ)→ (Pi, (T4)Pi ), i ∈ [1, 4]Z (see Figure 1),

µi(x) =
{

4x + 2(i − 1), x ∈ 2Z, and
4x + 5 + 2(i − 1), x ∈ 2Z + 1.

}
For instance, µ4 : (Z, κ) = (Z,T−1)→ (P4, (T4)P4 ) (see Figure 1), defined by

µ4(x) =
{

4x + 6, x ∈ 2Z, and
4x + 11, x ∈ 2Z + 1.

}

(1-1)

(1-2)

(Z, T   )

0 1 2 3-1 4 5 6 7 8-2-4 -3 9

0 1 2 3-1 4 5 6 7 8-2-3 9

-1

(Z, T  )4

10 11 12 13 14 15 16

10 11

-4-5-6-7

Figure 1: Configuration of the homeomorphism µ4 : (Z, κ) = (Z,T−1)→ (P4, (T4)P4 ) stated in Example 4.4. The black dots and squares
mean that the singleton consisting of a black dot (resp. a square) is an open (resp. closed) set in the given topological space.

By Lemma 2.3 and Proposition 3.5, since (Z,T0) cannot be embedded into (Z,Tk), k ∈ Z \ {0}, we need to
focus on the other cases. In [14], we proved that for k1, k2 ∈N, there is an embedding of (Z,Tk1 ) into (Z,Tk2 )
if and only if k1 ≤ k2. As a generalization of this approach, the following is obtained.
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Theorem 4.5. For k1, k2 ∈ Z \ {0}, there is an embedding of (Z,Tk1 ) into (Z,Tk2 ) if and only if |k1| ≤ |k2|.

Before proving the assertion, if Theorem 4.5 is affirmative, by Lemma 2.3, we obtain the following embed-
dings for the numbers p, q ∈ Z \ {0}, where |q| = |p| + 1(1) h(p,q) : (Z,Tp)→ (Z,Tq) and

(2) h′(p,q) : (Z,T′p)→ (Z,T′q).
(4.1)

Namely, by Lemma 2.3, we obtain the series of embeddings which support the assertion.



(1) T1
h(1,2)
−→ T2

h(2,3)
−→ · · · −→ Tk−1

h(k−1,k)
−→ Tk

h(k,k+1)
−→ Tk+1

h(k+1,k+2)
−→ · · · ,

(2) T−1
h(−1,−2)
−→ T−2

h(−2,−3)
−→ · · · −→ T−k

h(−k,−k−1)
−→ T−k−1

h(−k−1,−k−2)
−→ · · · ,

(3) T′1
h′(1,2)
−→ T′2

h′(2,3)
−→ · · · −→ T′k−1

h′(k−1,k)
−→ T′k

h′(k,k+1)
−→ T′k+1

h′(k+1,k+2)
−→ · · · ,

(4) T′
−1

h′(−1,−2)
−→ T′

−2

h′(−2,−3)
−→ · · · −→ T′

−k

h′(−k,−k−1)
−→ T′

−k−1

h′(−k−1,−k−2)
−→ · · · ,

and so on

(4.2)

Motivated by the maps in (4.1) and (4.2), we now prove the assertion.

Proof. (⇒) Using the contrapositive law, we prove that in case |k1| ⪈ |k2|, no embedding of (Z,Tk1 ) into
(Z,Tk2 ) exists. On the contrary, suppose that there is an embedding from (Z,Tk1 ) into (Z,Tk2 ), where
|k1| ⪈ |k2|. By Lemma 2.3, it suffices to prove the case k1 ⪈ k2, where k1, k2 ∈N. Suppose that an embedding
of (Z,Tk1 ) into (Z,Tk2 ) exists. As a convenience, let us denote by h : (Z,Tk1 ) → (Z,Tk2 ) the embedding.
Besides, by Proposition 3.5, we may assume that the set Z of (Z,Tk1 ) (resp. (Z,Tk2 )) is partitioned by
{Pi | i ∈ [1, k1]Z} (resp. {Qi, | i ∈ [1, k2]Z}). Then, owing to the embedding h, there is a non-empty set
M := {i1, i2, · · · , ik2 } ⊊ [1, k1]Z such that

h(
⋃
i∈M

Pi) = Z =
⋃

i∈[1,k2]Z

Qi,

so that
h(
⋃

i∈[1,k1]Z\M

Pi) = ∅

which implies that the map h is not an embedding, which invokes a contradiction to the hypothesis.
(⇐) (Case 1) In case |k1| = |k2|, by Lemma 2.3, the proof is straightforward.
(Case 2) Let us now consider the case |k1| ⪇ |k2|. Then we can consider the following four cases.
(Case 2-1) In case k1, k2 ∈ N such that k1 ⪇ k2, we obtain the following embedding [14] (motivated by the
case of (1) of (4.2))

h(k1,k2) : (Z,Tk1 )→ (Z,Tk2 ) (4.3)
defined by

h(k1,k2)(x) =



k2

k1
x, x ∈ 2k1Z,

k2

k1
(x − 1) + 1, x ∈ 2k1Z + 1,

k2

k1
(x − 2) + 2, x ∈ 2k1Z + 2,

k2

k1
(x − 3) + 3, x ∈ 2k1Z + 3,

· · ·

k2

k1
(x − (2k1 − 1)) + 2k1 − 1, x ∈ 2k1Z + 2k1 − 1.



(4.4)
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(Case 2-2) In case k1, k2 ∈ N− such that |k1| ⪇ |k2|, we have the embedding (motivated by the case of (2) of
(4.2))

12 ◦ h(−k1,−k2) ◦ 11 : (Z,Tk1 )→ (Z,Tk2 )

in terms of the composite

(Z,Tk1 )
11
−→ (Z,T−k1 )

h(−k1 ,−k2)
−→ (Z,T−k2 )

12
−→ (Z,Tk2 ),

where h(−k1,−k2) is the map of (4.4) and

11 : (Z,Tk1 )→ (Z,T−k1 ) (4.5)

defined by

11(x) =
{

x, x ∈ 2Z, and
x − 2k1, x ∈ 2Z + 1,

}
and

12 : (Z,T−k2 )→ (Z,Tk2 ) (4.6)

given by

12(x) =
{

x, x ∈ 2Z, and
x + 2k2, x ∈ 2Z + 1.

}
(Case 2-3) In case k1 ∈ N and k2 ∈ N− such that |k1| ⪇ |k2|, we have the following composite as an

embedding

13 ◦ h(k1,−k2) : (Z,Tk1 )→ (Z,T−k2 )→ (Z,Tk2 ),

where h(k1,−k2) is the map of (4.4) and
13 : (Z,T−k2 )→ (Z,Tk2 )

defined by

13(x) =
{

x, x ∈ 2Z, and
x + 2k2, x ∈ 2Z + 1.

}
(Case 2-4) In case k1 ∈N− and k2 ∈N such that |k1| ⪇ |k2|, we have the composite as an embedding.

h(−k1,k2) ◦ 14 : (Z,Tk1 )→ (Z,T−k1 )→ (Z,Tk2 ),

where h(−k1,k2) is the map of (4.4) and
14 : (Z,Tk1 )→ (Z,T−k1 )

defined by

14(x) =
{

x, x ∈ 2Z, and
x − 2k1, x ∈ 2Z + 1.

}

To qualify the embedding h(−k1,−k2), k1, k2 ∈ Z, we now refer to the case of h(−2,−3), as follows:

Example 4.6. Based on (Case 2-2) in the proof of Theorem 4.5, the map h(−2,−3) := 12 ◦ h(2,3) ◦ 11 : (Z,T−2)→
(Z,T−3) is an embedding, where 11 (resp. 12 and h(2,3)) is the map of (4.5) (resp. (4.6) and (4.4)). In detail,
the embedding h(−2,−3) = 12 ◦h(2,3) ◦11 maps SN−2(0) = {0, 1,−3} onto SN−3(0) = {0, 1,−5}, SN−2(2) = {2, 3,−1}
onto SN−3(2) = {2, 3,−3}, and so forth.

By Lemma 2.3 and Theorem 4.5, we define the following.
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Definition 4.7. Given two spaces (Z,Tk1 ) and (Z,Tk2 ), k1, k2 ∈ Z \ {0}, we define a relation between them as
follows: We say that Tk1 ⪅ Tk2 if |k1| ≤ |k2|. Namely, we obtain a relation set (T ,⪅), where T = {(Z,Tk) | k ∈
Z \ {0}}.

Remark 4.8. (1) If Tk1 ⪅ Tk2 , by Theorem 4.5, there is an embedding from (Z,Tk1 ) to (Z,Tk2 ).
(2) The relation set (T ,⪅) of Definition 4.7 need not be a partially ordered set but it is a preordered set (see
Theorem 4.5).

Theorem 4.9. Not every indexed collection S of topological spaces satisfying the T 1
2
-separation axiom with weight

which is less than or equal to ℵ0 always has a universal element.

Proof. Consider the relation set (N ,⪅) induced from (T ,⪅), whereN := {(Z,Tk), k ∈N}. Then, by Theorem
4.5, we observe that (N ,⪅) does not have a universal element.

Theorem 4.10. Let TM be the set {(Z,Tk) | k ∈ M ⊂ Z \ {0}}. Then TM has a universal element if and only if M is
finite.

Proof. (⇒) If M is infinite, as mentioned in Theorem 4.9, TM does not have a universal element.
(⇐) With TM, rearrange all topologies Tα in TM as a sequence as follows:

{Tα1 ,Tα2 , · · · ,Tαm , · · · ||α1| ≤ |α2| ≤ · · · ≤ |αm| ≤ · · · }. (4.7)

In (4.7), it is clear that (Z,Tαi ) is embedded into (Z,Tα j ), where |αi| ≤ |α j|. Then, by Theorems 4.5 and 4.9, in
order for the set of (4.7) to have a universal element, the set of (4.7) should be finite, i.e., M is finite.

By Lemma 2.3 and Theorem 4.10, the following is obtained.

Corollary 4.11. Let T ′M be the set {(Z,T′k) | k ∈ M ⊂ Z \ {0}}. Then T ′M has a universal element if and only if M is
finite.

5. Summary and further work

We initially proved that each of (Z,Tk) and (Z,T′k), k ∈ Z, is reversible. Based on the satisfaction
of the T 1

2
-separation axiom of Tk- and T′k-topological spaces, in the sets T := {(Z,Tk) | k ∈ Z \ {0}} and

T
′ := {(Z,T′k) | k ∈ Z \ {0}}, we have studied an existence problem of a universal element in T and T ′.

As a futher work, we will study some another connected topological structures on Z which are not
homeomorphic with both (Z,Tk) and (Z,T′k), k ∈ Z. Then we will deal with the universality problem in the
category of these spaces. Besides, some properties of these space regarding a cut-point space, irreducibility,
embedding, and so on will be investigated.
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