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β−expansion of unity and transcendence in the p-adic field
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Abstract. The aim of this paper is to study the β−expansion of p-adic numbers. In particular, we obtain
an upper bound of strings of consecutive zeros in the β−expansion of unity for an algebraic number β inQp

such that |β|p > 1.

1. Introduction

A real number is most classically represented by its continued fraction expansions or by its represen-
tations in some integer bases. By a special representation we can generalize standard representations in
an integer base to a real base β, this special representation is called β−expansion which was introduced by
by A. Rényi [7] in 1957. Let β be a real number such that β > 1. Similarly to the case of integral bases,
it is possible to define the β-expansion of a real number x ∈ [0, 1] as the sequence (xi)i≥1 with values in
{0, 1, . . . , [β]} produced by the β-transformation Tβ : x −→ βx (mod 1) as follows :

f or all i ≥ 1, xi = [βTi−1
β (x)], and so x =

∑
i≥1

xi

βi .

Let’s mention that an expansion of real number is finite if (xi)i≥1 is eventually 0. It’s periodic if p ≥ 1 and
m ≥ 1 exists and verifying xk = xk+p, for all k ≥ m.
Furthermore, the β-expansion of 1 plays a crucial role in our theory and appeared in several works especially
in the study of the classification of algebraic numbers β > 1. Let’s recall that numbers β such that their
β-expansion of 1 is ultimately periodic are called Parry numbers and those such that their β-expansion of
1 is finite are called simple Parry numbers. These families of numbers were introduced by W. Parry in [6],
its elements were initially called β-numbers and it is easy to check that these elements are algebraic integer
numbers. Moreover, these numbers afforded interesting results, for example, it is well known that if β is a
Pisot number ( an algebraic integer > 1 whose conjugates have modulus strictly less than one), then β is a
Parry number. In the same context, D. Boyd have proved in [3] that if β is a Salem number ( an algebraic
integer> 1 whose conjugates have modulus≤ 1 and at least one of them has a modulus equal to 1) of degree
4, then β is a Parry number. Unfortunately, there is not a complete characterization of Parry or simple Parry
numbers untill now.
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Particularly, many works have been devoted to the study of the occurences of consecutive 0′s in the β-
expansion of 1 and the classification of algebraic numbers β. So, there are many important results along
these lines. For instance, in an old result, more precisely in 1965 Mahler has interested in the gaps between
the non-zero digits in the β-expansion of 1 and he proved the following theorem in [4]:

Theorem 1.1. Let β > 1 be an algebraic number such that dβ(1) = (ai)i≥1 is an infinite and lacunary sequence in the
following sense:
There exists two sequences (mn)n≥1 and (sn)n≥0 such that:

1 = s0 ⩽ m1 < s1 ⩽ m2 < s2 ⩽ ... ⩽ mn < sn ⩽ mn+1 < sn+1 ⩽ ...

with(sn −mn) ⩾ 2, amn , 0, asn , 0 and ai = 0 if mn < i < sn for all n ⩾ 1. Then,

lim sup
n→+∞

(
sn

mn
) < ∞

After that, in 2006 Verger-Gaugry extended Mahler’s and Güting’s approximation theorems by proving
that the gaps in the β-expansion of 1 are shown to exhibit a gappiness bounded through the use of a version
of Liouville’s inequality in the following:

Theorem 1.2. [9] Let β > 1 be an algebraic number and M(β) be its Mahler measure such such that dβ(1) = (ai)i≥1
is an infinite and lacunary sequence in the following sense: There exists two sequences (mn)n≥1 and (sn)n≥0 such that:

1 = s0 ⩽ m1 < s1 ⩽ m2 < s2 ⩽ ... ⩽ mn < sn ⩽ mn+1 < sn+1 ⩽ ...

with(sn −mn) ⩾ 2, amn , 0, asn , 0 and ai = 0 if mn < i < sn for all n ⩾ 1. Then,

lim sup
n→+∞

(
sn

mn
) <

lo1(M(β))
lo1(β)

In a natural way, this result provides a new classification of algebraic numbers β > 1. Later, in 2007
Adamczewski and Bugeaud [1] improved the previous theorem and they established the following result:

Theorem 1.3. Let β > 1 be an algebraic number. Then with the above notation,

lim sup
n→+∞

(
sn

mn
) <

lo1(M(β))
lo1(β)

− 1

In the same context, Allouche and Cosnard in [2] proved that there exists a smallest q ∈]1, 2[ for which

there exists a unique expansion of 1 as 1 =
+∞∑
n=1
δnq−n where δn ∈ {0, 1}. In addition, for this smallest q, the

coefficient δn is equal to 0 (respectively, 1) if the sum of the binary digits of n is even (respectively, odd).
This constant q is named Komornik-Loreti constant. Since the strings of zeros and 1’s in the sequence δn
are known and uniformly bounded, the constant q satisfies

lim sup
n→+∞

(
sn

mn
) = 1.

However, authors in [2] have shown that q is a transcendental number.
Therefore, the β-expansion of unity and transcendence in the real case is an interesting topic that has been
studied by various authors. For this, there are a lot of results concerning this topic which motivates as to
study in this work the analogous of this concept in the field of p-adic numbers and also to introduce the
β−expansion over this field which is currently a popular area of research.
Let’s recall that, the β-expansion of 1 and transcendence of p-adic numbers have not been studied yet.
This paper is organized as follows: In section 2, we start by introducing Qp, the field of p-adic numbers.
After that, we give the suitable definition of Pisot-Chabauty numbers as well as the analogous to Pisot



M. Ghorbel / Filomat 39:5 (2025), 1709–1716 1711

numbers. In section 3, we study the β-expansion algorithm for p-adic numbers and we review some basic
properties and notations necessary in our work. The last section is devoted to prove that if β is an algebraic
number of algebraic degree d ≥ 2 such that dβ(1) = (ai)i≥1 is an infinite and lacunary sequence then the
quotient of gaps in the string of 0 in the sequence (ai)i≥1 is bounded. Consequently, if the β-expansion of
unity has unbounded quotient of gaps, then β is transcendental. In a natural way, this result provides a
family of transcendental numbers β.

2. Field of p-adic numbers

In order to introduce Qp in an harmonious way, we start by presenting the following sets:
Let p be a prime andAp = {mpn,m,n ∈ Z} = Z[ 1

p ].

Recall that


•Ap ⊂ Q is a principal rin1.
• The unit 1roup o f Ap is {±pk, k ∈ Z}.
• The f ield o f f ractions o f Ap is Q.

Particularly, we denote byA′p = Ap ∩ [0, 1).
Now, let’s define the p-adic valuation:

vp : Ap −→ Z
⋃
{∞}

x 7−→

{
max{n ∈ Z : pn divides x} if x , 0,
∞ if x = 0,

which fulfills the following properties:
• vp(0) = ∞,
• vp(xy) = vp(x) + vp(y),
• vp(x + y) ≥ min{vp(x), vp(y)} with vp(x + y) = min{vp(x), vp(y)}, i f vp(x) , vp(y).

Then vp(.) is an exponential valuation onAp. Consequently, the p − adic
absolute value |.|p is defined by

|x|p =
{

p−vp(x) if x , 0,
0 if x = 0.

Thus |.|p is a non Archimedean absolute value onAp which verifies the strict triangular inequality

|x + y|p ≤ max{|x|p, |y|p} with

|x + y|p = max{|x|p, |y|p} i f |x|p , |y|p.

In the same direction, we denote by |.|∞ the Archimedean absolute value.
Now, the completion ofAp with respect to |.|p is the field of p-adic numbers Qp, therefore we have

Z ⊂ Ap ⊂ Q ⊂ Qp.

We mention that each element x ∈ Qp (x , 0) admits a unique p-adic expansion of the form

x =
∞∑

n=n0

xnpn, such that n0 ∈ Z, xn0 , 0 and xn ∈ {0, . . . , p − 1} (⋆)

From expansions of the form mentioned in (⋆) , we will use the notation

x = . . . p2p1p0.p−1 . . . pn0 .
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Definition 2.1. Each x ∈ Qp of the form mentioned above in (⋆) has a unique Artin decomposition

x = [x]p + {x}p

where
[x]p =

∑
n≥0

xnpn and {x}p =
∑
n<0

xnpn.

The number [x]p ∈ Zp is called p−adic integer part and {x}p ∈ Ap ∩ [0, 1) is called p−adic fractional part of x.

Moreover, we can also extend vp in Qp as follows:

I f x =
∞∑

n=n0

xnpn, where n0 ∈ Z, xn0 , 0, xn ∈ {0, . . . , p − 1}, we define vp(x) by:

vp(x) =
{

n0 i f x , 0
∞ i f x = 0.

Furthermore, Qp is equivalent to the fraction field of the p-adic integers Zp where

Zp = {x ∈ Qp; |x|p ≤ 1}.

Therefore, it easily follows that

Z = Ap ∩Zp = {x ∈ Ap; |x|p ≤ 1} and pZp = {x ∈ Qp; |x|p < 1}.

Now, we aim to define the Pisot-Chabauty numbers as the analogous to Pisot numbers in the real case. For
this, we need some definitions.

Definition 2.2. An element α is called algebraic overAp, if there is a polynomial

P(x) = a0 + a1x + · · · + anxn
∈ Ap[x] with an , 0 and P(α) = 0.

If P is irreducible over Ap, then P is called a minimal polynomial of α. In addition, if an = pk for some k ∈ Z, thus
α is an algebraic integer. As pk is a unit ofAp, we can assume without loss of generality, that an = 1. If a0 = pk′ for
some k′ ∈ Z, so α is called an algebraic unit.

It turns out that algebraic elements over Q are not necessarily contained in Qp. In our context, we will only
need that |.|p can be extended uniquely fromQp to all of its algebraic extensions. This follows from the next
theorem, which holds generally in non-archimedean fields.

Theorem 2.3 ([5], Chapter II, Theorem 4.8). Let K be a field which is complete with respect to |.| and L/K be an
algebraic extension of degree m. Thus |.| has a unique extension to L defined by : |α| = m

√
|NL/K(α)| and L is complete

with respect to this extension.

Remark 2.4. In what follows, for algebraic elements β over Ap we will denote by β1, . . . , βn the non-Archimedean
conjugates of β and by βn+1, . . . , β2n the Archimedean conjugates of β (the complex roots of the minimal polynomial of
β).

Finally, we reach to give the definition of Pisot-Chabauty numbers.

Definition 2.5. A Pisot-Chabauty number ( for short PC number) is a p-adic number β ∈ Qp, such that

• β1 = β is an algebraic integer overAp.

• |β1|p > 1 for one non-Archimedean conjugate of β.

• |βi|p ≤ 1 for all non-Archimedean conjugates βi, i ∈ {2, . . . ,n} of β.

• |βi|∞ < 1 for all Archimedean conjugates βi, i ∈ {n + 1, . . . , 2n} of β.
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3. β−expansion in the field Qp

Similarly to the classical β-expansions for the real numbers, we introduce the β-expansions for p-adic
numbers. For this, let β ∈ Qp with |β|p > 1 and x ∈ Zp. A representation in base β ( or β-representation) of x
is a sequence (di)i≥1, di ∈ A′p = Ap ∩ [0, 1), such

x =
∑
i≥1

di

βi .

A particular β-representation of x is called the β-expansion of x and noted by
dβ(x) = (di)i≥1 with values in Aβ,p = [0, 1) ∩ {x ∈ Ap : |x|p ≤ |β|p} produced by the β-transformation
T : Zp → Zp, which is given by the mapping z 7→ [βz]p. For k ≥ 0, let’s define

T0(x) = x and Tk(x) = T(Tk−1(x)).

So, dk = {βTk−1(x)}p for all k ≥ 1. An equivalent definition of the β-expansion can be obtained by using a
greedy algorithm. This algorithm proceeds as follows :

r0 = x; dk = {βrk−1}p and rk = ⌊βrk−1⌋p for all k ≥ 1.

The β-expansion of x will be noted as dβ(x) = (dk)k≥1.
Now, let x ∈ Qp with |x|p > 1. Thus there is a unique k ∈N such that |β|kp ≤ |x|p < |β|k+1

p . We can represent
x by shifting dβ(β−(k+1)x) by k digits to the left. Therefore, if dβ(x) = 0 • d1d2d3 . . ., then dβ(βx) = d1 • d2d3 . . ..
Thereby, if dβ(x) = d1d2d3 . . . dk • dk+1dk+2 . . .. We denote x by

x = [x]β + {x}β

with

[x]β =
∑

1≤i≤k

diβ
i and {x}β =

∑
i≥k+1

di

βi .

The number [x]β is called a p-adic β-integer part of x and the number {x}β is called a p-adic β-fractional part
of x.
Moreover, we mention that dβ(x) is finite if and only if there is a k ≥ 0 with Tk(x) = 0, dβ(x) is ultimately
periodic if and only if there is some smallest n ≥ 0 (the pre-period length) and s ≥ 1 (the period length)
when Tn+s(x) = Tn(x), namely the period length. In a special case, where n = 0, dβ(x) is purely periodic.

Afterwards, we will use the following notations :

Fin(β) = {x ∈ Zp : dβ(x) is f inite} and Per(β) = {x ∈ Zp : dβ(x) is eventually periodic}.

Hence, it is easy to check that
Fin(β) ⊂ Per(β).

Through the use of the previous sets and the PC numbers, K.Scheicher, V. F. Sirvent and P. Surer established
the following theorem ([8]):

Theorem 3.1. Let β be a PC number. Then Per(β) = Q(β) ∩Zp.

Furthermore, analogously to the notion of β-numbers in the real case we define the beta-p-adic numbers in
Qp as follows:

Definition 3.2. Let β ∈ Qp where |β|p > 1. β is called a beta-p-adic number if 1 ∈ Per(β) and is called a simple
beta-p-adic number if 1 ∈ Fin(β).
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4. Results

Lemma 4.1. Let x ∈ Q+ such that x < pn with n ∈N. Then |x|p > p−n .

Proof:
Since x < pn then the p-adique expansion of x will be written as follows:

x =
∞∑

i=n0

aipi, such that n0 < n.

Otherwise x will be greater than pn. □

Lemma 4.2. Let (xi) ∈ A′p for all 1 ≤ i ≤ m where m ∈N∗. Then

|

m∑
i=1

xi|p > p−([lo1p(m)]+1)

Proof:
By assumption, we have (xi)1≤i≤m ∈ A′p which implies that 0 ≤ xi < 1. Therefore

m∑
i=1

xi < m = plo1p(m)

< p[lo1p(m)]+1.

Consequently, according to Lemma 4.1 we infer that |
m∑

i=1
xi|p > p−([lo1p(m)]+1). □

Theorem 4.3. (Classical Theorem of symmetric polynomials)

Let Q ∈ Ap[x][y] and F(y(1), y(2), ..., y(d)) = Q(y(1))Q(y(2))...Q(y(d)).
Then, there exists a polynomial T with d variables and coefficients inAp[x] such that

F(y(1), y(2), ..., y(d)) = T(σ1, σ2, ..., σd)

where: 

σ1 =

d∑
i=1

y(i)

σ2 =
∑

1≤i< j≤d

y(i)y( j)

σ3 =
∑

1≤i< j<k≤d

y(i)y( j)y(k)

...
σd = y(1)y(2)...y(d)

Let’s mention also that the total degree of T is lower or equal to the degree of Q.

Lemma 4.4.

Let β be an algebraic integer with minimal polynomial Pβ(y) = yd + Ad−1yd−1 + · · · + A0, where Ai ∈ Ap[x] for all
0 ≤ i ≤ d. Let m ≥ d and K(y) = ymBm + Bm−1ym−1 + · · · + B0 with Bi ∈ Ap[x] for all 0 ≤ i ≤ m. Then

|K(β)|p > p−([lo1p((mn)d)]+1).
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Proof:
Let K(y) = ymBm + Bm−1ym−1 + · · · + B0 a polynomial of degree m ≥ d.
Since βd = −Ad−1βd−1

− · · · − A0, there exist C(i,s) ∈ Ap[x] such that

βd+s−1 = C(d−1,s)β
d−1 + · · · + C(0,s) for all s ≥ 1.

Let now β = β(1) and β(2), . . . , β(d) be the conjugates of β. For s = m − d + 1, there exist Di ∈ Ap[x] such that

K(β( j)) = Dd−1(β( j))d−1 + · · · +D0 for all 1 ≤ j ≤ d.

By Theorem 4.3, there exists a polynomial T with d variables and coefficients inA′p[X] such that

d∏
j=1

K(β( j)) = T(σ1, σ2, ..., σd)

with |σi|p = |
∑

1≤ j1< j2<...≤d
β( j1)β( j2)...β( ji)|p = |Ad−i|p ∈ A

′
p for all 1 ≤ i ≤ d and the total degree of T is lower or

equal to d, which involves that the polynomial K contains at most (m)d monomials of the form
d∑

i=1
Diσ

αi
i with

d∑
i=1
αi ≤ m and without loss of generality we can assume that Di ∈ A′p. Therefore, K contains at most (m)d

monomials inA′p. Hence by Lemma 4.2, we get

|K(β)|p > p−([lo1p((m)d)]+1).

□

Theorem 4.5. Let β ∈ Qp with |β|p > 1 an algebraic integer of algebraic degree d ≥ 2 such that dβ(1) = (ai)i≥1 is an
infinite and lacunary sequence in the following sense: There exists two sequences (mn)n≥1 and (sn)n≥0 such that:

1 = s0 ⩽ m1 < s1 ⩽ m2 < s2 ⩽ ... ⩽ mn < sn ⩽ mn+1 < sn+1 ⩽ ...

with(sn −mn) ⩾ 2, amn , 0, asn , 0 and ai = 0 if mn < i < sn for all n ⩾ 1. Then,

lim sup
n→+∞

vp(β)(mn − sn)

[lo1p((mn)d)] + 1
⩽ 1

Proof:
We consider the polynomial

kn(y) = −ymn + a1ymn−1 + a2ymn−2 + ... + amn

It is clear that kn(y) is a polynomial of degree mn. Let Pβ(y) = yd + Ad−1yd−1 + · · · + A0 be the minimal
polynomial of β. Therefore, on the one hand according to Lemma 4.4 we get

|kn(β)|p > p−([lo1p((mn)d)]+1). (1)

and on the other hand, we have

kn(β) = βmn (asnβ
−sn + asn−1β

−sn+1 + ...),

which involves that

|kn(β)|p = |β|mn
p |asnβ

−sn + asn−1β
−sn+1 + ...|p

≤ |β|mn
p |β|p|β|

−sn
p

≤ |β|mn−sn+1
p

≤ p−vp(β)(mn−sn+1). (2)
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Combining (1) and (2), we get

p−([lo1p((mn)d)]+1)
≤ |kn(β)|p ≤ p−vp(β)(mn−sn+1).

Therefore,
1

p([lo1p((mn)d)]+1)
≤

1
pvp(β)(mn−sn+1)

.

So,
p([lo1p((mn)d)]+1)

≥ pvp(β)(mn−sn+1).

Finally, we obtain that

lim sup
n→+∞

vp(β)(mn − sn)

[lo1p((mn)d)] + 1
⩽ 1.

□

From the previous Theorem, we display this immediate consequence:

Corollary 4.6. Let β ∈ Qp with |β|p > 1 such that dβ(1) = (ai)i≥1 is an infinite and lacunary sequence in the following
sense: There exists two sequences (mn)n≥1 and (sn)n≥0 such that:

1 = s0 ⩽ m1 < s1 ⩽ m2 < s2 ⩽ ... ⩽ mn < sn ⩽ mn+1 < sn+1 ⩽ ...

with(sn −mn) ⩾ 2, amn , 0, asn , 0 and ai = 0 if mn < i < sn for all n ⩾ 1.

If lim supn→+∞

vp(β)(mn − sn)

[lo1p((mn)d)] + 1
= +∞ then β is a transcendental number.
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