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Abstract. For any integer k ≥ 2, a graph G is called k-leaf-connected if |V(G)| ≥ k + 1 and given any
subset S ⊆ V(G) with |S| = k, G always has a spanning tree T such that S is precisely the set of leaves of T.
Obviously, a graph is 2-leaf-connected if and only if it is Hamilton-connected. The Wiener-type invariant
of a connected graph G are defined as W f =

∑
u,v∈V(G) f (dG(u, v)), where f (x) is a nonnegative function on

the distance dG(u, v). In this paper, we present best possible Wiener-type invariant conditions to guarantee
a graph to be k-leaf-connected, which not only improves the result of Ao et al. (2023), but also extends the
result of Zhou et al. (2019). As applications, sufficient conditions for a graph to be k-leaf-connected in terms
of the distance (distance signless Laplacian) spectral radius of G are also obtained.

1. Introduction

Let G be a simple, undirected and connected graphs with vertex set V(G) and edge set E(G). The order
and size of G are denoted by |V(G)| = n and |E(G)|, respectively. For any vertex v ∈ V(G), we denote by
dG(v) the degree of vertex v in G, and by (d1, d2, . . . , dn) the degree sequence of G with d1 ≤ d2 ≤ · · · ≤ dn.We
use δ(G) (or δ) to denote the minimum degree of G. For any u, v ∈ V(G), let dG(u, v) be the distance between
vertices u and v in G.We denote byω(G) (orω) the clique number of G. Let G1 and G2 be two vertex-disjoint
graphs. We use G1 + G2 to denote the disjoint union of G1 and G2. The join G1 ∨ G2 is the graph obtained
from G1 + G2 by adding all possible edges between them.

Fix an integer l ≥ 0, the l-closure of a graph G is the graph obtained from G by successively joining pairs
of nonadjacent vertices whose degree sum is at least l until no such pair exists. Denote by Cl(G) the l-closure
of G. Then we have

dCl(G)(u) + dCl(G)(v) ≤ l − 1

for every pair of nonadjacent vertices u and v of Cl(G).
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A graph G is called Hamilton-connected if every two vertices of G are connected by a Hamiltonian path.
For any integer k ≥ 2, a graph G is called k-leaf-connected if |V(G)| ≥ k + 1 and given any subset S ⊆ V(G)
with |S| = k, G always has a spanning tree T such that S is precisely the set of leaves of T.Obviously, a graph
is 2-leaf-connected if and only if it is Hamilton-connected.

The Wiener-type invariant of a connected graph G are defined as

W f (G) =
∑

u,v∈V(G)

f (dG(u, v)),

where f (x) is a nonnegative function on the distance dG(u, v).When f (x) = x, Wx =W(G) =
∑

u,v∈V(G) dG(u, v)
is the Wiener index [22]. When f (x) = 1

x , W 1
x
= H(G) =

∑
u,v∈V(G)

1
dG(u,v) is the Harary index [14]. When

f (x) = x2+x
2 , W x2+x

2
= HW(G) =

∑
u,v∈V(G)

d2
G(u,v)+dG(u,v)

2 is the hyper-Wiener index [19]. When f (x) = xλ,

Wxλ =MW(G) =
∑

u,v∈V(G) dλG(u, v) is the modified Wiener index [8], where λ , 0 is a real number.
The distance matrix D(G) = (di j)n×n of G is the matrix with (i, j)-entry di j = dG(vi, v j). For any vertex

v ∈ V(G), the transmission of v, denoted by Tr(v), is the sum of distances from v to all the other vertices of
G, i.e., Tr(v) =

∑
u∈V(G) dG(u, v). Let Tr(G) be the diagonal matrix of the vertex transmissions in G, and let

QD(G) = Tr(G) + D(G) be the distance signless Laplacian matrix of G. The largest eigenvalue of D(G) and
QD(G), denoted by ρD(G) and ρQ(G), are called the distance spectral radius of G and the distance signless
Laplacian spectral radius of G, respectively.

Gurgel and Wakabayashi [11] first proved the following sufficient degree sequence condition for a graph
to be k-leaf-connected.

Theorem 1.1 (Gurgel and Wakabayashi [11]). Let k and n be two integers such that 2 ≤ k ≤ n − 3. Let G be a
graph with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. Suppose there is no integer i with k ≤ i ≤ n+k−2

2 such that di−k+1 ≤ i
and dn−i ≤ n − i + k − 2. Then G is k-leaf-connected.

In the same paper, they also proposed sufficient conditions based on the minimum degree, the degree
sum and the size to assure a graph to be k-leaf-connected. Egawa et al. [7] improved the degree sum
condition of Gurgel and Wakabayashi [11]. Ao et al. [1] presented a new sufficient condition based on the
size for a graph to be k-leaf-connected. Subsequently, Wu et al. [21] proved a sufficient condition for a
graph to be k-leaf-connected in terms of the number of r-cliques, which generalized the result of Ao et al.
[1]. For a graph to be k-leaf-connected, one can refer to [3–5, 17, 18, 20, 23].

Let NLCn = {K3 ∨ (Kn−5 + 2K1),K6 ∨ 6K1,K5 ∨ 5K1,K4 ∨ (K1,4 +K1),K3 ∨K2,5,K4 ∨ (K2 + 3K1),K4 ∨ 4K1,K3 ∨

(K1,3 + K1),K2 ∨ K2,4}. Ao et al. [2] and Zhou et al. [25] presented the following sufficient conditions for a
connected graph to be k-leaf-connected and Hamilton-connected in terms of the Wiener-type invariant of
G, respectively.

Theorem 1.2 (Ao et al. [2] and Zhou et al. [25]). Let G be a connected graph of order n and minimum degree
δ ≥ k + 1, where 2 ≤ k ≤ n − 4. Each of the following holds.
(i) If W f (G) ≤ f (1)

2 n2 + [2 f (2) − 5
2 f (1)]n − (2k + 5)[ f (2) − f (1)] for a monotonically increasing function f (x) on

x ∈ [1,n − 1], then G is k-leaf-connected unless G ∈ NLCn.
(ii) If W f (G) ≥ f (1)

2 n2
− [ 5

2 f (1) − 2 f (2)]n + (2k + 5)[ f (1) − f (2)] for a monotonically decreasing function f (x) on
x ∈ [1,n − 1], then G is k-leaf-connected unless G ∈ NLCn.

The following sufficient conditions for a graph to be k-leaf-connected in terms of the Wiener-type
invariant of G in this paper extends and improves the result of Theorem 1.2.

Theorem 1.3. Let G be a connected graph of order n and minimum degree δ ≥ k + 1, where n ≥ k + 17 and k ≥ 2.
Each of the following holds.
(i) If W f (G) ≤ f (1)

2 n2 + [3 f (2) − 7
2 f (1)]n − (3k + 11)[ f (2) − f (1)] for a monotonically increasing function f (x) on

x ∈ [1,n−1], then G is k-leaf-connected unless Cn+k−1(G) ∈ {Kk∨(Kn−k−2+K2),K3∨(Kn−5+2K1),K4∨(Kn−7+3K1)}.
(ii) If W f (G) ≥ f (1)

2 n2
− [ 7

2 f (1) − 3 f (2)]n + (3k + 11)[ f (1) − f (2)] for a monotonically decreasing function f (x) on
x ∈ [1,n−1], then G is k-leaf-connected unless Cn+k−1(G) ∈ {Kk∨(Kn−k−2+K2),K3∨(Kn−5+2K1),K4∨(Kn−7+3K1)}.



G. Ao, G. Zhang / Filomat 39:5 (2025), 1697–1707 1699

When we choose f (x) = x, 1
x ,

x2+x
2 and xλ (λ , 0) in Theorem 1.3, we immediately deduce the following

corollary directly.

Corollary 1.4. Let G be a connected graph of order n and minimum degree δ ≥ k + 1, where n ≥ k + 17 and k ≥ 2.
If one of the following holds,
(i) W(G) ≤ 1

2 n2 + 5
2 n − 3k − 11,

(ii) H(G) ≥ 1
2 n2
−

5
2 n + 3

2 k + 11
2 ,

(iii) HW(G) ≤ 1
2 n2 + 11

2 n − 6k − 22,
(iv) MW(G) ≤ 1

2 n2 + (3 · 2λ − 7
2 )n − (3k + 11)(2λ − 1) for λ > 0,

(v) MW(G) ≥ 1
2 n2 + ( 7

2 − 3 · 2λ)n + (3k + 11)(1 − 2λ) for λ < 0,
then G is k-leaf-connected unless Cn+k−1(G) ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 + 2K1),K4 ∨ (Kn−7 + 3K1)}.

By setting k = 2 in Corollary 1.4, our result improves the corresponding results on Hamilton-connected
graphs [15, 25].

Determining whether a given graph is k-leaf-connected is NP-complete. However, the problem of
computation of eigenvalues of graphs is solvable in polynomial time, and hence it is very important and
interesting to put forward spectral sufficient condition for a graph to be k-leaf-connected. As applications of
our Corollary 1.4, sufficient conditions for a graph to be k-leaf-connected in terms of the distance (distance
signless Laplacian) spectral radius of G are also obtained.

2. Preliminary lemmas

We first present a preliminary result about the relationship between the distance (distance signless
Laplacian) spectral radius of a graph and its spanning graph, which is a corollary of the Perron-Frobenius
theorem.

Lemma 2.1 (Godsil [9], Minc [16]). Let G be a connected graph with two nonadjacent vertices u, v ∈ V(G). Then

ρD(G + uv) < ρD(G) and ρQ(G + uv) < ρQ(G).

Let M be the following n × n matrix

M =


M1,1 M1,2 · · · M1,m
M2,1 M2,2 · · · M2,m
...

...
. . .

...
Mm,1 Mm,2 · · · Mm,m

 ,
whose rows and columns are partitioned into subsets X1,X2, . . . ,Xm of {1, 2, . . . ,n}. The quotient matrix
R(M) of the matrix M (with respect to the given partition) is the m×m matrix whose entries are the average
row sums of the blocks Mi, j of M. The partition is equitable if each block Mi, j of M has constant row sum.

Lemma 2.2 (Brouwer and Haemers [6], Godsil and Royle [10], Haemers [12]). Let M be a real symmetric ma-
trix, and R(M) be its equitable quotient matrix. Then the eigenvalues of the quotient matrix R(M) are eigenvalues of
M. Furthermore, if M is a nonnegative and irreducible, then the spectral radius of the quotient matrix R(M) equals
to the spectral radius of M.

Lemma 2.3 (Indual [13]). Let G be a connected graph on n vertices. Then

ρD(G) ≥
2W(G)

n
,

with equality if and only if the row sums of D(G) are all equal.

Lemma 2.4 (Xing, Zhou and Li [24]). Let G be a connected graph on n vertices. Then

ρQ(G) ≥
4W(G)

n
,

with equality if and only if the row sums of QD(G) are all equal.
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3. Proofs of Theorem 1.3

In this section we prove Theorem 1.3 by using the following closure theory.

Lemma 3.1 (Gurgel and Wakabayashi [11]). Let G be a graph and k be an integer with 2 ≤ k ≤ n − 1. Then G is
k-leaf-connected if and only if the (n + k − 1)-closure Cn+k−1(G) of G is k-leaf-connected.

Proof of Theorem 1.3. (i) Let f (x) be a monotonically increasing function on x ∈ [1,n − 1], and let G be not
k-leaf-connected graph, where n ≥ k + 17, δ ≥ k + 1 and k ≥ 2. Let H = Cn+k−1(G). By Lemma 3.1, H is not
k-leaf-connected. Note that G ⊆ H. It is easy to see that W f (H) ≤W f (G). By the assumption of Theorem 1.3,
we have

W f (H) ≤
f (1)
2

n2 + [3 f (2) −
7
2

f (1)]n − (3k + 11)[ f (2) − f (1)].

Let (d1, d2, . . . , dn) be the degree sequence of H with d1 ≤ d2 ≤ · · · ≤ dn. By Theorem 1.1, there exists an
integer i with k ≤ i ≤ n+k−2

2 such that di−k+1 ≤ i and dn−i ≤ n − i + k − 2. Then

W f (H) =
1
2

n∑
i=1

n∑
j=1

f (dH(vi, v j))

≥
1
2

n∑
i=1

[ f (1)dH(vi) + f (2)(n − 1 − dH(vi))]

=
n(n − 1)

2
f (2) −

f (2) − f (1)
2

n∑
i=1

dH(vi)

=
n(n − 1)

2
f (2) −

f (2) − f (1)
2

i−k+1∑
j=1

d j +

n−i∑
j=i−k+2

d j +

n∑
j=n−i+1

d j


≥

n(n − 1)
2

f (2) −
f (2) − f (1)

2
[(i − k + 1)i + (n − 2i + k − 1)(n − i + k − 2) + i(n − 1)]

=
f (1)
2

n2 + [3 f (2) −
7
2

f (1)]n − (3k + 11)[ f (2) − f (1)] −
f (2) − f (1)

2
11(i),

where 11(i) = 3i2 − (2n + 4k − 5)i + (2k + 4)n + k2
− 9k − 20. Since W f (H) ≤ f (1)

2 n2 + [3 f (2) − 7
2 f (1)]n − (3k +

11)[ f (2)− f (1)], we have 11(i) ≥ 0.Note that k+ 1 ≤ δ ≤ di−k+1 ≤ i ≤ n+k−2
2 . We shall divide the proof into the

following three cases.

Case 1. k + 3 ≤ i ≤ n+k−2
2 .

Since 1′′1 (i) = 6 > 0, then 11(i) is a convex function on i. For n ≥ k + 17, we have

11(k + 3) = −2n + 2k + 22 < 0,

and 11

(
n + k − 2

2

)
= −

n2

4
+

k + 11
2

n −
k2

4
−

11k
2
− 22 < 0.

This implies that 11(i) < 0, a contradiction.

Case 2. i = k + 2.
Then the corresponding degree sequence of H is

d1 ≤ d2 ≤ d3 ≤ k + 2︸                   ︷︷                   ︸
V1

, d4 ≤ d5 ≤ · · · ≤ dn−k−2 ≤ n − 4︸                                ︷︷                                ︸
V2

, dn−k−1 ≤ dn−k ≤ · · · ≤ dn ≤ n − 1︸                                   ︷︷                                   ︸
V3

.

According to the above degree sequence, we divide V(H) into three parts: V1, V2 and V3.



G. Ao, G. Zhang / Filomat 39:5 (2025), 1697–1707 1701

Claim 1. There is no vertex of degree less than n+k−1
2 in V2.

Proof. Suppose that there exists a vertex of degree less than n+k−1
2 in V2. Then

W f (H) ≥
n(n − 1)

2
f (2) −

f (2) − f (1)
2

n∑
i=1

dH(vi)

=
n(n − 1)

2
f (2) −

f (2) − f (1)
2

 3∑
j=1

d j +

n−k−2∑
j=4

d j +

n∑
j=n−k−1

d j


≥

n(n − 1)
2

f (2) −
f (2) − f (1)

2

[
3(k + 2) + (n − k − 6)(n − 4) + (k + 2)(n − 1) +

n + k − 1
2

]
=

f (1)
2

n2 + [3 f (2) −
7
2

f (1)]n − (3k + 11)[ f (2) − f (1)] +
(n − k − 11)[ f (2) − f (1)]

4
> W f (H),

a contradiction, since n ≥ k + 17.

By Claim 1, it follows that dH(u)+ dH(v) ≥ n+ k− 1 for any two different vertices u, v ∈ V2∪V3.Note that
H is (n+ k− 1)-closed. Then V2∪V3 is a clique of H, and hence ω(H) ≥ |V2∪V3| ≥ (n− k− 5)+ (k+ 2) = n− 3.

If ω(H) ≥ n − 1, then H contains an (n − 1)-clique, and hence for any two vertices u, v ∈ V(H), we
always have dH(u) + dH(v) ≥ (n − 2) + (k + 1) = n + k − 1. If there exists two vertices uv < E(H), then
dH(u)+ dH(v) ≤ n+ k− 2 since H is an (n+ k− 1)-closed graph, a contradiction. Hence any two vertices of H
are adjacent. That is, H � Kn. Then H is k-leaf-connected as a contradiction.

If ω(H) = n − 2, then d3 ≥ n − 3.Note that d3 ≤ k + 2. Then n ≤ k + 5,which contradicts n ≥ k + 17. Thus,
we have

ω(H) = n − 3.

Next we will characterize the structure of H. Let C = V2 ∪ V3. Note that |C| = n − 3. Then C is a
maximum clique of H, and V(H) = V1 ∪ C. Notice that k + 1 ≤ δ ≤ dG(v) ≤ dH(v) ≤ k + 2 for each v ∈ V1. Let
V1 = {v1, v2, v3} and V∗1 = {vi ∈ V1 | dH(vi) = k + 2}.

Claim 2. |V∗1| ≥ 2.

Proof. Suppose, to the contrary, that |V∗1| ≤ 1. Note that k + 1 ≤ dH(vi) ≤ k + 2 for any vi ∈ V1. Then

W f (H) ≥
n(n − 1)

2
f (2) −

f (2) − f (1)
2

n∑
i=1

dH(vi)

=
n(n − 1)

2
f (2) − [ f (2) − f (1)]e(H)

≥
n(n − 1)

2
f (2) − [ f (2) − f (1)]

e(C) +
3∑

i=1

dH(vi)


≥

n(n − 1)
2

f (2) − [ f (2) − f (1)]
[(

n − 3
2

)
+ 2(k + 1) + (k + 2)

]
=

f (1)
2

n2 + [3 f (2) −
7
2

f (1)]n − (3k + 10)[ f (2) − f (1)]

=
f (1)
2

n2 + [3 f (2) −
7
2

f (1)]n − (3k + 11)[ f (2) − f (1)] + [ f (2) − f (1)]

> W f (H),

a contradiction.



G. Ao, G. Zhang / Filomat 39:5 (2025), 1697–1707 1702

Define C∗ = {v ∈ C | NH(v) ∩ V1 , ∅}.

Claim 3. |C∗| = k + 2.

Proof. By the definition of C∗,we know that dH(v) ≥ n−3 for each v ∈ C∗. Then dH(v)+dH(vi) ≥ (n−3)+(k+2) =
n + k − 1 for any v ∈ C∗ and vi ∈ V∗1. Note that H is (n + k − 1)-closed. It follows that each vertex of C∗ is
adjacent to each vertex of V∗1. Combining Claim 2, we have dH(v) ≥ dC(v)+ |V∗1| ≥ (n− 4)+ 2 = n− 2 for each
v ∈ C∗. Therefore, dH(v) + dH(vi) ≥ (n − 2) + (k + 1) = n + k − 1 for any v ∈ C∗ and vi ∈ V1. Then each vertex
of V1 is adjacent to each vertex of C∗,which implies that |C∗| ≤ dH(vi) ≤ k + 2,where vi ∈ V1.

On the other hand, let e(V1,C) denote the number of edges between V1 and C. Notice that e(V1,C) =
e(V1,C∗) = |V1||C∗| = 3|C∗| and e(V1) = 1

2 (
∑

vi∈V1
dG(vi) − 3|C∗|) ≤ 3(k+2−|C∗ |)

2 . Then

W f (H) ≥
n(n − 1)

2
f (2) − [ f (2) − f (1)]e(H)

=
n(n − 1)

2
f (2) − [ f (2) − f (1)][e(C) + e(V1,C∗) + e(V1)]

≥
n(n − 1)

2
f (2) − [ f (2) − f (1)]

[(
n − 3

2

)
+

3(k + 2 + |C∗|)
2

]
.

Since W f (H) ≤ f (1)
2 n2+ [3 f (2)− 7

2 f (1)]n− (3k+11)[ f (2)− f (1)], we have |C∗| ≥ k+2. Therefore, |C∗| = k+2.

Recall that dH(vi) ≤ k + 2 for each vi ∈ V1. According to Claim 3, V1 is an independent set. This
implies that H � Kk+2 ∨ (Kn−k−5 + 3K1). It is easy to check that Kk+2 ∨ (Kn−k−5 + 3K1) is k-leaf-connected for
k ≥ 3, a contradiction. However, one can check that K4 ∨ (Kn−7 + 3K1) is not 2-leaf-connected. Therefore,
H � K4 ∨ (Kn−7 + 3K1).

Case 3. i = k + 1.
Then the degree sequence of H is given by

d1 = d2 = k + 1︸            ︷︷            ︸
V1

, d3 ≤ d4 ≤ · · · ≤ dn−k−1 ≤ n − 3︸                                ︷︷                                ︸
V2

, dn−k ≤ dn−k+1 ≤ · · · ≤ dn ≤ n − 1︸                                   ︷︷                                   ︸
V3

.

Claim 4. There are at most three vertices of degree less than n+k−1
2 in V2.

Proof. Assume that there exist four vertices of degree less than n+k−1
2 in V2. Then we have

W f (H) ≥
n(n − 1)

2
f (2) −

f (2) − f (1)
2

n∑
i=1

dH(vi)

>
n(n − 1)

2
f (2) −

f (2) − f (1)
2

[
2(k + 1) + (n − k − 7)(n − 3) + (k + 1)(n − 1) + 4 ·

n + k − 1
2

]
=

f (1)
2

n2 + [3 f (2) −
7
2

f (1)]n − (3k + 10)[ f (2) − f (1)]

=
f (1)
2

n2 + [3 f (2) −
7
2

f (1)]n − (3k + 11)[ f (2) − f (1)] + [ f (2) − f (1)]

> W f (H),

a contradiction.

Let V∗2 = {v ∈ V2 | dH(v) ≥ n+k−1
2 }. By Claim 4, we have |V∗2| ≥ |V2| − 3 = n − k − 6 > 0. It is clear that

dH(u) + dH(v) ≥ n + k − 1 for any u, v ∈ V∗2 ∪V3.Note that H is an (n + k − 1)-closed graph. This implies that
V∗2 ∪V3 is a clique of H, and hence ω(H) ≥ |V∗2 ∪V3| ≥ (n − k − 6) + (k + 1) = n − 5. According to the proof in
case 2, we have ω(H) ≤ n − 2, and hence n − 5 ≤ ω(H) ≤ n − 2. Define C = V∗2 ∪ V3.
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Claim 5. C is a maximum clique of H.

Proof. By the definition of V∗2, we know that dH(u) < n+k−1
2 ≤ n − 9 < n − 5 for any u ∈ V1 ∪ (V2\V∗2), since

n ≥ k + 17. Hence there exists at least one vertex v ∈ C such that uv < E(H) for any u ∈ V1 ∪ (V2\V∗2), and
thus u < C. This implies that C is a maximum clique of H.

Claim 6. dH(u) ≤ n + k − ω − 1 for each u ∈ V2\V∗2.

Proof. Suppose, to the contrary, that dH(u) ≥ n+ k−ω for some u ∈ V2\V∗2. Then dH(u)+ dH(v) ≥ (n+ k−ω)+
(ω − 1) = n + k − 1 for u ∈ V2\V∗2 and v ∈ C. Note that H is an (n + k − 1)-closed graph. Then u is adjacent to
every vertex of C, and hence C ∪ {u} is a larger clique, which contradicts Claim 5.

Note that |V2\V∗2| = n − |V1| − |V∗2 ∪ V3| = n − ω − 2. By Claim 6, we have∑
u∈V2\V∗2

dH(u) ≤ (n − ω − 2)(n + k − ω − 1).

Then we obtain

W f (H) ≥
n(n − 1)

2
f (2) − [ f (2) − f (1)]e(H)

≥
n(n − 1)

2
f (2) − [ f (2) − f (1)]

∑
u∈V1

dH(u) +
∑

u∈V2\V∗2

dH(u) + e(V∗2 ∪ V3)


≥

n(n − 1)
2

f (2) − [ f (2) − f (1)]
[
2(k + 1) + (n − ω − 2)(n + k − ω − 1) +

(
ω
2

)]
= −

3
2

[ f (2) − f (1)]ω2 +
[
2[ f (2) − f (1)]n + (k −

5
2

)[ f (2) − f (1)]
]
ω −

[
f (2)
2
− f (1)

]
n2

−

[
[ f (2) − f (1)]k −

5
2

f (2) + 3 f (1)
]

n − 4[ f (2) − f (1)]

≜ 12(ω).

Note that 12(ω) is a concave function on ω. If n − 5 ≤ ω(H) ≤ n − 3 and n ≥ 10, then

W f (H) ≥ min{12(n − 5), 12(n − 3)} = 12(n − 3)

=
f (1)
2

n2 + [3 f (2) −
7
2

f (1)]n − (3k + 11)[ f (2) − f (1)] + [ f (2) − f (1)]

> W f (H),

a contradiction. Therefore, ω(H) = n − 2.
Let C be an (n − 2)-clique of H and F be a subgraph of H induced by V(H)\C, and let V(F) = {v1, v2}.

Claim 7. dH(vi) = k + 1 for each vi ∈ V(F).

Proof. Suppose there exists a vertex vi ∈ V(F) with dH(vi) ≥ k+2.Then dH(vi)+dH(v) ≥ (k+2)+(n−3) = n+k−1
for any v ∈ C. Recall that H = Cn+k−1(G). Then vi is adjacent to vertex v. Note that v is an arbitrary vertex of
C. Hence vi is adjacent to all vertices of C. This implies that ω(H) ≥ n − 1, a contradiction.

Claim 8. NH(v1) ∩ C = NH(v2) ∩ C.

Proof. Without loss of generality, assume that a vertex v of C is adjacent to v1 of F, then dH(v) ≥ n − 2.
Therefore, dH(v) + dH(v2) ≥ (n − 2) + (k + 1) = n + k − 1. Note that H = Cn+k−1(G). Then v is also adjacent to
vertex v2. Hence NH(v1) ∩ C = NH(v2) ∩ C.
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Let |NH(vi) ∩ C| = t. Note that |V(F)| = 2. By Claim 7, we know that dH(vi) = k + 1. Then t ≥ k. On the
other hand, t ≤ dH(vi) = k + 1. Hence k ≤ t ≤ k + 1. Next, we will discuss the following two cases.

Case 3.1. t = k.
Then H � Kk ∨ (Kn−k−2 + K2). It is easy to see that Kk ∨ (Kn−k−2 + K2) is not k-leaf-connected. Note that

W f (H) = f (1)
2 n2 + [2 f (2) − 5

2 f (1)]n − (2k + 4)[ f (2) − f (1)] < f (1)
2 n2 + [3 f (2) − 7

2 f (1)]n − (3k + 11)[ f (2) − f (1)].
Hence H � Kk ∨ (Kn−k−2 + K2).

Case 3.2. t = k + 1.
Then H � Kk+1 ∨ (Kn−k−3 + 2K1). One can check that Kk+1 ∨ (Kn−k−3 + 2K1) is k-leaf-connected for k ≥ 3,

a contradiction. However, K3 ∨ (Kn−5 + 2K1) is not 2-leaf-connected. Notice that W f (H) = f (1)
2 n2 + [2 f (2) −

5
2 f (1)]n − 9[ f (2) − f (1)] < f (1)

2 n2 + [3 f (2) − 7
2 f (1)]n − 17[ f (2) − f (1)]. Therefore, H � K3 ∨ (Kn−5 + 2K1).

By the above proof, we have H = Cn+k−1(G) ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 + 2K1),K4 ∨ (Kn−7 + 3K1)}.
The proof of (i) is completed.

(ii) If f (x) is a monotonically decreasing function on [1,n − 1], we can also prove the result similarly.
This completes the proof of Theorem 1.3. □

4. Applications of Corollary 1.4

Lemma 4.1. Let H � Kk ∨ (Kn−k−2 + K2).
(i) If n ≥ k + 10, then ρD(H) < n + 5 − 6k+22

n .
(ii) If n ≥ k + 4, then ρQ(H) > 2n + 10 − 12k+44

n .

Proof. (i) Let R(D) be an equitable quotient matrix of the distance matrix D(H) with respect to the partition
(V(Kk),V(Kn−k−2),V(K2)). One can see that

R(D) =

 k − 1 n − k − 2 2
k n − k − 3 4
k 2n − 2k − 4 1

 .
Then the characteristic polynomial PR(D)(x) = x3

− (n − 3)x2
− (8n − 6k − 15)x + (2k − 7)n − 2k2 + 2k + 13.

By Lemma 2.2, we know that ρD(H) = λ1(R(D)) is the largest root of the equation PR(D)(x) = 0. Let
P′R(D)(x) = 3x2

− 2(n − 3)x − 8n + 6k + 15 = 0. We can solve this equation to obtain that

x1 =
n − 3 −

√

n2 + 18n − 18k − 36
3

and x2 =
n − 3 +

√

n2 + 18n − 18k − 36
3

.

Then PR(D)(x) is a monotonically increasing function on [x2,+∞). Note that ρD(H) = λ1(R(D)) > x2 and
n + 5 − 6k+22

n > x2 for n ≥ k + 2. By Maple, PR(D)(n + 5 − 6k+22
n ) > 0 = PR(D)(ρD(H)) for n ≥ k + 10. This implies

that ρD(H) < n + 5 − 6k+22
n for n ≥ k + 10.

(ii) Let R(QD) be an equitable quotient matrix of the distance matrix QD(H) with respect to the partition
(V(Kk),V(Kn−k−2),V(K2)). Then

R(QD) =

 n + k − 2 n − k − 2 2
k 2n − k − 2 4
k 2n − 2k − 4 2n − k − 2

 .
The characteristic polynomial PR(QD)(x) = x3

− (5n − k − 6)x2 + [8n2
− (3k + 28)n + 12k + 28]x − 4n3 + (2k +

24)n2
− (4k + 52)n + 20k + 40. By Lemma 2.2, we know that ρQD(H) = λ1(R(QD)) is the largest root of the

equation PR(QD)(x) = 0. Let P′R(QD)(x) = 3x2
− 2(5n− k− 6)x+ 8n2

− (3k+ 28)n+ 12k+ 28 = 0. We can solve that

x1 =
5n − k − 6 −

√
n2 − (k − 24)n + k2 − 24k − 48

3
and x2 =

5n − k − 6 +
√

n2 − (k − 24)n + k2 − 24k − 48
3

.
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Then PR(QD)(x) is a monotonically increasing function on [x2,+∞). Note that ρQD(H) = λ1(R(QD)) > x2 and
2n + 10 − 12k+44

n > x2 for n ≥ k + 4. By direct calculation, PR(QD)(2n + 10 − 12k+44
n ) < 0 = PR(QD)(ρQD(H)) for

n ≥ k + 3. It follows that ρQD(H) > 2n + 10 − 12k+44
n for n ≥ k + 4.

Lemma 4.2. Let H � K3 ∨ (Kn−5 + 2K1).
(i) If n ≥ 10, then ρD(H) < n + 5 − 34

n .
(ii) If n ≥ 6, then ρQ(H) > 2n + 10 − 68

n .

Proof. (i) Let R(D) be an equitable quotient matrix of the distance matrix D(H) with respect to the partition
(V(K3),V(Kn−5),V(2K1)). It is easy to see that

R(D) =

 2 n − 5 2
3 n − 6 4
3 2n − 10 2

 .
Then the characteristic polynomial PR(D)(x) = x3

− (n − 2)x2
− (7n − 29)x − 2. By Lemma 2.2, we know that

ρD(H) = λ1(R(D)) is the largest root of the equation PR(D)(x) = 0. Let P′R(D)(x) = 3x2
− 2(n− 2)x− 7n+ 29 = 0.

We can solve that

x1 =
n − 2 −

√

n2 + 17n − 83
3

and x2 =
n − 2 +

√

n2 + 17n − 83
3

.

Then PR(D)(x) is a monotonically increasing function on [x2,+∞). Note that ρD(H) = λ1(R(D)) > x2 and
n + 5 − 34

n > x2 for n ≥ 5. By simple calculation, PR(D)(n + 5 − 34
n ) > 0 = PR(D)(ρD(H)) for n ≥ 10. This means

that ρD(H) < n + 5 − 34
n for n ≥ 10.

(ii) Let R(QD) be an equitable quotient matrix of the distance signless Laplacian matrix QD(H) with
respect to the partition (V(K3),V(Kn−5),V(2K1)). Then we have

R(QD) =

 n + 1 n − 5 2
3 2n − 5 4
3 2n − 10 2n − 3

 .
The characteristic polynomial PR(QD)(x) = x3

− (5n − 7)x2 + (8n2
− 31n + 56)x − 4n3 + 26n2

− 82n + 80. By
Lemma 2.2, we know that ρQ(H) = λ1(R(QD)) is the largest root of the equation PR(QD)(x) = 0. Let
P′R(QD)(x) = 3x2

− 2(5n − 7)x + 8n2
− 31n + 56 = 0. We can solve that

x1 =
5n − 7 −

√

n2 + 23n − 119
3

and x2 =
5n − 7 +

√

n2 + 23n − 119
3

.

Then PR(QD)(x) is a monotonically increasing function on [x2,+∞). Note that ρQ(H) = λ1(R(QD)) > x2
and 2n + 10 − 68

n > x2 for n ≥ 6. Then PR(QD)(2n + 10 − 68
n ) < 0 = PR(QD)(ρQ(H)), which implies that

ρQ(H) > 2n + 10 − 68
n for n ≥ 6.

Lemma 4.3. Let H � K4 ∨ (Kn−7 + 3K1).
(i) If n ≥ 8, then ρD(H) > n + 5 − 34

n .
(ii) If n ≥ 8, then ρQ(H) > 2n + 10 − 68

n .

Proof. (i) Let R(D) be an equitable quotient matrix of the distance matrix D(H) with respect to the partition
(V(K4),V(Kn−7),V(3K1)). One can see that

R(D) =

 3 n − 7 3
4 n − 8 6
4 2n − 14 4

 .



G. Ao, G. Zhang / Filomat 39:5 (2025), 1697–1707 1706

Then the characteristic polynomial PR(D)(x) = x3
−(n−1)x2

−(9n−56)x+4n−28. By Lemma 2.2, we know that
ρD(H) = λ1(R(D)) is the largest root of the equation PR(D)(x) = 0. Let P′R(D)(x) = 3x2

− 2(n− 1)x− 9n+ 56 = 0.
We can solve that

x1 =
n − 1 −

√

n2 + 25n − 167
3

and x2 =
n − 1 +

√

n2 + 25n − 167
3

.

Then PR(D)(x) is a monotonically increasing function on [x2,+∞). Note that ρD(H) = λ1(R(D)) > x2 and
n+ 5− 34

n > x2. By Maple, PR(D)(n+ 5− 34
n ) < 0 = PR(D)(ρD(H)) for n ≥ 8. This implies that ρD(H) > n+ 5− 34

n
for n ≥ 8.

(ii) Let R(QD) be an equitable quotient matrix of the distance matrix QD(H) with respect to the partition
(V(K4),V(Kn−7),V(3K1)). Then

R(QD) =

 n + 2 n − 7 3
4 2n − 6 6
4 2n − 14 2n − 2

 .
The characteristic polynomial PR(QD)(x) = x3

− (5n − 6)x2 + (8n2
− 32n + 96)x − 4n3 + 28n2

− 128n + 128.
By Lemma 2.2, we know that ρQ(H) = λ1(R(QD)) is the largest root of the equation PR(QD)(x) = 0. Let
P′R(QD)(x) = 3x2

− 2(5n − 6)x + 8n2
− 32n + 96 = 0. We can solve that

x1 =
5n − 6 −

√

n2 + 36n − 252
3

and x2 =
5n − 6 +

√

n2 + 36n − 252
3

.

Then PR(QD)(x) is a monotonically increasing function on [x2,+∞). Note that ρQ(H) = λ1(R(QD)) > x2 and
2n + 10 − 68

n > x2. We Know that PR(QD)(2n + 10 − 68
n ) < 0 = PR(QD)(ρQ(H)) for n ≥ 8. It follows that

ρQ(H) > 2n + 10 − 68
n for n ≥ 8.

Using Corollary 1.4, we will provide sufficient conditions for a graph to be k-leaf-connected in terms of
the distance (distance signless Laplacian) spectral radius of G.

Theorem 4.4. Let G be a connected graph of order n and minimum degree δ ≥ k + 1, where n ≥ k + 17 and k ≥ 2.
Each of the following holds.
(i) If ρD(G) ≤ n + 5 − 6k+22

n , then G is k-leaf-connected unless Cn+k−1(G) ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 + 2K1)}.
(ii) If ρQ(G) ≤ 2n + 10 − 12k+44

n , then G is k-leaf-connected.

Proof. Suppose, to the contrary, that G is not k-leaf-connected.
(i) By Lemma 2.3 and the assumption of Theorem 4.4, we have

2W(G)
n

≤ ρD(G) ≤ n + 5 −
6k + 22

n
.

Then W(G) ≤ 1
2 n2 + 5

2 n − 3k − 11. Let H = Cn+k−1(G). By Corollary 1.4, we have H ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨

(Kn−5 + 2K1),K4 ∨ (Kn−7 + 3K1)}. Assume that H � K4 ∨ (Kn−7 + 3K1). According to Lemma 2.1 and (i) of
Lemma 4.3, we have

ρD(G) > ρD(H) > n + 5 −
34
n
,

which contradicts the assumption. For H ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 + 2K1)} and n ≥ k + 17, by (i) of
Lemmas 4.1 and 4.2, we can not compare completely ρD(G) with n+ 5− 6k+22

n . For the brevity of discussion,
we have Cn+k−1(G) = H ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 + 2K1)}.

(ii) Note that ρQ(G) ≤ 2n + 10 − 12k+44
n . Combining Lemma 2.4, we obtain

W(G) ≤
1
2

n2 +
5
2

n − 3k − 11.
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Let H = Cn+k−1(G). By Corollary 1.4, we have H ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 + 2K1),K4 ∨ (Kn−7 + 3K1)}.
By Lemmas 2.1, 4.1, 4.2 and 4.3, we have

ρQ(G) > ρQ(H) > 2n + 10 −
12k + 44

n
,

a contradiction. This completes the proof of Theorem 4.4. □
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