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Some special parallel like curves in Galilean 3-space
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Abstract. In this research, we consider the relations between parallel-like curves and some special curves
in a 3-dimensional Galilean space. We prove that, although parallel-like curves are not an involute-evolute
curve couple, they become a Bertrand and Mannheim curve couple under certain conditions. We also
present this practically and visually.

1. Introduction

The most important basic building block of differential geometry is the concept of a curve. From the
first moments when the curve began to be studied, many researchers first examined the Frenet apparatus
κ, τ,T,N,B defined on the curve and a lot of information about the curves was obtained by using these
expressions. For example, a curve is a helix curve if and only if the ratio of τ and κ of the curve is constant.
If both κ and τ are non-zero and constants in this ratio, the curve is called a circular helix [1]. In addition
to the helix curve, another important curve is the Bertrand curves, discovered by J. Bertrand in 1850. If
the principal normal vector N at each point of a curve becomes the principal normal vector of another
curve, this curve pair is called the Bertrand curve pair [2]. Mannheim curves, which were first proposed
by Mannheim in 1878, have a similar feature to Bertrand curves. Here, the principal normal N of the curve
is linearly dependent on the binormal vector B of the other curve [3]. Another special curve pair is the
involute-evolute curve pair named by Chr. Huyghens in 1665. In short, if the tangent of a curve is the
normal of the other curve, this curve pair is called involute-evolute curve pair [4, 5].

There are also different calculations of Frenet elements depending on the studied space. The Galilean
space can be given as an example. The foundations of Galilean geometry, studied in Galilean space, were
laid by I. Yaglom in 1979 [6]. O. Röschel made a great contribution, especially on the geometry of ruled
surfaces in this space [7]. The three-dimensional Galilean space G3, which we will consider in this paper,
belongs to the category of Cayley-Klein geometries characterized by the projective signature (0,0,+,+)
summarized in reference [8]. The absolute configuration of this Galilean geometry is represented by a
structured set {w, f , l}, wherein w signifies the ideal (absolute) plane, f denotes the (absolute) line within
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ORCID iDs: https://orcid.org/0000-0002-2783-9311 (Ali Çakmak), https://orcid.org/0000-0002-1109-6541 (İshak
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w, and l denotes the fixed elliptic involution of points on f . For further elaboration of this space and other
spaces, consult the references [6–15].

The concept of parallel-like curves was introduced by H. Vogler in 1963 [16]. He defines this notion as
”curve at a constant distance from the edge of regression on a curve”. Afterward, Hacısalihoğlu derived a
broader application of Vogler’s findings [17]. In [17], this curve is defined in three-dimensional Euclidean
space E3 as follows.

Let us consider a curve α(t) with {T,N,B} as Frenet frame at the point P = α(s) of α(t) inE3. d is described
as a vector tightly fastened to Frenet trihedron {T,N,B} such that d = d1T + d2N + d3B, where d1, d2, d3 are
constant numbers and d2

1 + d2
2 + d2

3 = 1. k is described as a line tightly fastened to Frenet trihedron {T,N,B} in
the direction of d and passing through point P [17]. Let Pv denote a point on the line k at a constant distance
v from P. During the movement of the Frenet trihedron along the curve α(t), Cv(t) is a geometric place of
Pv(s) which is defined as parallel-like curve of α [17]. Recently, this definition has been extended to the
3-dimensional Galilean space, establishing relationships between the Frenet apparatus and the curvatures
of parallel-like curve pairs [18].

In this paper, taking into account the findings in reference [18], we will investigate the criteria for
parallel-like curves to generate involute-evolute, Bertrand, and Mannheim curve pairs.

2. Preliminaries

In this section, let’s recall some background information in the Galilean 3-space.
Let V⃗ = (v1, v2, v3) and W⃗ = (w1,w2,w3) be two vectors in the Galilean 3-space G3. The Galilean scalar

product of two vectors is defined by〈
V⃗, W⃗

〉
G
= V⃗.W⃗ =

{
v1w1, i f v1 , 0 or w1 , 0

v2w2 + v3w3, i f v1 = 0 and w1 = 0

If V⃗.W⃗ = 0, these two vectors are orthogonal in the Galilean case [6]. The norm of the vector V⃗ is defined
by [6]

∥∥∥∥V⃗∥∥∥∥
G
=

 |v1| , v1 , 0√
v2

2 + v2
3, v1 = 0

The Galilean vector product of V⃗ and W⃗ in G3 is

V⃗ ×G W⃗ =

∣∣∣∣∣∣∣∣
0 e2 e3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣∣ ,
if v1 = w1 = 0,

V ×G W =

∣∣∣∣∣∣∣∣
e1 e2 e3
0 v2 v3
0 w2 w3

∣∣∣∣∣∣∣∣ ,
where ×G represents the vector product of two vectors [7, 20].

For V⃗ = (v1, v2, v3) ∈ G3, if v1 = 0, then V⃗ is isotropic; if not, it is non-isotropic [20].

2.1. Curves in G3

Let γ be a curve given byγ : I → G3, γ(t) = (u(t), v(t),w(t)), where u(t), v(t),w(t) are continuously
differentiable functions, and t ∈ I. If u′(t) , 0, γ(t) is a regular curve.

Let γ : I→ G3 be a regular curve in G3. In this case, ds = |u′(t)dt| = |du|. Then, we have s = u. Hence, we
can given by γ(s) = (s, v(s),w(s))[21].
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Here, the functions v,w : I → R are coordinate functions of the curve. By differentiating γ(s) =
(s, v(s),w(s)) according to s, we have∥∥∥γ′(x)

∥∥∥
G = 1. (1)

Then, it is claimed that the curve γ is a unit speed curve.
Let γ : I→ G3, γ(s) = (s, v(s),w(s)) be a regular unit speed curve in G3. Differentiating γ(s), we obtain

γ′(s) = (1, v′(s),w′(s)). (2)

This means that γ′(s) is the unit tangent vector field of γ(s). Then, we can write

T(s) = (1, v′(s),w′(s)). (3)

Since γ′(s).γ′′(s) = 0, the unit normal vector field is described as

ν(s) =
γ′′(s)∥∥∥γ′′(s)
∥∥∥

G

=
1√

v′′2(s) + w′′2(s)
(0, v′′(s),w′′(s)). (4)

Finally, the unit binormal vector field β(s) of γ(s) is

β(s) =
1√

v′′2(s) + w′′2(s)
(0,−w′′(s), v′′(x)), (5)

and then in G3, the frame
{

T(s), ν(s), β(s)
}

selected in this manner is referred to as the Frenet-Serret frame
for unit speed curves [22].

Proposition 2.1. A unit speed curve γ(s) in G3 has Frenet-Serret formulas that are provided by T′(s)
ν′(s)
β′(s)

 =
 0 κ(s) 0

0 0 τ(s)
0 −τ(s) 0


 T(s)
ν(s)
β(s)

 , (6)

where

κ(s) =
√

v′′2(s) + w′′2(s) (7)

is the curvature of γ and

τ(s) =
det(γ′(s), γ′′(s), γ′′′(s))

κ2(s)
(8)

is the torsion of γ [23].

2.2. Some Special Curves in G3

Definition 2.2. Let γ be a curve given by γ : I→ G3 and the Frenet-Serret frame
{

T(s), ν(s), β(s)
}
. If the curvatures

κ and τ of γ are positive constants along γ, γ is called circular helix with respect to Frenet-Serret frame [24].

Definition 2.3. Let γ : I→ G3 and γ∗ : I→ G3 be given by the curvatures and torsions

κγ (s) , 0, κγ∗ (s) , 0, τγ (s) , 0, τ∗γ (s) , 0

and Frenet-Serret frames
{

Tγ, νγ, βγ
}
,
{

T∗γ, ν∗γ, β∗γ
}

respectively. If νγ and ν∗γ are linearly dependent, these curves are
called Bertrand curves, for ∀s ∈ I. Also

(
γ, γ∗
)

is defined Bertrand curve pair [9]. In this case, we can write [9]

γ∗ (s) = γ (s) + u (s) νγ (s) .
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Definition 2.4. Let γ : I → G3 and γ∗ : I → G3 be given by Frenet-Serret frames
{

Tγ, νγ, βγ
}
,
{

T∗γ, ν∗γ, β∗γ
}

respectively. If the tangent vector of the curve γ at the point γ(s) passes through the tangent vector of the curve γ∗ at
the point γ∗(s) and ⟨ T, T∗⟩G = 0, the curve γ∗ is defined involute of the curve γ. In addition, the curve γ is defined
as the evolute of the curve γ∗ [25]. In this case, we can write [25]

γ∗ (s) = γ (s) + λ Tγ (s) .

Definition 2.5. Let γ : I→ G3 and γ∗ : I→ G3 be given by the curvatures and torsions

κγ (s) , 0, κγ∗ (s) , 0, τγ (s) , 0, τ∗γ (s) , 0

and Frenet-Serret frames
{

Tγ, νγ, βγ
}
,
{

T∗γ, ν∗γ, β∗γ
}

respectively. If νγ and β∗γ are linearly dependent, these curves are
called Mannheim curves for ∀s ∈ I. Also,

(
γ, γ∗
)

is defined Mannheim curve pair [26].

Definition 2.6. Let γ be a curve given by γ : I → G3 and the Frenet-Serret frame
{

T(s), ν(s), β(s)
}

at the point
P = γ(s) of γ. Let Pr be a point at a constant distance r from P. Throughout the movement of the Frenet trihedron on
the curve γ, the position of points Pr is defined by γr = γ + rd, where

d =
{

d1T, if d is non-isotropic
d2ν + d3β, if d is isotropic

such that d2
1 + d2

2 + d2
3 = 1, d1, d2, d3 ∈ R and d2 = 1, |d| = 1. In this case, γr is called parallel like curve of γ [18].

According to Definition 2.6, there are two cases. d is isotropic or non-isotropic [18].
Case 1: d is non-isotropic. In this case,

γr(s) = γ(s) + rT(s), (9)

where d2
1 = 1, d1 = 1, d2 = d3 = 0. Then, we derive d(s) = T(s) [18].

Theorem 2.7. Given that γ(s) represents a curve parameterized by its arc length s, it follows that the parameterization
of the arc length for curve γr remains s [18].

Theorem 2.8. Let (γ(s), γr(s)) be the pair of curves with arc length s in G3. If the Frenet vectors of γ and γr are
{T, ν, β} and {Tr, νr, βr}, the curvatures are κ, τ and κr, τr respectively, then the subsequent relations are true [18]:

Tr = T + rκν, (10)

νr =
1
κr

[
(κ + rκ′)ν + rκτβ

]
, (11)

βr =
1
κr

[
−rκτν + (κ + rκ′) β

]
, (12)

κr =
√
κ2 + 2rκκ′ + r2 (κ′2 + κ2τ2) (13)

and

τr =
κ2

rτ + rκ2τ′ + r2
(
κ′2τ + κκ′τ′ − κκ′′τ

)
κ2

r
. (14)

Case 2: d is isotropic. Hence, we have d2
2 + d2

3 = 1 and d = d2ν + d3β. In this case,

γr = γ(s) + r2ν + r3β, (15)

where r2 = rd2 and r3 = rd3 [18].
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Theorem 2.9. If γ(s) is a curve with the arc length parameter s, then the arc length parameter of the curve γr is also
s [18].

Theorem 2.10. Let (γ(s), γr(s)) be the pair of curves given with the arc length s in G3. If the Frenet vectors of γ and
γr are {T, ν, β} and {Tr, νr, βr}, the curvatures are κ, τ and κr, τr respectively, then the subsequent relations are true
[18]:

Tr = T − r3τν + r2τβ, (16)

νr =
1
κr

[(
κ − r2τ

2
− r3τ

′
)
ν +
(
r2τ
′
− r3τ

2
)
β
]
, (17)

βr =
1
κr

[(
−r2τ

′ + r3τ
2
)
ν +
(
κ − r2τ

2
− r3τ

′
)
β
]
, (18)

κr =

√
κ2 +

(
r2

2 + r2
3

)
(τ4 + τ′2) − 2κ (r2τ2 + r3τ′), (19)

and

τr =
κ2

rτ +
(
r2

2 + r2
3

) (
2ττ′2 − τ2τ′′

)
+ r2 (κτ′′ − κ′τ′) + r3

(
κ′τ2

− 2κττ′
)

κ2
r

. (20)

3. The Relationships Between Parallel Like Curves and Some Special Curves

In this chapter, some relations will be obtained between special curves and parallel like curves in Galilean
3- space by helping with Frenet-Serret frame apparatus. Since the parallel like curve varies according to
the vector d (isotropic or non-isotropic), it will be examined under two headings.

3.1. The Relationships Between Some Special Curves and Parallel Like Curves generated by the Non-isotropic Vector-d

In this title, it will be investigated whether a regular curve and its parallel like curve depending on the
case where the vector d is non-isotropic are a Bertrand, Mannheim and involute-evolute curves pair or not.

Theorem 3.1. Let (γ(s), γr(s)) be the pair of curves given with the arc length s in G3 and {T, ν, β} and {Tr, νr, βr} be
Serret-Frenet vector fields, respectively, where γr(s) = γ(s) + rT(s). Then, the pair (γ, γr) is not Bertrand curve pair.

Proof. From Definition 2.3, it is known that if (γ(s), γr(s)) is Bertrand curve pair, ν and νr are linearly
dependent. Conversely, in light of Theorem 2.8 and equation (11),

ν ×G νr , 0.

If we actually replace νr and calculate, we have

ν ×G νr =
rκτ
κr

T.

This also shows that (γ, γr) is not Bertrand curve pair. Hence, the proof is completed.

Corollary 3.2. (γ(s), γr(s)) is Bertrand curves pair if and only if τ = 0, where τ is torsion of γ(s)).

Theorem 3.3. Let (γ(s), γr(s)) be the pair of curves given with the arc length s in G3 and {T, ν, β} and {Tr, νr, βr} be
Serret-Frenet vector fields, respectively, where γr(s) = γ(s) + rT(s). Then, the pair (γ, γr) is not involut-evolut curve
pair.
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Proof. From Definition 2.4, we know that if (γ(s), γr(s)) is involut-evolut curve pair, T and Tr are perpen-
dicular to each other in the Galilean viewpoint. Then, in light of Theorem 2.8 and equation (10), we
get

⟨T,Tr⟩G = ⟨T, T + rκν⟩G , 0.

In that case, ⟨T,Tr⟩ , 0 and T ̸⊥ Tr. This means that (γ, γr) involut-evolut curve pair cannot exist under any
circumstances.

This completes the proof.

Theorem 3.4. Let (γ(s), γr(s)) be the pair of curves given with the arc length s in G3 and {T, ν, β} and {Tr, νr, βr} be
Serret-Frenet vector fields, respectively, where γr(s) = γ(s)+ rT(s). Then, the pair (γ, γr) is the Mannheim curve pair
if and only if

κ(s) = c1e−
s
r ,

where κ(s) is the curvature of γ(s) and c1 ∈ R.

Proof. Let (γ(s), γr(s)) be the Mannheim curve pair. From Definition 2.5, it is known that if (γ(s), γr(s)) is the
Mannheim curve pair, ν and βr are linearly dependent. We considering Theorem 2.8 and equation (12), we
get

ν ×G βr = (κ + rκ′)T. (21)

In that case, κ + rκ′ = 0. If we solve the differential equation in equation (21), we obtain

κ(s) = c1e−
s
r .

Conversely, let us κ(s) = c1e−
s
r . In that case, it is obvious that κ+ rκ′ = 0 and vectors ν and βr are linearly

dependent. Therefore, (γ(s), γr(s)) is the Mannheim curve pair.
This concludes the proof.

For r = 1 and c1 = 1, κ(s) = e−s. Furthermore, setting τ(s) = s, the Mannheim curve, as delineated using
Mathematica software, is depicted in Figure 1.

Figure 1: Mannheim curve with κ(s) = e−s and τ(s) = s in G3



A. Çakmak, İ. Gürgar / Filomat 39:5 (2025), 1673–1681 1679

3.2. The Relationships Between Some Special Curves and Parallel Like Curves generated by the Isotropic Vector-d
In this title, we examine whether a regular curve and its corresponding parallel-like curve, under the

condition that the vector d is isotropic, constitute pairs of Bertrand, involute-evolute, and Mannheim curves.

Theorem 3.5. Let (γ(s), γr(s)) be the pair of curves given with the arc length s in G3 and {T, ν, β} and {Tr, νr, βr} be
Serret-Frenet vector fields, respectively, where γr(s) = γ(s) + r2ν(s) + r3β(s). Then, the pair (γ, γr) is the Bertrand
curve pair if and only if

τ(s) =
r2

c1r2 − r3s

where c1 ∈ R, s , c1r2
r3

and τ(s) is torsion of γ(s).

Proof. Let (γ(s), γr(s)) be the Bertrand curve pair. It is obvious from the Definition 2.3 that ν and νr are
linearly dependent if (γ(s), γr(s)) is a pair of Bertrand curves. We considering Theorem 2.10 and equation
(17), we get

ν ×G νr =
(r2τ′ − r3τ2)

κr
T (22)

If equation (22) equals to zero, then ν and νr are linearly dependent. In that case, r2τ′ − r3τ2 = 0. If
differential equation in this last equation is solved, for c1 ∈ R

τ(s) =
r2

c1r2 − r3s
,

where s , c1r2
r3

.
Conversely, let us τ(s) = r2

c1r2−r3s , for c1 ∈ R and s , c1r2
r3

. In that case, it is obvious that ν and νr are linearly
dependent. This means that (γ(s), γr(s)) is Bertrand curve pair.

Hence, the proof is completed.

For r2 =
1
2 , r3 =

√
3

2 and c1 = 1, τ(s) = 1
1−
√

3s
, s , 1

√
3
. Additionally, by specifying κ(s) = 1, the Bertrand

curve, as rendered with the Mathematica software, is illustrated in Figure 2.

Figure 2: Bertrand curve with κ(s) = 1 and τ(s) = 1
1−
√

3s
in G3
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Theorem 3.6. Let (γ(s), γr(s)) represent the pair of curves parameterized by arc length s in G3, with {T, ν, β} and
{Tr, νr, βr} denoting the respective Serret-Frenet vector fields. Consequently, the pair (γ, γr) does not constitute an
involute-evolute curve pair such that γr(s) = γ(s) + r2ν(s) + r3β(s).

Proof. From Definition 2.4, we know that if (γ(s), γr(s)) is involut-evolut curve pair, T and Tr are perpen-
dicular to each other in the Galilean viewpoint. Then, in light of Theorem 2.10 and equation (16), we
get 〈

T, T − r3τν + r2τβ
〉

G , 0

In that case, ⟨T,Tr⟩ , 0 and T ̸⊥ Tr. Therefore, it can be conclusively determined that the pair of involut-
evolut curves (γ, γr) is not feasible under any conceivable conditions.

This completes the proof.

Theorem 3.7. Let (γ(s), γr(s)) be the pair of curves given with the arc length s in G3 and {T, ν, β} and {Tr, νr, βr} be
Serret-Frenet vector fields, respectively, where γr(s) = γ(s) + r2ν(s) + r3β(s). Then, the pair (γ, γr) is the Mannheim
curve pair if and only if

κ = r2τ
2 + r3τ

′,

where κ(s) and τ(s) are the curvature and torsion of γ(s) respectively.

Proof. Let (γ(s), γr(s)) be the Mannheim curve pair. From Definition 2.5, it is known that if (γ(s), γr(s)) is
Mannheim curve pair, ν and βr are linearly dependent. We considering Theorem 2.10 and equation (18), we
get

ν ×G βr = (κ − r2τ
2
− r3τ

′)T. (23)

Since ν and βr are linearly dependent, equation (23) equals to zero. In that case, κ− r2τ2
− r3τ′ = 0. Then,

we have κ = r2τ2 + r3τ′.
Conversely, let us κ = r2τ2 + r3τ′. In that case, it is obvious that the vectors ν and βr are linearly

dependent. That is, (γ(s), γr(s)) is a Mannheim curve pair.
Hence, the proof is finished.

For r2 =
1
2 , r3 =

√
3

2 and τ(s) = s, κ(s) =
√

3
2 +

1
2 s2. In view of these values, the Mannheim curve can be

drawn as in Figure 3.

Figure 3: Mannheim curve with κ(s) =
√

3
2 +

1
2 s2 and τ(s) = s in G3
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4. Conclusion

In this manuscript, the focus was on parallel-like curve pairs in 3-dimensional Galilean space. By
definition, parallel-like curves produced in isotropic and non-isotropic vector directions were examined
under two headings. Within these classifications, the conditions under which parallel-like curve pairs
exhibit Bertrand, involute-evolute, and Mannheim relationships were rigorously examined. The results of
this investigation are enumerated as follows.

1. Parallel-like curve pairs generated in both isotropic and non-isotropic vector directions do not form
involute-evolute pairs under any conditions.

2. Parallel-like curve pairs produced by non-isotropic vector formed Bertrand curve pairs with the
condition τ = 0. On the other hand, parallel-like curve pairs produced by isotropic vectors formed
Bertrand curve pairs under the condition τ(s) = r2

c1r2−r3s .
3. Parallel-like curve pairs produced by non-isotropic vectors became Mannheim curve pairs with

condition κ(s) = c1e−
s
r , while parallel-like curve pairs produced by isotropic vectors formed Mannheim

curve pairs under condition κ = r2τ2 + r3τ′.
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[17] H. H. Hacısalihoğlu, On the motion of the Frenet thrihedron of a space curve, Communications Faculty of Sciences University of

Ankara Series A1 Mathematics and Statistics, 17, 1968, 33–55.
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