Filomat 39:5 (2025), 1717–1733 https://doi.org/10.2298/FIL2505717W

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Uniformly resolvable decompositions of λ -fold complete multipartite graph into 4-star

Li Wang^a

^aSchool of Mathematics and Physics, Suqian University, Suqian 223800, China

Abstract. Let $\lambda K_u[g]$ be the λ -fold complete multipartite graph with u parts of size g. A $(K_{1,n}, \lambda)$ -resolvable group divisible design (RGDD) of type g^u is a $K_{1,n}$ -decomposition of the graph $\lambda K_u[g]$ into parallel classes each of which is a partition of the vertex set. A $(K_{1,n}, \lambda)$ -frame of type g^u is a $K_{1,n}$ -decomposition of $\lambda K_u[g]$ into partial parallel classes each of which is a partition of the vertex set. A $(K_{1,n}, \lambda)$ -frame of type g^u is a $K_{1,n}$ -decomposition of $\lambda K_u[g]$ into partial parallel classes each of which is a partition of the vertex set except for those vertices in one of the u parts. In this paper, we completely solve the existence of a $(K_{1,4}, \lambda)$ -frame and a $(K_{1,4}, \lambda)$ -RGDD of type g^u for any admissible parameters g, u and λ .

In this paper, we will focus on a problem of graph decomposition. We denote the vertex set and edge set (or edge-multiset) of a graph *G* (or multigraph) by *V*(*G*) and *E*(*G*), respectively. Given a collection of graphs \mathcal{H} , an \mathcal{H} -decomposition of a graph *G* is a set of subgraphs (*blocks*) of *G* whose edge sets partition *E*(*G*), and each subgraph is isomorphic to a graph from \mathcal{H} . When $\mathcal{H} = \{H\}$, we write \mathcal{H} -decomposition as *H*-decomposition for brevity. A *parallel class* of a graph *G* is a set of subgraphs whose vertex sets partition *V*(*G*). A parallel class is called *uniform* if each block of the parallel class is isomorphic to the same graph. An \mathcal{H} -decomposition of a graph *G* is called (uniformly) *resolvable* if the blocks can be partitioned into (uniform) parallel classes.

A graph *G* is called a *complete u-partite graph* denoted by $K[m_1, m_2, ..., m_u]$ if V(G) can be partitioned into *u parts* (called *groups*) M_i , $1 \le i \le u$, such that two vertices of *G*, say *x* and *y*, are adjacent if and only if $x \in M_i$ and $y \in M_j$ with $i \ne j$. We use $\lambda K[m_1, m_2, ..., m_u]$ for the λ -fold of the complete *u*-partite graph with m_i vertices in the group M_i . When $\lambda = 1$, we usually omit λ in the notation. We denote the complete *u*-partite graph with u parts of size *g* by $K_u[g]$ and by K_v the complete graph on *v* vertices. There are many results on uniformly resolvable \mathcal{H} -decompositions of K_v , especially on uniformly resolvable \mathcal{H} -decompositions with $\mathcal{H} = \{G_1, G_2\}$, see [1, 9, 10, 12–16].

A (resolvable) \mathcal{H} -decomposition of $\lambda K[m_1, m_2, ..., m_u]$ is called a (resolvable) group divisible design, denoted by (\mathcal{H}, λ) -(R)GDD. The *type* of an (\mathcal{H}, λ) -GDD is the multiset of group sizes $|M_i|$, $1 \le i \le u$, and we usually use the "exponential" notation for its description: type $g_1^{n_1}g_2^{n_2}\ldots g_s^{n_s}$ denotes n_i occurrences of g_i for $1 \le i \le s$ in the multiset. If $\mathcal{F} = \{H\}$, we denote it by (\mathcal{H}, λ) -GDD. Let L be a set of positive integers. A *pairwise balanced design*, denoted by (L, λ, v) -PBD, is a $(\{K_k : k \in L\}, \lambda)$ -GDD of type 1^v .

For brevity, we use $(a; b_1, b_2, ..., b_k)$ to denote the *k*-star $K_{1,k}$ with vertex set $\{a, b_1, b_2, ..., b_k\}$ and edge set $\{\{a, b_i\} \mid 1 \le i \le k\}$. Tarsi has solved the existence of a $(K_{1,k}, \lambda)$ -GDD of type 1^{*n*} in [18]. There are some

Keywords. Resolvable graph decomposition, resolvable group divisible design, frame, 4-star

Communicated by Paola Bonacini

²⁰²⁰ Mathematics Subject Classification. Primary 05B05.

Received: 02 September 2024; Revised: 19 October 2024; Accepted: 21 October 2024

Research supported by Research supported by the National Natural Science Foundation of China under Grant No. 12101441 and Qing Lan Project.

Email address: 23076@squ.edu.cn (Li Wang)

known results on the existence of $K_{1,3}$ -RGDDs. For instance, $(K_{1,3}, 1)$ -RGDDs of types 2⁴ and 4⁴ have been constructed in [11], and the existence of a $(K_{1,3}, 1)$ -RGDD of type 12^{*u*} for any $u \ge 2$ has been solved in [1].

A set of subgraphs of a complete multipartite graph covering all vertices except those belonging to one part *M* is said to be a *partial parallel class* missing *M*. A partition of an (\mathcal{H}, λ) -GDD of type g^u into partial parallel classes is said to be an (\mathcal{H}, λ) -frame of type g^u . Frames are important combinatorial structures used in graph decompositions. The existence of a (K_4, λ) -frame of type g^u has been completely solved in [4, 6–8, 17, 19, 20]. Chen and Cao have proved the existence of a $(K_{1,3}, \lambda)$ -frame of type g^u in [2]. It is not difficult to get the following necessary conditions for the existence of two designs.

Theorem 0.1. The necessary conditions for the existence of a $(K_{1,n}, \lambda)$ -frame of type g^u are $\lambda g(n+1) \equiv 0 \pmod{2n}$, $g(u-1) \equiv 0 \pmod{n+1}$, $u \ge 3$, and $g \equiv 0 \pmod{n+1}$ when u = 3.

Theorem 0.2. The necessary conditions for the existence of a $(K_{1,n}, \lambda)$ -RGDD of type g^u are $\lambda g(u-1) \equiv 0 \pmod{2n}$, $gu \equiv 0 \pmod{n+1}$, $u \ge 2$, and $g \equiv 0 \pmod{n+1}$ when u = 2.

In this paper, we focus on two designs related to the 4-star $K_{1,4}$ and prove the following main results.

Theorem 0.3. There exists a $(K_{1,4}, \lambda)$ -frame of type g^u if and only if $\lambda g \equiv 0 \pmod{8}$, $g(u-1) \equiv 0 \pmod{5}$, $u \ge 3$ and $g \equiv 0 \pmod{5}$ when u = 3.

Theorem 0.4. A $(K_{1,4}, \lambda)$ -RGDD of type g^u exists if and only if $\lambda g(u - 1) \equiv 0 \pmod{8}$, $gu \equiv 0 \pmod{5}$, $u \ge 2$, and $g \equiv 0 \pmod{5}$ when u = 2.

1. The existence of $(K_{1,4}, \lambda)$ -frames

Now we state some basic recursive constructions for a ($K_{1,n}$, λ)-frame. Similar proofs of these constructions can be found in [2].

Construction 1.1. If there exists a $(K_{1,n}, \lambda)$ -frame of type $g_1^{\mu_1}g_2^{\mu_2} \dots g_t^{\mu_t}$, then there is a $(K_{1,n}, \lambda)$ -frame of type $(mg_1)^{\mu_1}(mg_2)^{\mu_2} \dots (mg_t)^{\mu_t}$ for any $m \ge 1$.

Construction 1.2. If there exist a $(\{K_k : k \in L\}, 1)$ -GDD of type $g_1^{u_1}g_2^{u_2} \dots g_t^{u_t}$ and a $(K_{1,n}, \lambda)$ -frame of type m^k for each $k \in L$, then there exists a $(K_{1,n}, \lambda)$ -frame of type $(mg_1)^{u_1}(mg_2)^{u_2} \dots (mg_t)^{u_t}$.

Construction 1.3. *If there is a* $(K_{1,n}, \lambda)$ -RGDD *of type* g^2 *, then there exists a* $(K_{1,n}, \lambda)$ *-frame of type* g^{2u+1} *for any* $u \ge 1$.

Construction 1.4. If there exist a $(K_{1,n}, \lambda)$ -frame of type $(m_1g)^{u_1}(m_2g)^{u_2} \dots (m_tg)^{u_t}$ and a $(K_{1,n}, \lambda)$ -frame of type $g^{m_i+\varepsilon}$ for any $1 \le i \le t$, then there exists a $(K_{1,n}, \lambda)$ -frame of type $g^{\sum_{i=1}^t m_i u_i+\varepsilon}$, where $\varepsilon = 0, 1$.

1.1. (K_{1,4}, 1)-frames

First, we give a direct construction about *n*-star.

Lemma 1.5. Let $n \ge 4$ be even. There exists a $(K_{1,n}, 1)$ -frame of type $(2n)^{n+2}$.

Proof: Let the vertex set be $\mathbb{Z}_{2n(n+2)}$, and let the groups be $G_u = \{u + v(n+2) \mid 0 \le v \le 2n-1\}, 0 \le u \le n+1$. The required n+1 partial parallel classes with respect to the group G_u are $\{Q_u^i = \{S_i + l + u \mid l \in (n+2)\mathbb{Z}_{2n(n+2)}\} \mid 1 \le i \le n+1\}$, where $S_i = (i; i + c_{i1}, \dots, i + c_{in}), 1 \le i \le n+1$, and

$$c_{ij} = (n+2)(i-1) + j - i + 1, \ 1 \le i \le \frac{n}{2}, \ i \le j \le n,$$

$$c_{ij} = (n+2)(i-1) + j - i, \ 2 \le i \le \frac{n+2}{2}, \ 1 \le j < i,$$

 $c_{ij} = n(n+2) - c_{n+2-i,n+1-j}, \ i = \frac{n+2}{2}, \ \frac{n+2}{2} \le j \le n \text{ or } \frac{n+4}{2} \le i \le n+1, \ 1 \le j \le n.$

For each $1 \le i \le n + 1$, the n + 1 integers $i, i + c_{ij}, 1 \le j \le n$, are all distinct modulo n + 2. Then each Q_u^i is a partial parallel class. \Box

We provide a construction about a $(K_{1,n}, 1)$ -RGDD of type $(2n(n + 1))^2$. Note that another solution for the case n = 4 is provided in [10].

Lemma 1.6. Let $n \ge 4$ be even. There exists a $(K_{1,n}, 1)$ -RGDD of type $(2n(n + 1))^2$.

Proof: Let the vertex set be $\mathbb{Z}_{4n(n+1)}$, and let the groups be $\{u + 2v \mid 0 \le v \le 2n(n+1) - 1\}$, u = 0, 1. The required $(n+1)^2$ parallel classes can be generated from n+1 parallel classes $\{P_i = \{S_i + l, T_i + l \mid l \in 2(n+1)\mathbb{Z}_{4n(n+1)}\} \mid 0 \le i \le n\}$, by +2s (mod 4n(n+1)), $0 \le s \le n$, where $S_i = (s_{i0}; s_{i1}, \dots, s_{in})$, $T_i = (t_{i0}; t_{i1}, \dots, t_{in})$, $0 \le i \le n$, and

$$s_{i0} = 0; \ s_{ij} = 2ni + 2j - 1, \ 0 \le i \le n, \ 1 \le j \le n,$$

$$t_{i0} = 2n + 1 - 2i; \ t_{ij} = t_{i0} + c_{ij}, \ 0 \le i \le n, \ 1 \le j \le n,$$

$$c_{ij} = 2(n+1)i + 2j + 1, \ 0 \le i \le \frac{n-2}{2}, \ i < j \le n,$$

$$c_{ij} = 2(n+1)i + 2j - 2n - 3, \ 1 \le i \le \frac{n}{2}, \ 1 \le j \le i,$$

$$c_{ij} = 2n(n+1) - c_{n-i,n+1-j}, \ i = \frac{n}{2}, \ \frac{n+2}{2} \le j \le n \text{ or } \frac{n+2}{2} \le i \le n, \ 1 \le j \le n.$$

For each $0 \le i \le n$, since the 2(n + 1) integers s_{ij} , t_{ij} , $0 \le j \le n$, are all distinct modulo 2(n + 1), each P_i is a parallel class. The proof is complete. \Box

Lemma 1.7. There exists a $(K_{1,4}, 1)$ -frame of type 40^u for $u \ge 3$.

Proof: For two values u = 3, 5, there exists a ($K_{1,4}$, 1)-RGDD of type 40^2 by Lemma 1.6. Apply Construction 1.3 to get the required ($K_{1,4}$, 1)-frame of type 40^u .

For u = 4, 6, 8, let the vertex set be \mathbb{Z}_{40u} , and let the groups be $G_i = \{i + uj \mid 0 \le j \le 39\}, 0 \le i \le u - 1$. The required 25 partial parallel classes with respect to the group G_i can be generated from 5 partial parallel classes $\{Q_{ik} = \{B + l + i \mid B \in C_k, |C_k| = u - 1, l \in (5u)\mathbb{Z}_{40u}\} \mid 1 \le k \le 5\}$ by $+us \pmod{40u}, 0 \le s \le 4$. The blocks in each C_k are listed below respectively.

u = 4:	C_1	(1; 2, 3, 6, 7)	(5; 14, 15, 18, 19)	(10; 13, 17, 29, 31)	
	C_2	(1;18,19,23,26)	(2; 13, 17, 25, 31)	(9; 35, 47, 50, 54)	
	C_3	(1;31,34,35,38)	(2;29,33,37,59)	(5;47,63,66,70)	
	C_4	(1; 47, 50, 51, 54)	(2;45,49,53,75)	(17;79,83,86,98)	
	C_5	(1;55,71,78,86)	(9;83,87,102,110)	(14; 53, 77, 85, 119)	
u = 6:	\mathcal{C}_1	(1; 2, 3, 4, 5)	(7; 14, 15, 16, 17)	(8;13,19,21,22)	
		(9;25,26,28,29)	(10;41,50,53,57)		
	C_2	(1;16,22,23,26)	(2; 25, 28, 29, 34)	(3; 37, 38, 40, 41)	
		(5;44,49,50,51)	(13;69,75,77,87)		
	C_3	(1;29,34,50,51)	(2; 43, 53, 55, 57)	(3;68,70,71,74)	
		(5;75,82,86,88)	(9;67,106,107,109)		
	C_4	(1;53,58,62,64)	(3;76,79,82,85)	(5;74,80,97,98)	
		(9;89,100,103,131)	(17; 105, 116, 141, 147)		
	C_5	(1;86,87,88,104)	(2;97,103,106,130)	(4; 33, 109, 110, 119)	
		(8; 115, 125, 129, 137)	(22;81,131,135,173)		
u = 8:	\mathcal{C}_1	(1; 2, 3, 4, 5)	(6; 11, 12, 13, 15)	(7; 17, 18, 19, 20)	(9;23,26,27,28)
		(10; 25, 30, 31, 33)	(14; 36, 39, 61, 69)	(34;62,75,77,78)	
	C_2	(1;27,28,30,31)	(2;33,35,36,37)	(3; 39, 45, 49, 52)	(4; 54, 55, 57, 58)
		(6;51,63,65,66)	(7;59,69,74,78)	(10;93,100,101,102)	
	C_3	(1;38,39,59,62)	(2;65,67,68,70)	(3;73,76,77,84)	(5;74,87,89,90)
		(6;92,93,95,100)	(11;106,109,111,134)	(17;138,141,143,155)	
	C_4	(1;76,77,78,79)	(2;95,99,101,103)	(3; 105, 106, 108, 109)	
		(4;111,113,114,115)	(5; 127, 130, 132, 134)	(6;137,138,140,147)	
		(9;142,171,173,190)			
	C_5	(1;109,114,115,116)	(2; 118, 119, 132, 137)	(3; 140, 143, 145, 146)	
		(4; 150, 151, 153, 165)	(13;131,166,167,214)	(18; 169, 175, 188, 259)	
		(22;61,170,187,197)			

Let $L = \{3, 4, 5, 6, 8\}$, for all other values of u with $u \ge 3$ and $u \notin L$, there exists an (L, 1, u)-PBD from [3] which is actually a $(\{K_k : k \in L\}, 1)$ -GDD of type 1^u . Apply Construction 1.2 with a (L, 1, u)-PBD and a $(K_{1,4}, 1)$ -frame of type 40^k for each $k \in L$ constructed above to obtain the $(K_{1,4}, 1)$ -frame of type 40^u for $u \ge 3$ and $u \notin L$. \Box

Lemma 1.8. There exists a $(K_{1,4}, 1)$ -frame of type 8^u for $u \equiv 1 \pmod{5}$ and $u \ge 6$.

Proof: For u = 6, the conclusion comes from Lemma 1.5.

For u = 11, let the vertex set be \mathbb{Z}_{88} , and let the groups be $G_i = \{i+11j \mid 0 \le j \le 7\}, 0 \le i \le 10$. The required 5 partial parallel classes with respect to the group G_i are $\{Q_{ik} = \{B+l+i \mid B \in C_k, |C_k| = 2, l \in 11\mathbb{Z}_{88}\} \mid 1 \le k \le 5\}$. The blocks in each C_k are listed below respectively.

\mathcal{C}_1	(1; 2, 3, 4, 5)	(6; 18, 19, 20, 21)	C_2	(1;6,7,8,9)	(2;21,25,26,27)
C_3	(1;10,17,18,19)	(2;31,36,37,38)	C_4	(1;21,27,28,29)	(2;41,42,47,48)
C_5	(1;31,32,39,57)	(4; 14, 41, 51, 71)			

For $u \ge 16$, we begin with a $(K_{1,4}, 1)$ -frame of type $40^{\frac{u-1}{5}}$ by Lemma 1.7 and apply Construction 1.4 with $\varepsilon = 1$ to get the required $(K_{1,4}, 1)$ -frame of type 8^u , where the input design a $(K_{1,4}, 1)$ -frame of type 8^6 . \Box

Theorem 1.9. There exists a $(K_{1,4}, 1)$ -frame of type g^u if and only if $g \equiv 0 \pmod{8}$, $g(u - 1) \equiv 0 \pmod{5}$, $u \ge 3$ and $q \equiv 0 \pmod{5}$ when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the following two cases.

1. $g \equiv 0 \pmod{40}$ and $u \ge 3$.

There exists a $K_{1,4}$ -frame of type 40^{*u*} by Lemma 1.7. Then apply Construction 1.1 with m = g/40 to get the required design.

2. $g \equiv 8, 16, 24, 32 \pmod{40}$ and $u \equiv 1 \pmod{5}$, $u \ge 6$.

A $K_{1,4}$ -frame of type 8^u exists by Lemma 1.8. Then we apply Construction 1.1 with m = g/8 to get a $K_{1,4}$ -frame of type g^u .

1.2. (K_{1,4}, 2)-frames

Lemma 1.10. There exists a $(K_{1,4}, 2)$ -RGDD of type 20^2 .

Proof: Let the vertex set be \mathbb{Z}_{40} , and let the groups be $\{2u + v \mid 0 \le u \le 19\}$, v = 0, 1. For the required 25 parallel classes, 20 of which can be generated from a parallel class {{(0; 1, 3, 5, 7), (2; 9, 11, 13, 15), (17; 6, 8, 12, 30), (19; 4, 16, 18, 34)} + 20*h* | *h* = 0, 1} by +*i* (mod 40), $0 \le i \le 19$. The last 5 parallel classes can be generated from a parallel class {(0; 17, 19, 21, 23) + 5*l* | $0 \le l \le 7$ } by +*j* (mod 40), $0 \le j \le 4$. □

Lemma 1.11. There exists a $(K_{1,4}, 2)$ -frame of type 20^u for $u \ge 3$.

Proof: For u = 3, 5, there exists a ($K_{1,4}, 2$)-RGDD of type 20^2 by Lemma 1.10. Apply Construction 1.3 to get the required ($K_{1,4}, 2$)-frame of type 20^u .

For u = 4, 6, 8, let the vertex set be \mathbb{Z}_{20u} , and let the groups be $G_i = \{i + uj \mid 0 \le j \le 19\}, 0 \le i \le u - 1$. The required 25 partial parallel classes with respect to the group G_i are $\{Q_{ik}^l = \{i + ul + Q_k\} \mid 1 \le k \le 5, 0 \le l \le 4\}$, where each $Q_k = \{B + 5ut \mid B \in C_k, |C_k| = u - 1, 0 \le t \le 3\}$ is a partial parallel class with respect to G_0 . The blocks in each C_k are listed below.

u = 4:	\mathcal{C}_1	(1; 2, 63, 66, 67)	(5; 10, 34, 71, 15)	(18; 9, 39, 37, 53)	
	C_2	(1; 3, 55, 14, 71)	(2; 19, 9, 53, 5)	(7; 10, 38, 26, 57)	
	C_3	(1;14,18,35,47)	(2; 17, 43, 9, 25)	(13; 46, 51, 50, 39)	
	C_4	(1;23,70,26,79)	(2;29,27,25,51)	(15; 53, 77, 58, 74)	
	C_5	(1; 31, 46, 7, 10)	(2;29,43,35,13)	(19; 14, 18, 25, 77)	
<i>u</i> = 6:	C_1	(1; 34, 3, 35, 2)	(11;7,8,10,39)	(15;77,29,76,26)	(43; 82, 51, 23, 80)
		(44; 58, 87, 85, 79)			
	C_2	(2; 109, 77, 97, 105)	(13; 118, 46, 111, 44)	(27; 4, 59, 35, 86)	(31;69,8,11,100)
		(33; 85, 112, 80, 113)			
	C_3	(1;111,82,50,17)	(2;58,115,113,27)	(3; 59, 19, 97, 95)	(4; 98, 69, 13, 71)
		(45;74,116,100,76)			
	C_4	(1;58,94,119,38)	(3;80,47,49,106)	(2;101,103,37,70)	(35; 82, 75, 85, 81)
		(83; 39, 86, 104, 117)			
	C_5	(1; 52, 16, 23, 28)	(2;103,65,77,9)	(4; 86, 111, 71, 14)	(8; 19, 70, 37, 3)
		(25; 20, 29, 57, 75)			
u = 8:	C_1	(1;22,110,45,101)	(28; 126, 151, 2, 26)	(39; 157, 129, 18, 84)	(67; 54, 97, 76, 100)
		(93; 145, 35, 33, 143)	(95; 118, 34, 139, 123)	(149;130,127,131,12)	
	C_2	(3; 113, 74, 49, 105)	(53; 79, 137, 150, 52)	(62; 19, 55, 103, 149)	(100; 27, 31, 26, 6)
		(124; 2, 41, 21, 155)	(127;138,117,116,68)	(130; 118, 5, 94, 51)	
	C_3	(13;60,33,74,102)	(17; 155, 109, 70, 147)	(47; 129, 94, 139, 12)	(77; 106, 79, 23, 108)
		(84; 55, 45, 101, 158)	(105;71,46,130,51)	(121; 138, 3, 76, 82)	
	C_4	(18;73,137,93,55)	(51;61,50,106,100)	(121;159,118,124,85)	(59;74,86,87,2)
		(68;49,54,3,111)	(143; 147, 77, 150, 155)	(145;69,62,36,92)	
	C_5	(11; 2, 6, 78, 138)	(39; 130, 19, 53, 153)	(68; 147, 62, 117, 41)	(76;71,146,89,154)
		(109; 103, 75, 14, 84)	(110; 25, 17, 12, 125)	(123; 141, 15, 60, 127)	

Let $L = \{3, 4, 5, 6, 8\}$, for all other values of u with $u \ge 3$ and $u \notin L$, apply Construction 1.2 with a (L, 1, u)-PBD from [3] and a $(K_{1,4}, 2)$ -frame of type 20^k for each $k \in L$ constructed above to obtain the conclusion. \Box

Lemma 1.12. There exists a $(K_{1,4}, 2)$ -frame of type 4^u for $u \equiv 1 \pmod{5}$ and $u \ge 6$.

Proof: For u = 6, 11, let the vertex set be \mathbb{Z}_{4u} , and let the groups be $G_i = \{i, i + u, i + 2u, i + 3u\}, 0 \le i \le u - 1$. The required 5 partial parallel classes with respect to the group G_i are $\{Q_{ik} = \{B + i + uj \mid B \in C_k, |C_k| = \frac{u-1}{5}, 0 \le j \le 3\} \mid 1 \le k \le 5\}$. The blocks in each C_k are listed below respectively.

u = 6: C_1 (2; 9, 13, 11, 4) C_2 (1;23,21,22,2) C_3 (1;22,11,21,14) C_4 (2;1,9,10,11) (3; 8, 11, 13, 22) C_5 $u = 11: \quad C_1 \quad (1; 2, 3, 4, 5)$ (6; 7, 8, 9, 10) C_2 (1;6,7,8,9) (2; 10, 12, 14, 15) C_3 (1; 6, 7, 8, 10)(2; 12, 14, 15, 16) C_4 (1; 10, 15, 16, 17) (2; 18, 19, 20, 21)(1;16,18,19,20) (4; 24, 25, 27, 28) C_5

For $u \ge 16$, we begin with a $(K_{1,4}, 2)$ -frame of type $20^{\frac{u-1}{5}}$ by Lemma 1.11 and apply Construction 1.4 with $\varepsilon = 1$ to get the required $(K_{1,4}, 2)$ -frame of type 4^u , where the input design a $(K_{1,4}, 2)$ -frame of type 4^6 .

Theorem 1.13. There exists a $(K_{1,4}, 2)$ -frame of type g^u if and only if $g \equiv 0 \pmod{4}$, $g(u-1) \equiv 0 \pmod{5}$, $u \ge 3$ and $q \equiv 0 \pmod{5}$ when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the following two cases.

1. $g \equiv 0 \pmod{20}$ and $u \ge 3$.

There exists a ($K_{1,4}$, 2)-frame of type 20^{*u*} by Lemma 1.11. Then apply Construction 1.1 with m = g/20 to get the required design.

2. $g \equiv 4, 8, 12, 16 \pmod{20}$ and $u \equiv 1 \pmod{5}$, $u \ge 6$.

A ($K_{1,4}$, 2)-frame of type 4^u exists by Lemma 1.12. Then we apply Construction 1.1 with m = g/4 to get a ($K_{1,4}$, 2)-frame of type g^u . \Box

1.3. (K_{1,4}, 4)-frames

Lemma 1.14. There exists a $(K_{1,4}, 4)$ -RGDD of type 10^2 .

Proof: Let the vertex set be \mathbb{Z}_{20} , and let the groups be $\{2u + i \mid 0 \le u \le 9\}$, i = 0, 1. For the required 25 parallel classes, 20 of which can be generated from a parallel class $\{(0; 1, 3, 5, 7), (2; 9, 11, 13, 15), (17; 6, 8, 10, 12), (19; 4, 14, 16, 18)\}$ by +1 (mod 20). The last 5 parallel classes can be generated from a parallel class $\{(0; 1, 3, 17, 19) + 5l \mid 0 \le l \le 3\}$ by +*j* (mod 20), $0 \le j \le 4$. \Box

Lemma 1.15. There exists a $(K_{1,4}, 4)$ -frame of type 10^u for $u \ge 3$.

Proof: For u = 3, 5, there exists a ($K_{1,4}, 4$)-RGDD of type 10^2 by Lemma 1.14. Apply Construction 1.3 to get the required ($K_{1,4}, 4$)-frame of type 10^u .

For u = 4, 6, 8, let the vertex set be \mathbb{Z}_{10u} , and let the groups be $G_i = \{i + uj \mid 0 \le j \le 9\}, 0 \le i \le u - 1$. The required 25 partial parallel classes with respect to the group G_i are $\{Q_{ik}^l = \{i + ul + Q_k\} \mid 1 \le k \le 5, 0 \le l \le 4\}$, where each $Q_k = \{B + 5ut \mid B \in C_k, |C_k| = u - 1, t = 0, 1\}$ is a partial parallel class with respect to G_0 . The blocks in each C_k are listed below.

u = 4:	\mathcal{C}_1	(1; 2, 3, 6, 7)	(5;10,11,14,15)	(18;9,13,17,19)	
	C_2	(1; 2, 3, 6, 7)	(5; 11, 14, 15, 18)	(10; 13, 17, 19, 29)	
	C_3	(1; 3, 11, 14, 15)	(2; 5, 9, 13, 19)	(7;10,17,18,26)	
	C_4	(1; 3, 14, 15, 18)	(2; 5, 9, 13, 27)	(17;6,10,31,39)	
	C_5	(1; 14, 15, 18, 19)	(2; 17, 23, 25, 27)	(11;26,29,30,33)	
<i>u</i> = 6:	\mathcal{C}_1	(1; 34, 3, 2, 35) (29; 25, 58, 57, 56)	(7;10,9,41,8)	(13;47,16,15,14)	(19; 22, 23, 21, 20)
	C_2	(3; 19, 20, 17, 14) (57; 28, 29, 5, 52)	(31; 8, 11, 9, 40)	(32;13,7,45,46)	(34; 51, 55, 26, 53)
	C_3	(1; 11, 8, 39, 10) (57; 29, 35, 28, 52)	(2; 37, 15, 16, 13)	(3;47,49,20,14)	(34; 51, 26, 55, 23)
	C_4	(2; 21, 22, 15, 47) (31: 40, 9, 8, 41)	(3; 43, 19, 16, 53)	(5;44,58,56,37)	(20; 27, 4, 55, 59)
	C_5	(1; 16, 8, 4, 51) (23; 15, 19, 50, 57)	(2;39,47,7,22)	(3;26,59,58,44)	(10; 35, 41, 43, 25)
<i>u</i> = 8:	\mathcal{C}_1	(1; 53, 5, 43, 31) (57; 78, 69, 66, 36)	(22; 65, 28, 19, 58) (61; 23, 6, 39, 75)	(27; 77, 74, 10, 42) (70; 20, 15, 44, 49)	(47; 54, 12, 11, 73)
	C_2	(3; 34, 9, 2, 53) (33; 29, 50, 23, 55)	(18; 4, 57, 54, 5) (39; 46, 65, 27, 19)	(20; 22, 7, 77, 61) (76; 70, 51, 38, 1)	(26; 12, 71, 75, 68)
	C_3	(2; 25, 49, 15, 7) (44; 78, 71, 61, 62)	(17; 43, 6, 63, 69) (45; 34, 30, 33, 11)	(35; 53, 28, 36, 26) (60; 54, 50, 67, 39)	(41; 58, 37, 19, 12)
	\mathcal{C}_4	(5; 42, 46, 63, 52) (39; 49, 68, 70, 19)	(14; 25, 34, 66, 10) (58; 60, 76, 29, 15)	(22;61,7,77,3) (67:53,31,44,57)	(38; 41, 35, 51, 33)
	C_5	(3; 5, 1, 74, 12) (42; 47, 23, 15, 61)	(29; 14, 10, 17, 28) (62; 9, 11, 31, 59)	(30; 53, 65, 75, 77) (78; 60, 26, 58, 79)	(33; 67, 6, 44, 76)

Let $L = \{3, 4, 5, 6, 8\}$, for all other values of u with $u \ge 3$ and $u \notin L$, apply Construction 1.2 with a (L, 1, u)-PBD from [3] and a $(K_{1,4}, 4)$ -frame of type 10^k for each $k \in L$ constructed above to get the conclusion.

Lemma 1.16. There exists a $(K_{1,4}, 4)$ -frame of type 2^u for $u \equiv 1 \pmod{5}$ and $u \ge 6$.

Proof: For u = 6, 11, let the vertex set be \mathbb{Z}_{2u} , and let the groups be $G_i = \{i, i+u\}, 0 \le i \le u-1$. The required 5 partial parallel classes with respect to the group G_i are $\{Q_{ik} = \{B+i+uj \mid B \in C_k, |C_k| = \frac{u-1}{5}, j = 0, 1\} \mid 1 \le k \le 5\}$. The blocks in each C_k are listed below respectively.

u = 6:	\mathcal{C}_1	(1; 11, 2, 9, 4)	C_2 (1; 8, 4, 3, 5)	C_3	(2;1,4,5,9)	C_4 (2; 1, 3, 4, 5)	C_5	(3;7,8,10,11)
u = 11:	\mathcal{C}_1	(1;2,3,4,5)	(6;7,8,9,10)	C_2	(1;6,7,9,8)	(2; 10, 14, 15, 16)		
	C_3	(1; 2, 3, 4, 5)	(6;7,8,9,10)	C_4	(1;6,7,8,9)	(3; 10, 13, 16, 15)		
	C_5	(1;6,7,8,14)	(4;9,10,13,16)					

For $u \ge 16$, we begin with a $(K_{1,4}, 4)$ -frame of type $10^{\frac{u-1}{5}}$ by Lemma 1.15 and apply Construction 1.4 with $\varepsilon = 1$ to get the required $(K_{1,4}, 4)$ -frame of type 2^u , where the input design a $(K_{1,4}, 4)$ -frame of type 2^6 . \Box

Theorem 1.17. There exists a $(K_{1,4}, 4)$ -frame of type g^u if and only if $g \equiv 0 \pmod{2}$, $g(u - 1) \equiv 0 \pmod{5}$, $u \ge 3$ and $g \equiv 0 \pmod{5}$ when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the following 2 cases.

1. $g \equiv 0 \pmod{10}$ and $u \ge 3$.

There exists a ($K_{1,4}$, 4)-frame of type 10^{*u*} by Lemma 1.15. Then apply Construction 1.1 with m = g/10 to get the required design.

2. $g \equiv 2, 4, 6, 8 \pmod{10}$ and $u \equiv 1 \pmod{5}$, $u \ge 6$.

A ($K_{1,4}$, 4)-frame of type 2^{*u*} exists by Lemma 1.16. Then we apply Construction 1.1 with m = g/2 to get a ($K_{1,4}$, 4)-frame of type g^u .

1.4. (K_{1,4}, 8)-frames

Lemma 1.18. There exists a $(K_{1,4}, 8)$ -RGDD of type 5^2 .

Proof: Let the vertex set be \mathbb{Z}_{10} and the groups be $\{i, 2 + i, 4 + i, 6 + i, 8 + i\}$, i = 0, 1. For the required 25 parallel classes, 20 of which can be generated from two parallel classes $\{(0; 1, 3, 5, 7), (9; 2, 4, 6, 8)\}$ and $\{(0; 1, 3, 5, 9), (7; 2, 4, 6, 8)\}$ by +1 (mod 10). The last 5 parallel classes can be generated from a parallel class $\{(0; 1, 3, 7, 9), (5; 6, 8, 2, 4)\}$ by +*j* (mod 10), $0 \le j \le 4$. \Box

Lemma 1.19. There exists a $(K_{1,4}, 8)$ -frame of type 5^u for $u \ge 3$.

Proof: For u = 3, 5, there exists a ($K_{1,4}$, 8)-RGDD of type 5² by Lemma 1.18. Apply Construction 1.3 to get the required ($K_{1,4}$, 8)-frame of type 5^{*u*}.

For u = 4, 6, 8, let the vertex set be \mathbb{Z}_{5u} , and let the groups be $G_i = \{i + uj \mid 0 \le j \le 4\}, 0 \le i \le u - 1$. The required 25 partial parallel classes with respect to the group G_i can be generated from 5 partial parallel classes $\{Q_{ik} = \{i + Q_k\} \mid 1 \le k \le 5\}$ by $+u \pmod{5u}$, where Q_k is a partial parallel class with respect to G_0 . The blocks in each Q_k are listed below.

u = 4:	Q_1	(1;10,6,19,3)	(2;7,13,17,9)	(5; 18, 15, 11, 14)		
	Q_2	(2; 15, 9, 5, 17)	(13;7,11,6,3)	(19; 18, 14, 1, 10)		
	Q_3	(1;15,3,6,7)	(5; 2, 14, 11, 18)	(10; 13, 19, 9, 17)		
	Q_4	(3; 14, 2, 9, 6)	(17;7,18,11,19)	(15; 13, 10, 1, 5)		
	Q_5	(7;18,9,6,10)	(2; 1, 3, 5, 15)	(14; 19, 13, 17, 11)		
u = 6:	Q_1	(11;28,20,22,27)	(13; 2, 8, 9, 17)	(26; 10, 21, 25, 29)	(7; 16, 14, 5, 23)	(4; 19, 15, 3, 1)
	Q_2	(22; 2, 15, 26, 1)	(29; 25, 7, 16, 21)	(27; 17, 8, 19, 4)	(9;10,11,20,23)	(28; 3, 14, 13, 5)
	Q_3	(10; 9, 11, 3, 23)	(25; 29, 8, 28, 21)	(22; 17, 20, 2, 14)	(16; 27, 15, 19, 7)	(4; 1, 26, 5, 13)
	Q_4	(8; 3, 25, 15, 22)	(28; 5, 23, 17, 20)	(16; 14, 19, 7, 27)	(9; 29, 26, 10, 11)	(4;21,13,2,1)
	Q_5	(25; 17, 20, 27, 15)	(23; 13, 3, 8, 9)	(26; 22, 16, 11, 29)	(5; 1, 21, 14, 28)	(2;7,19,10,4)
u = 8:	Q_1	(23; 26, 33, 34, 35)	(21; 36, 22, 20, 3)	(31;27,2,30,17)	(9;6,29,18,37)	
		(10; 12, 39, 38, 15)	(13; 11, 25, 28, 4)	(1; 19, 14, 7, 5)		
	Q_2	(35; 31, 17, 38, 9)	(26; 3, 6, 7, 5)	(29; 11, 22, 12, 4)	(23; 1, 34, 18, 33)	
		(14; 13, 39, 15, 20)	(25; 10, 36, 2, 37)	(21;28,27,19,30)		
	Q_3	(10; 27, 14, 15, 38)	(31; 33, 26, 1, 11)	(4; 23, 22, 18, 17)	(30; 37, 25, 9, 19)	
		(6; 12, 21, 20, 2)	(36; 13, 5, 39, 29)	(34; 3, 28, 35, 7)		
	Q_4	(35; 4, 37, 12, 17)	(27; 21, 1, 39, 34)	(11;13,25,14,2)	(30; 36, 10, 3, 7)	
		(18; 29, 15, 28, 22)	(38; 9, 19, 20, 23)	(5;26,6,33,31)		
	Q_5	(11; 13, 6, 21, 38)	(9;35,36,5,34)	(10; 15, 14, 23, 17)	(28; 18, 30, 7, 37)	
		(12; 2, 19, 39, 22)	(4; 3, 25, 27, 1)	(26;29,20,33,31)		

Let $L = \{3, 4, 5, 6, 8\}$, for all other values of u with $u \ge 3$ and $u \notin L$, apply Construction 1.2 with a (L, 1, u)-PBD from [3] and a $(K_{1,4}, 8)$ -frame of type 5^k for each $k \in L$ constructed above to obtain the conclusion. \Box

Lemma 1.20. There exists a $(K_{1,4}, 8)$ -frame of type 1^u for $u \equiv 1 \pmod{5}$ and $u \ge 6$.

Proof: For u = 6, 11, let the vertex set be \mathbb{Z}_u , and let the groups be $G_i = \{i\}, 0 \le i \le u - 1$. The required 5 partial parallel classes with respect to the group G_i are $\{Q_{ik} = \{B + i \mid B \in C_k, |C_k| = \frac{u-1}{5}\} \mid 1 \le k \le 5\}$. The blocks in each C_k are listed below respectively.

u = 6:	C_1	(1; 2, 3, 4, 5)	C_2 (2; 1, 3, 4, 5)	C_3	(3; 1, 2, 4, 5)	C_4 (4; 1, 2, 3, 5)	C_5	(5;1,2,3,4)
u = 11:	\mathcal{C}_1	(2; 1, 5, 6, 4)	(3;7,8,10,9)	C_2	(1; 2, 9, 3, 10)	(5; 6, 8, 7, 4)		
	C_3	(6;9,10,7,8)	(1; 3, 5, 2, 4)	C_4	(1;5,3,2,6)	(4; 8, 7, 10, 9)		
	C_5	(1; 2, 4, 6, 7)	(5; 3, 8, 9, 10)					

For $u \ge 16$, we begin with a $(K_{1,4}, 8)$ -frame of type $5^{\frac{u-1}{5}}$ by Lemma 1.19 and apply Construction 1.4 with $\varepsilon = 1$ to get the required $(K_{1,4}, 8)$ -frame of type 1^u , where the input design a $(K_{1,4}, 8)$ -frame of type 1^6 . \Box

Theorem 1.21. There exists a $(K_{1,4}, 8)$ -frame of type g^u if and only if $g(u - 1) \equiv 0 \pmod{5}$, $u \ge 3$ and $g \equiv 0 \pmod{5}$ when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the following 2 cases.

1. $g \equiv 0 \pmod{5}$ and $u \ge 3$.

There exists a ($K_{1,4}$, 8)-frame of type 5^{*u*} by Lemma 1.19. Then apply Construction 1.1 with m = g/5 to get the required design.

2. $g \equiv 1, 2, 3, 4 \pmod{5}$ and $u \equiv 1 \pmod{5}$, $u \ge 6$.

A ($K_{1,4}$, 8)-frame of type 1^{*u*} exists by Lemma 1.20. Then we apply Construction 1.1 with m = g to get a ($K_{1,4}$, 8)-frame of type g^u . \Box

1.5. Main results on $(K_{1,4}, \lambda)$ -frames

Proof of Theorem 0.3: The necessary conditions for the existence of a ($K_{1,4}$, λ)-frame of type g^u are clearly established by Theorem 0.1. Now we consider its sufficiency and distinguish into 4 cases.

1. $\lambda \equiv 1 \pmod{2}$.

There exists a $K_{1,4}$ -frame of type g^{μ} by Theorem 1.9. Repeat each block λ times to get a $(K_{1,4}, \lambda)$ -frame of type g^{μ} .

2. $\lambda \equiv 2 \pmod{4}$.

A ($K_{1,4}$, 2)-frame of type g^u exists by Theorem 1.13. Repeat each block $\lambda/2$ times to get the conclusion.

3. $\lambda \equiv 4 \pmod{8}$.

A ($K_{1,4}$, 4)-frame of type g^u exists by Theorem 1.17. Repeat each block $\lambda/4$ times to get a ($K_{1,4}$, λ)-frame of type g^u .

4. $\lambda \equiv 0 \pmod{8}$.

There exists a ($K_{1,4}$, 8)-frame of type g^u by Theorem 1.21. Repeat each block $\lambda/8$ times to get the required design. \Box

2. The existence of $(K_{1,4}, \lambda)$ -RGDDs

Now we state some basic recursive constructions for ($K_{1,n}$, λ)-RGDDs. Similar proofs of these constructions can be found in [1, 2, 5].

Construction 2.1. *If there exists a* $(K_{1,n}, \lambda)$ -RGDD *of type* g^u *, then there is a* $(K_{1,n}, \lambda)$ -RGDD *of type* $(mg)^u$ *for any* $m \ge 1$.

Construction 2.2. If there exist a $(K_{1,n}, \lambda)$ -RGDD of type $(gu)^l$ and a $(K_{1,n}, \lambda)$ -RGDD of type g^u , then there is a $(K_{1,n}, \lambda)$ -RGDD of type g^{ul} .

Construction 2.3. If there exist a $(K_{1,n}, \lambda)$ -frame of type $(g(u - 1))^l$ and a $(K_{1,n}, \lambda)$ -RGDD of type g^u , then there exists a $(K_{1,n}, \lambda)$ -RGDD of type $g^{l(u-1)+1}$.

Proof: Suppose there is a $(K_{1,n}, \lambda)$ -frame of type $(g(u - 1))^l$ with the groups G_j , $1 \le j \le l$, then there are $\frac{\lambda g(n+1)(u-1)}{2n}$ partial parallel classes missing G_j , $1 \le j \le l$, denoted by $\{Q_j^i \mid 1 \le i \le \frac{\lambda g(n+1)(u-1)}{2n}\}$. Add g new common vertices to the vertex set of G_j and form a new vertex set G'_j . Then break up G'_j with a $(K_{1,n}, \lambda)$ -RGDD of type g^u with the groups $G_j^1, G_j^2, \ldots, G_j^{u-1}, M$, where the g common vertices are viewed as a new group M. It has $\frac{\lambda g(n+1)(u-1)}{2n}$ parallel classes, denoted by $\{P_j^i \mid 1 \le i \le \frac{\lambda g(n+1)(u-1)}{2n}\}$. Hence, $Q_j^i \cup P_j^i$ is a parallel class of the required $(K_{1,n}, \lambda)$ -RGDD of type $g^{l(u-1)+1}$, $1 \le i \le \frac{\lambda g(n+1)(u-1)}{2n}$, $1 \le j \le l$. Thus, we get $\frac{\lambda gl(n+1)(u-1)}{2n}$ parallel classes as required. \Box

Before the following construction, we first introduce a concept. Suppose *H* is a subgraph of a graph *G*, we use G - V(H) to denote the subgraph of *G* obtained by deleting the vertices in V(H) and all edges incident with them, and use G - E(H) to denote a subgraph of *G* obtained by deleting all edges in E(H).

Definition 2.4. Let *G* be a λ -fold complete (u+l)-partite graph with u+l groups $M_1, M_2, \ldots, M_{u+l}$ such that $|M_i| = g$ for each $1 \le i \le u+l$. Let *H* be a λ -fold complete *l*-partite graph with *l* groups (called holes) $M_{u+1}, M_{u+2}, \ldots, M_{u+l}$. An incomplete resolvable $(K_{1,n}, \lambda)$ -group divisible design of type g^u with *l* holes, denoted by $(K_{1,n}, \lambda)$ -IRGDD of type $g^{(u+l,l)}$, is a resolvable $(K_{1,n}, \lambda)$ -decomposition of G - E(H) in which there are $\frac{\lambda gu(n+1)}{2n}$ parallel classes of *G* and $\frac{\lambda g(n+1)(l-1)}{2n}$ partial parallel classes of G - V(H).

Lemma 2.5. There exists a $(K_{1,4}, 1)$ -IRGDD of type $1^{(65,25)}$.

Proof: Let the vertex set be $\mathbb{Z}_{40} \cup \{\infty_0, \infty_1, \dots, \infty_{24}\}$, and let the groups be $\{u\}$, $u \in \mathbb{Z}_{40}$, and $\{\infty_l\}$, $0 \le l \le 24$. The required 25 parallel classes and 15 partial parallel classes can be generated from 5 parallel classes $\{P_i \mid 1 \le i \le 5\}$, and 3 partial parallel classes $\{Q_j \mid 1 \le j \le 3\}$, by +8 (mod 40), respectively. The blocks in each P_i and Q_j are listed below respectively.

P_1	$(0; 14, 15, \infty_7, \infty_6)$	$(1; 16, 17, \infty_{11}, \infty_{12})$	$(2; 10, 11, \infty_{17}, \infty_8)$	$(3; 12, 21, \infty_{22}, \infty_{13})$
	$(4; 23, \infty_9, \infty_5, \infty_{18})$	$(5; 29, \infty_{10}, \infty_{23}, \infty_{14})$	$(6; 36, \infty_{15}, \infty_{16}, \infty_{19})$	$(7; 22, \infty_{20}, \infty_{21}, \infty_{24})$
	$(\infty_0; 8, 9, 18, 19)$	$(\infty_1; 26, 27, 20, 13)$	$(\infty_2; 28, 37, 30, 31)$	$(\infty_3; 38, 39, 24, 25)$
	$(\infty_4; 32, 33, 34, 35)$	(_, , , , , ,	(_, , , , , ,	
P_2	$(0; 16, 17, \infty_{12}, \infty_{11})$	$(1; 18, 19, \infty_{16}, \infty_{17})$	$(2; 12, 22, \infty_{22}, \infty_{13})$	$(3; 28, 29, \infty_2, \infty_{18})$
	$(4; 31, \infty_{14}, \infty_{10}, \infty_{23})$	$(5; 14, \infty_{15}, \infty_3, \infty_{19})$	$(6; 13, \infty_{20}, \infty_{21}, \infty_{24})$	$(7; 23, \infty_0, \infty_1, \infty_4)$
	$(\infty_5; 8, 9, 10, 11)$	$(\infty_6; 26, 27, 20, 21)$	$(\infty_7; 36, 37, 30, 15)$	$(\infty_8; 38, 39, 24, 25)$
	$(\infty_9; 32, 33, 34, 35)$	(. , , , ,	(. , , , , ,	(,
P_3	$(0; 18, 21, \infty_{17}, \infty_{16})$	$(1; 23, 28, \infty_{21}, \infty_{22})$	$(2; 8, 9, \infty_2, \infty_{18})$	$(3; 11, 30, \infty_7, \infty_{23})$
	$(4; 12, \infty_{19}, \infty_{15}, \infty_3)$	$(5; 39, \infty_{20}, \infty_8, \infty_{24})$	$(14; 29, \infty_0, \infty_1, \infty_4)$	$(7; 38, \infty_5, \infty_6, \infty_9)$
	$(\infty_{10}; 16, 17, 10, 19)$	$(\infty_{11}; 26, 27, 20, 13)$	$(\infty_{12}; 36, 37, 6, 15)$	$(\infty_{13}; 22, 31, 24, 25)$
	$(\infty_{14}; 32, 33, 34, 35)$			
P_4	$(0; 22, 23, \infty_{22}, \infty_{21})$	$(1; 21, 29, \infty_1, \infty_2)$	$(2; 28, 35, \infty_7, \infty_{23})$	$(3; 8, 9, \infty_{12}, \infty_3)$
	$(4; 10, \infty_{24}, \infty_{20}, \infty_8)$	$(13; 31, \infty_0, \infty_{13}, \infty_4)$	$(6; 12, \infty_5, \infty_6, \infty_9)$	$(7; 30, \infty_{10}, \infty_{11}, \infty_{14})$
	$(\infty_{15}; 16, 17, 18, 11)$	$(\infty_{16}; 26, 19, 20, 5)$	$(\infty_{17}; 36, 37, 14, 15)$	$(\infty_{18}; 38, 39, 24, 25)$
	$(\infty_{19}; 32, 33, 34, 27)$			
P_5	$(0; 28, 29, \infty_2, \infty_1)$	$(1; 30, 31, \infty_6, \infty_7)$	$(2; 23, 37, \infty_{12}, \infty_3)$	$(3; 36, 38, \infty_{17}, \infty_8)$
	$(4; 9, \infty_4, \infty_0, \infty_{13})$	$(5; 18, \infty_5, \infty_{18}, \infty_9)$	$(6; 16, \infty_{10}, \infty_{11}, \infty_{14})$	$(7; 19, \infty_{15}, \infty_{16}, \infty_{19})$
	$(\infty_{20}; 8, 17, 10, 11)$	$(\infty_{21}; 26, 27, 12, 13)$	$(\infty_{22}; 20, 21, 14, 15)$	$(\infty_{23}; 22, 39, 24, 25)$
	$(\infty_{24}; 32, 33, 34, 35)$			
Q_1	(0; 1, 2, 3, 4)	(5; 6, 7, 8, 9)	(10; 11, 12, 13, 14)	(15; 16, 17, 18, 19)
	(20; 21, 22, 23, 24)	(25; 26, 27, 28, 29)	(30; 31, 32, 33, 34)	(35; 36, 37, 38, 39)
Q_2	(0; 5, 6, 7, 8)	(1;9,10,11,12)	(2;13,14,15,16)	(3; 17, 18, 19, 20)
	(4; 21, 22, 24, 26)	(23; 28, 31, 32, 34)	(29; 35, 36, 37, 39)	(38; 25, 27, 30, 33)
Q3	(0;9,10,11,12)	(1;7,8,13,15)	(2;17,18,19,21)	(3; 16, 22, 23, 24)
	(4; 20, 25, 29, 30)	(5; 31, 32, 35, 36)	(14; 26, 33, 37, 38)	(39; 6, 27, 28, 34)

Lemma 2.6. There exists a $(K_{1,4}, 1)$ -IRGDD of type $4^{(15,5)}$.

Proof: Let the vertex set be $\mathbb{Z}_{40} \cup \{\infty_0, \infty_1, \dots, \infty_{19}\}$, and let the groups be $\{u, 10 + u, 20 + u, 30 + u\}$, $0 \le u \le 9$, and $\{\infty_l, \infty_{5+l}, \infty_{10+l}, \infty_{15+l}\}$, $0 \le l \le 4$. The required 25 parallel classes and 10 partial parallel classes can be generated from 5 parallel classes $\{P_i \mid 1 \le i \le 5\}$, and 2 partial parallel classes $\{Q_j \mid 1 \le j \le 2\}$, by +8 (mod 40), respectively. The blocks in each P_i and Q_j are listed below respectively.

P_1	$(0; 9, 11, \infty_5, \infty_6)$	$(1; 8, 14, \infty_9, \infty_{10})$	$(2; 10, 17, \infty_{14}, \infty_{15})$	$(3; 12, 16, \infty_{18}, \infty_{19})$
	$(4; 15, 18, \infty_4, \infty_7)$	$(5; 19, 20, \infty_8, \infty_{11})$	$(6; 13, 21, \infty_{12}, \infty_{13})$	$(7; 22, 23, \infty_{16}, \infty_{17})$
	$(\infty_0; 24, 25, 26, 27)$	$(\infty_1; 34, 35, 28, 29)$	$(\infty_2; 36, 37, 38, 39)$	$(\infty_3; 30, 31, 32, 33)$
P_2	$(0; 14, 15, \infty_9, \infty_{10})$	$(1; 16, 17, \infty_{13}, \infty_{14})$) $(2; 8, 9, \infty_{18}, \infty_{19})$	$(3; 10, 11, \infty_2, \infty_3)$
	$(4; 12, 19, \infty_8, \infty_{11})$	$(5; 18, 21, \infty_{12}, \infty_{15})$) $(6; 20, 23, \infty_{16}, \infty_{17})$	$(7; 13, 38, \infty_0, \infty_1)$
	$(\infty_4; 24, 25, 26, 27)$	$(\infty_5; 34, 35, 28, 29)$	$(\infty_6; 36, 37, 30, 39)$	$(\infty_7; 22, 31, 32, 33)$
P_3	$(0; 16, 17, \infty_{13}, \infty_{14})$	$(1; 15, 18, \infty_{17}, \infty_{18})$) $(2; 19, 20, \infty_2, \infty_3)$	$(3; 8, 9, \infty_6, \infty_7)$
	$(4; 10, 11, \infty_{12}, \infty_{15})$	$(5; 12, 14, \infty_{16}, \infty_{19})$) $(6; 22, 39, \infty_0, \infty_1)$	$(7; 21, 29, \infty_4, \infty_5)$
	$(\infty_8; 24, 25, 26, 27)$	$(\infty_9; 34, 35, 28, 13)$	$(\infty_{10}; 36, 37, 30, 31)$	$(\infty_{11}; 23, 38, 32, 33)$
P_4	$(0; 18, 19, \infty_{17}, \infty_{18})$	$(1; 20, 22, \infty_1, \infty_2)$	$(2; 21, 23, \infty_6, \infty_7)$	$(3; 14, 25, \infty_{10}, \infty_{11})$
	$(4; 9, 31, \infty_{16}, \infty_{19})$	$(5; 10, 11, \infty_0, \infty_3)$	$(6; 24, 29, \infty_4, \infty_5)$	$(7; 12, 16, \infty_8, \infty_9)$
	$(\infty_{12}; 8, 17, 26, 27)$	$(\infty_{13}; 34, 35, 28, 13)$	$(\infty_{14}; 36, 37, 38, 39)$	$(\infty_{15}; 15, 30, 32, 33)$
P_5	$(0; 21, 23, \infty_1, \infty_2)$	$(1; 28, 29, \infty_5, \infty_6)$	$(2; 18, 30, \infty_{10}, \infty_{11})$	$(3; 22, 31, \infty_{14}, \infty_{15})$
	$(4; 16, 20, \infty_0, \infty_3)$	$(13; 24, 35, \infty_4, \infty_7)$	$(6; 17, 19, \infty_8, \infty_9)$	$(15; 26, 33, \infty_{12}, \infty_{13})$
	$(\infty_{16}; 8, 9, 10, 11)$	$(\infty_{17}; 34, 27, 36, 37)$	$(\infty_{18}; 5, 7, 12, 14)$	$(\infty_{19}; 25, 32, 38, 39)$
Q_1	(0; 1, 2, 3, 4)	(5;6,7,8,9)	(10; 11, 12, 13, 14) (15	5; 16, 17, 18, 19)
	(20; 21, 22, 23, 24)	(25; 26, 27, 28, 29)	(30; 31, 32, 33, 34) (35	5; 36, 37, 38, 39)
Q_2	(0; 5, 6, 7, 8)	(1;9,10,12,13)	(2; 11, 14, 15, 16) (3;	17, 18, 19, 20)
	(4; 21, 22, 23, 32)	(30; 25, 35, 36, 38)	(37; 24, 26, 28, 29) (39	9;27,31,33,34)

Construction 2.7. Suppose there exist a $(K_{1,n}, \lambda)$ -frame of type $(gu)^t$, a $(K_{1,n}, \lambda)$ -IRGDD of type $g^{(u+l,l)}$, and a $(K_{1,n}, \lambda)$ -RGDD of type g^{u+l} , then there exists a $(K_{1,n}, \lambda)$ -RGDD of type g^{ut+l} .

Proof: We start with a $(K_{1,n}, \lambda)$ -frame of type $(gu)^t$ with the groups G_j , $1 \le j \le t$. There are $\frac{\lambda gu(n+1)}{2n}$ partial parallel classes missing G_j , denoted by $\{Q_i^i | 1 \le i \le \frac{\lambda gu(n+1)}{2n}\}$. Add gl new common vertices to the vertex set of each G_j and form a new vertex set G'_j .

For $1 \leq j \leq t-1$, break up G'_i with a $(K_{1,n}, \lambda)$ -IRGDD of type $g^{(u+l,l)}$ with the groups $G^1_i, G^2_i, \ldots, G^u_i$, M^1, M^2, \ldots, M^l , where the *gl* common vertices are viewed as *l* holes M^1, M^2, \ldots, M^l . It has $\frac{\lambda gu(n+1)}{2n}$ parallel classes (denoted by $\{R_i^i \mid 1 \le i \le \frac{\lambda gu(n+1)}{2n}\}$) and $\frac{\lambda g(n+1)(l-1)}{2n}$ partial parallel classes (denoted by $\{S_i^i \mid 1 \le i \le n\}$) $\frac{\lambda g(n+1)(l-1)}{2n}\}).$

For the last set G'_t , we break up it with a $(K_{1,n}, \lambda)$ -RGDD of type g^{u+l} with the groups $G^1_t, G^2_t, \dots, G^u_t$, M^1, M^2, \dots, M^l . Its $\frac{\lambda g(n+1)(u+l-1)}{2n}$ parallel classes are denoted by $\{R^i_t \mid 1 \le i \le \frac{\lambda g(n+1)(u+l-1)}{2n}\}$. Let $F^i_j = R^i_j \cup Q^i_j, 1 \le i \le \frac{\lambda gu(n+1)}{2n}, 1 \le j \le t$, and let $T_k = R_t^{\frac{\lambda gu(n+1)}{2n}+k} \cup (\bigcup_{j=1}^{t-1} S^k_j), 1 \le k \le \frac{\lambda g(n+1)(l-1)}{2n}$. It is easy to see F^i_j and T_k are parallel classes of the required $(K_{1,n}, \lambda)$ -RGDD of type g^{ut+l} . \Box

Construction 2.8. Suppose there exist a $(K_{1,n}, \lambda)$ -IRGDD of type $1^{(u+l,l)}$ and a $(K_{1,n}, \lambda)$ -RGDD of type 1^l , then there exists a ($K_{1,n}$, λ)-RGDD of type 1^{u+l} .

Proof: We start with $(K_{1,n}, \lambda)$ -IRGDD of type $1^{(u+l,l)}$ whose $\alpha = \frac{\lambda u(n+1)}{2n}$ parallel classes are denoted by $\{P_i \mid 1 \le i \le \alpha\}$, and whose $\beta = \frac{\lambda (n+1)(l-1)}{2n}$ partial parallel classes are denoted by $\{Q_j \mid 1 \le j \le \beta\}$. And $(K_{1,n}, \lambda)$ -RGDD of type 1^{*l*} with β parallel classes denoted by $\{P'_j \mid 1 \le j \le \beta\}$. Let $A_j = Q_j \cup P'_j, 1 \le j \le \beta$. Then both A_i and P_i are parallel classes on the whole vertex set, and they form a $(K_{1,n}, \lambda)$ -RGDD of type 1^{u+l} .

2.1. (K_{1.4}, 1)-RGDDs

Lemma 2.9. There exists a $(K_{1,4}, 1)$ -RGDD of type 5^u for $u \equiv 1 \pmod{8}$ and $u \ge 9$.

Proof: For u = 9, let the vertex set be \mathbb{Z}_{45} , and let the groups be $\{i+9j \mid 0 \le j \le 4\}, 0 \le i \le 8$. Let $C_1 = (0; 1, 2, 3, 4)$ and $C_2 = (0; 6, 7, 8, 14)$. For j = 1, 2, each C_j can generate a parallel class P_j by +5 (mod 45). P_j can generate 5 parallel classes by $+r \pmod{45}$, $0 \le r \le 4$. Thus, we get 10 parallel classes. The other 15 parallel classes can 26,36) (8;27,29,30,33), (9;28,31,39,44), (22;32,38,41,42), (23;34,35,40,43)} by +3 (mod 45).

For u = 17, let the vertex set be $\mathbb{Z}_{17} \times \mathbb{Z}_5$, and let the groups be $\{i\} \times \mathbb{Z}_5$, $i \in \mathbb{Z}_{17}$. For each $1 \le j \le 16$, the block C_j can generate a parallel class by (+1 (mod 17), –). The other 34 parallel classes can be generated from two parallel classes P_1 and P_2 by (+1 (mod 17), –). P_1 , P_2 and C_j are listed below respectively.

P_1	$(7_4; 8_3, 12_3, 0_4, 8_4)$	(03	$(4_3, 2_4, 5_4, 10_4)$	(81;61	$,7_{1},4_{2},11_{3})$	$(13_0; 1_0, 4)$	$(10_1, 11_4)$
	$(5_0; 2_0, 15_0, 3_1, 9_3)$	(15	$5_3; 0_2, 1_3, 7_3, 16_3)$	$(9_1; 1_1)$	$(4_1, 14_2, 12_4)$	$(12_1; 0_0, 6$	$5_0, 10_0, 2_1$
	$(15_2; 8_0, 14_0, 13_1, 16_2)$	(12	$2_0: 11_0, 16_0, 15_1, 7_2)$	(111:0	$(1, 14_1, 8_2, 12_2)$	(32:62.10	$(2, 6_3, 10_3)$
	$(13_2; 2_2, 11_2, 1_4, 3_4)$	(12	$(5_2, 9_2, 2_3, 4_4)$	(33:13	$5_3, 14_3, 14_4, 16_4$	(94:53.64	$(1.13_4, 15_4)$
	$(9_0; 3_0, 7_0, 5_1, 16_1)$	(2	., - 2, - 2, - 3, - 4,	(-)/	5, 5, 1, 1, 1,	(-1)-5)-1	() ··· 1) ··· 1)
P_2	$(15_2; 3_2, 8_3, 11_3, 14_3)$	(16	5 ₂ ; 13 ₃ , 9 ₄ , 13 ₄ , 14 ₄)	(70;12	$, 4_2, 3_3, 5_3)$	$(0_4; 3_0, 6_2)$	$(2, 8_2, 13_2)$
	$(10_4; 5_0, 16_0, 2_4, 12_4)$	(34	$(0_0, 8_0, 12_0, 6_1)$	(154;6	$(9_0, 9_0, 9_2, 14_2)$	$(5_4; 1_0, 0_1$	$,9_1,10_1)$
	$(6_3; 11_0, 8_1, 11_1, 12_1)$	(31	$;16_1,2_2,11_2,12_2)$	$(16_4; 7$	$(1, 15_1, 1_3, 4_4)$	$(2_0; 5_2, 7_2)$	$(10_2, 16_3)$
	$(6_4; 4_0, 10_0, 2_1, 4_1)$	(43	$(13_0, 14_0, 15_0, 5_1)$	(103;1	$2_3, 15_3, 1_4, 7_4)$	(131;03,2	$2_3, 9_3, 11_4)$
	$(8_4; 1_1, 14_1, 0_2, 7_3)$						
C_1	$(0_0; 8_1, 9_2, 5_3, 16_4)$	C_2	$(0_0; 5_1, 6_2, 3_3, 10_4)$	C_3	$(0_0; 4_1, 4_2, 2_3, 7_4)$) C ₄	$(0_0; 1_1, 2_2, 1_3, 1_4)$
C_5	$(0_1; 8_0, 7_2, 7_3, 16_4)$	C_6	$(0_1; 7_0, 6_2, 5_3, 10_4)$	C_7	$(0_1; 6_0, 4_2, 2_3, 8_4)$) C ₈	$(0_1; 1_0, 3_2, 1_3, 6_4)$
C_9	$(0_2; 7_0, 7_1, 6_3, 16_4)$	C_{10}	$(0_2; 4_0, 6_1, 5_3, 13_4)$	C_{11}	$(0_2; 2_0, 5_1, 4_3, 12)$	4) C_{12}	$(0_2; 1_0, 2_1, 2_3, 2_4)$
C_{13}	$(0_3; 8_0, 9_1, 9_2, 9_4)$	C_{14}^{10}	$(0_3; 7_0, 8_1, 8_2, 7_4)$	C_{15}^{11}	$(0_3; 6_0, 7_1, 6_2, 6_4)$	C_{16}	$(0_3; 1_0, 3_1, 5_2, 3_4)$
						~~~	

For  $u \ge 25$ , a ( $K_{1,4}$ , 1)-frame of type  $40^{\frac{u-1}{8}}$  exists by Theorem 1.9 and a ( $K_{1,4}$ , 1)-RGDD of type 5⁹ constructed above, we get the conclusion by applying Construction 2.3.

**Lemma 2.10.** There exists a ( $K_{1,4}$ , 1)-RGDD of type  $1^u$  for  $u \equiv 25 \pmod{40}$  and  $u \ge 25$ .

*Proof:* For u = 25, let the vertex set be  $\mathbb{Z}_5 \times \mathbb{Z}_5$ , and let the groups be  $\{i\}$ ,  $i \in \mathbb{Z}_5 \times \mathbb{Z}_5$ . The block  $C_1 = (0_0; 1_0, 2_0, 3_1, 4_2)$  can generate a parallel class  $P_1$  by  $(-, +1 \pmod{5})$ . The blocks  $C_2 = (0_0; 0_1, 0_2, 3_3, 1_4)$  and  $C_3 = (0_0; 1_1, 1_2, 2_3, 3_4)$  can generate two parallel classes  $P_2$  and  $P_3$  by  $(+1 \pmod{5})$ . We can get 5 parallel classes from  $P_1$  by  $(+1 \pmod{5})$ , -) and 10 parallel classes from  $P_2$  and  $P_3$  by  $(-, +1 \pmod{5})$ . We get the required 15 parallel classes.

For u = 65, there exist a ( $K_{1,4}$ , 1)-IRGDD of type 1^(65,25) by Lemma 2.5 and a ( $K_{1,4}$ , 1)-RGDD of type 1²⁵ constructed above, we get a ( $K_{1,4}$ , 1)-RGDD of type 1⁶⁵ by using Construction 2.8.

For u = 105, let the vertex set be  $\mathbb{Z}_{21} \times \mathbb{Z}_5$ , and let the groups be  $\{i\}$ ,  $i \in \mathbb{Z}_{21} \times \mathbb{Z}_5$ . For each  $1 \le j \le 44$ , the block  $C_j$  can generate a parallel class by (+1 (mod 21), -). The other 21 parallel classes can be generated from a parallel classes P by (+1 (mod 21), -). The blocks in P and  $C_i$  are listed below respectively.

Р	$(0_0; 3_0, 2_0, 1_0, 0_1)$	(11;31,3	$19_1, 2_1, 0_2)$	(12;32,22	, 19 ₂ , 8 ₃	3)	$(1_3; 2_3, 13_3, 3_3, 17_4)$
	$(1_4; 2_4, 7_4, 4_4, 4_0)$	$(5_0; 10_0)$	, 11 ₀ , 9 ₀ , 19 ₃ )	(51;101,9	1,201,3	34)	$(5_2; 10_2, 9_2, 16_2, 20_0)$
	$(6_3; 11_3, 12_3, 10_3, 8_1)$	(64; 154	$, 8_4, 14_4, 8_2)$	(60; 180, 1	7 ₀ ,11 ₁ ,	112)	$(6_1; 18_1, 16_1, 4_2, 16_3)$
	$(6_2; 12_2, 18_2, 18_3, 10_4)$	$(20_3; 9_3)$	$(17_3, 5_4, 12_0)$	$(11_4; 16_4,$	184,13	$(4_1)$	$(7_0; 15_0, 14_0, 5_3, 12_4)$
	$(7_1; 14_1, 15_1, 19_4, 16_0)$	$(7_2; 14_2)$	$(20_2, 8_0, 12_1)$	$(7_3; 0_3, 15)$	$3, 13_1, 1$	$15_2$ )	$(9_4; 20_4, 13_4, 13_2, 4_3)$
	$(19_0; 17_1, 17_2, 14_3, 0_4)$		,			_,	
$C_1$	$(0_1; 0_2, 0_3, 0_4, 1_0)$	$C_2$	$(0_2; 0_3, 0_4, 0_0)$	, 3 ₁ )	$C_3$	$(0_3; 0_4,$	$0_0, 1_1, 1_2)$
$C_4$	$(0_4; 0_0, 1_1, 1_2, 1_3)$	$C_5$	$(0_0; 1_1, 1_2, 1_3)$	, 14)	$C_6$	$(0_1; 1_2,$	$(1_3, 1_4, 3_0)$
$C_7$	$(0_2; 1_3, 1_4, 3_0, 4_1)$	$C_8$	$(0_3; 1_4, 1_0, 3_1)$	,22)	C9	$(0_4; 1_0,$	$(3_1, 3_2, 2_3)$
$C_{10}$	$(0_0; 2_1, 2_2, 2_3, 3_4)$	$C_{11}$	$(0_1; 2_2, 2_3, 2_4)$	, 4 ₀ )	$C_{12}$	$(0_2; 2_3,$	$2_4, 4_0, 6_1$ )
$C_{13}$	$(0_3; 2_4, 3_0, 4_1, 3_2)$	$C_{14}$	$(0_4; 4_0, 4_1, 5_2)$	, 3 ₃ )	$C_{15}$	$(0_0; 3_1,$	$(3_2, 3_3, 4_4)$
$C_{16}$	$(0_1; 3_2, 3_3, 3_4, 5_0)$	$C_{17}$	$(0_2; 3_3, 3_4, 5_0)$	,71)	$C_{18}$	(03;34,	$(4_0, 5_1, 4_2)$
$C_{19}$	$(0_4; 5_0, 5_1, 6_2, 4_3)$	$C_{20}$	$(0_0; 4_1, 4_2, 4_3)$	, 64)	$C_{21}$	(01;42,	$4_3, 4_4, 6_0$
$C_{22}$	$(0_2; 4_3, 5_4, 6_0, 8_1)$	$C_{23}$	$(0_3; 4_4, 6_0, 7_1)$	, 5 ₂ )	$C_{24}$	$(0_4; 6_0,$	$6_1, 7_2, 6_3)$
$C_{25}$	$(0_0; 6_1, 7_2, 5_3, 7_4)$	$C_{26}$	$(0_1; 5_2, 5_3, 5_4)$	,7 ₀ )	$C_{27}$	$(0_2; 5_3,$	$6_4, 7_0, 9_1$
$C_{28}$	$(0_3; 7_4, 8_0, 8_1, 6_2)$	$C_{29}$	$(0_4; 7_0, 7_1, 8_2)$	,73)	$C_{30}$	$(0_0; 7_1,$	$8_2, 6_3, 8_4)$
$C_{31}$	$(0_1; 6_2, 6_3, 6_4, 8_0)$	$C_{32}$	$(0_2; 6_3, 7_4, 8_0)$	, 10 ₁ )	$C_{33}$	(03;84,	$9_0, 9_1, 7_2)$
$C_{34}$	$(0_4; 8_0, 8_1, 9_2, 8_3)$	$C_{35}$	$(0_0; 8_1, 9_2, 7_3)$	,94)	$C_{36}$	$(0_1; 7_2,$	$7_3, 8_4, 10_0$
$C_{37}$	$(0_2; 8_3, 8_4, 9_0, 11_1)$	$C_{38}$	$(0_3; 9_4, 10_0, 1$	$0_1, 10_2)$	$C_{39}$	$(0_4; 9_0,$	$10_1, 10_2, 9_3)$
$C_{40}$	$(0_0; 9_1, 10_2, 9_3, 10_4)$	$C_{41}$	$(0_1; 8_2, 8_3, 9_4)$	, 11 ₀ )	$C_{42}$	$(0_2; 9_3,$	$9_4, 10_0, 12_1$
$C_{43}$	$(0_3; 10_4, 11_0, 12_1, 11_2)$	$C_{44}$	$(0_4; 10_0, 11_1,$	$11_2, 10_3)$			

For  $u \ge 145$ , a ( $K_{1,4}$ , 1)-frame of type  $40^{\frac{u-25}{40}}$  exists by Theorem 1.9, a ( $K_{1,4}$ , 1)-IRGDD of type  $1^{(65,25)}$  exists by Lemma 2.5, and a ( $K_{1,4}$ , 1)-RGDD of type  $1^{25}$  which is constructed above. Then apply Construction 2.7 to get the required design.  $\Box$ 

**Lemma 2.11.** There exists a ( $K_{1,4}$ , 1)-RGDD of type  $2^u$  for  $u \equiv 5 \pmod{20}$  and  $u \ge 5$ .

*Proof:* For u = 5, let the vertex set be  $\mathbb{Z}_{10}$ , and let the groups be  $\{i, i + 5\}, 0 \le i \le 4$ . The required 5 parallel classes are  $\{(0; 1, 2, 3, 4) + i, (6; 7, 8, 9, 10) + i\}$ .

For  $u \ge 25$ , a  $(K_{1,4}, 1)$ -frame of type  $8^{\frac{u-1}{5}}$  exists by Theorem 1.9 and a  $(K_{1,4}, 1)$ -RGDD of type  $2^5$  is constructed above, we get the conclusion by applying Construction 2.3.  $\Box$ 

**Lemma 2.12.** There exists a  $(K_{1,4}, 1)$ -RGDD of type  $10^u$  for  $u \equiv 1 \pmod{4}$  and  $u \ge 5$ .

*Proof:* For u = 5, apply Construction 2.1 with m = 5 and a ( $K_{1,4}$ , 1)-RGDD of type 2⁵ which exists by Lemma 2.11 to obtain the conclusion.

For u = 9, apply Construction 2.1 with m = 2 and a ( $K_{1,4}$ , 1)-RGDD of type 5⁹ which exists by Lemma 2.9 to obtain the required design.

For  $u \ge 13$ , a  $(K_{1,4}, 1)$ -frame of type  $40^{\frac{u-1}{4}}$  exists by Theorem 1.9 and a  $(K_{1,4}, 1)$ -RGDD of type  $10^5$  is constructed above, we get the conclusion by using Construction 2.3.

**Lemma 2.13.** There exists a  $(K_{1,4}, 1)$ -RGDD of type  $20^u$  for  $u \equiv 1 \pmod{2}$  and  $u \ge 3$ .

*Proof:* For u = 3, the conclusion comes from [10].

For u = 5, apply Construction 2.1 with m = 10 and a ( $K_{1,4}$ , 1)-RGDD of type 2⁵ which exists by Lemma 2.11 to obtain the conclusion.

For  $u \ge 7$ , there exist a  $(K_{1,4}, 1)$ -frame of type  $40^{\frac{u-1}{2}}$  by Theorem 1.9 and a  $(K_{1,4}, 1)$ -RGDD of type  $20^3$  from [10], we get the conclusion by using Construction 2.3.

**Lemma 2.14.** There exists a ( $K_{1,4}$ , 1)-RGDD of type  $4^u$  for  $u \equiv 5 \pmod{10}$  and  $u \ge 5$ .

*Proof:* For u = 5, apply Construction 2.1 with m = 2 and a ( $K_{1,4}$ , 1)-RGDD of type 2⁵ which exists by Lemma 2.11 to obtain the conclusion.

For u = 15, let the vertex set be  $\mathbb{Z}_{60}$ , and let the groups be  $\{i + 15j \mid 0 \le j \le 3\}$ ,  $0 \le i \le 14$ . The block (0; 4, 23, 31, 32) can generate a parallel class  $P_1$  by +5 (mod 60). The block set  $\{(7; 20, 21, 23, 29), (5; 10, 11, 12, 13), (19; 39, 44, 52, 58), (0; 1, 2, 3, 24), (8; 26, 27, 34, 25), (6; 15, 16, 17, 18)\}$  can generate a parallel class  $P_2$  by +30 (mod 60). We can get 5 parallel classes from  $P_1$  by +r (mod 60),  $0 \le r \le 4$ , and 30 parallel classes from  $P_2$  by +s (mod 60),  $0 \le s \le 29$ . Thus, we get the required 35 parallel classes.

For u = 25, apply Construction 2.1 with m = 4 and a ( $K_{1,4}$ , 1)-RGDD of type 1²⁵ which exists by Lemma 2.10 to obtain the conclusion.

For  $u \ge 35$ , a  $(K_{1,4}, 1)$ -frame of type  $40^{\frac{u-5}{10}}$  exists by Theorem 1.9, a  $(K_{1,4}, 1)$ -IRGDD of type  $4^{(15,5)}$  exists by Lemma 2.6, and a  $(K_{1,4}, 1)$ -RGDD of type  $4^{15}$  which is constructed above. Then apply Construction 2.7 to get the required design.  $\Box$ 

**Lemma 2.15.** There exists a ( $K_{1,4}$ , 1)-RGDD of type  $8^u$  for  $u \equiv 0 \pmod{5}$  and  $u \ge 5$ .

*Proof:* For u = 5, apply Construction 2.1 with m = 4 and a ( $K_{1,4}$ , 1)-RGDD of type 2⁵ which exists by Lemma 2.11 to obtain the conclusion.

For u = 10, let the vertex set be  $\mathbb{Z}_{80}$ , and let the groups be  $\{i + 10j \mid 0 \le j \le 7\}$ ,  $0 \le i \le 9$ . For each  $1 \le l \le 4$ , the block set  $C_l$  can generate a parallel class  $P_l$  by +10 (mod 80). Each  $P_l$  can generate 10 parallel classes by +r (mod 80),  $0 \le r \le 9$ . The block (0;36,37,38,39) can generate a parallel class  $P_5$  by +5 (mod 80).  $P_5$  can generate 5 parallel classes by +s (mod 80),  $0 \le s \le 4$ . The blocks in  $C_l$  are listed below respectively.

For  $u \ge 15$ , there exist a  $(K_{1,4}, 1)$ -RGDD of type  $40^{\frac{1}{5}}$  from [10] and a  $(K_{1,4}, 1)$ -RGDD of type  $8^5$  which is constructed above, we get the conclusion by using Construction 2.2.

**Theorem 2.16.** A  $K_{1,4}$ -RGDD of type  $g^u$  exists if and only if  $g(u - 1) \equiv 0 \pmod{8}$ ,  $gu \equiv 0 \pmod{5}$ ,  $u \ge 2$ , and  $g \equiv 0 \pmod{5}$  when u = 2.

*Proof:* The necessary condition is obvious by Theorem 0.2. We distinguish the sufficient conditions into the following 8 cases.

1.  $g \equiv 0 \pmod{40}$  and  $u \ge 2$ .

There exists a  $K_{1,4}$ -RGDD of type 40^{*u*} from [10]. Then apply Construction 2.1 with m = g/40 to get the required design.

2.  $g \equiv 4, 12, 28, 36 \pmod{40}$  and  $u \equiv 5 \pmod{10}$ ,  $u \ge 5$ .

A  $K_{1,4}$ -RGDD of type  $4^u$  exists by Lemma 2.14. Then we apply Construction 2.1 with m = g/4 to get a  $K_{1,4}$ -RGDD of type  $g^u$ .

3.  $g \equiv 8, 16, 24, 32 \pmod{40}$  and  $u \equiv 0 \pmod{5}$ ,  $u \ge 5$ .

Similarly, we can use Construction 2.1 with m = g/8 and a  $K_{1,4}$ -RGDD of type 8^{*u*} by Lemma 2.15 to obtain the required design.

4.  $q \equiv 20 \pmod{40}$  and  $u \equiv 1 \pmod{2}$ ,  $u \ge 3$ .

We apply Construction 2.1 with m = g/20 and a  $K_{1,4}$ -RGDD of type  $20^u$  by Lemma 2.13 to get a  $K_{1,4}$ -RGDD of type  $g^u$ .

5.  $g \equiv 10 \pmod{20}$  and  $u \equiv 1 \pmod{4}$ ,  $u \ge 5$ .

A  $K_{1,4}$ -RGDD of type 10^{*u*} exists by Lemma 2.12. Then we apply Construction 2.1 with m = g/10 to get a  $K_{1,4}$ -RGDD of type  $g^{u}$ .

6.  $g \equiv 2, 6, 14, 18 \pmod{20}$  and  $u \equiv 5 \pmod{20}$ ,  $u \ge 5$ .

We apply Construction 2.1 with m = g/2 and a  $K_{1,4}$ -RGDD of type  $2^u$  by Lemma 2.11 to get a  $K_{1,4}$ -RGDD of type  $g^u$ .

7.  $g \equiv 5 \pmod{10}$  and  $u \equiv 1 \pmod{8}$ ,  $u \ge 9$ .

Similarly, we can use Construction 2.1 with m = g/5 and a  $K_{1,4}$ -RGDD of type 5^{*u*} by Lemma 2.9 to obtain the required design.

8.  $g \equiv 1, 3, 7, 9 \pmod{10}$  and  $u \equiv 25 \pmod{40}$ ,  $u \ge 25$ .

A  $K_{1,4}$ -RGDD of type 1^{*u*} exists by Lemma 2.10. Then we apply Construction 2.1 with m = g to get a  $K_{1,4}$ -RGDD of type  $g^u$ .  $\Box$ 

## 2.2. $(K_{1,4}, 2)$ -RGDDs

**Lemma 2.17.** There exists a  $(K_{1,4}, 2)$ -RGDD of type  $20^u$  for  $u \ge 2$ .

*Proof:* For  $u \equiv 1 \pmod{2}$ , there exists a  $K_{1,4}$ -RGDD of type  $20^u$  by Theorem 2.16. Repeat each block two times to get a ( $K_{1,4}$ , 2)-RGDD of type  $20^u$ .

For  $u \equiv 0 \pmod{2}$ , we first construct a  $(K_{1,4}, 2)$ -RGDD of type  $20^2$ . Let the vertex set be  $\mathbb{Z}_{40}$ , and let the groups be  $\{i + 2j \mid 0 \le j \le 19\}$ , i = 0, 1. The block set  $\{(0; 1, 3, 5, 7), (2; 9, 11, 13, 15), (17; 6, 8, 12, 30), (19; 4, 16, 18, 34)\}$  can generate a parallel class  $P_1$  by +20 (mod 40).  $P_1$  can generate 20 parallel classes by + $r \pmod{40}$ ,  $0 \le r \le 19$ . The block (0; 17, 19, 21, 23) can generate a parallel class  $P_2$  by +5 (mod 40).  $P_2$  can generate 5 parallel classes by + $s \pmod{40}$ ,  $0 \le s \le 4$ .

When  $u \ge 4$ , we can obtain a ( $K_{1,4}$ , 2)-RGDD of type  $40^{\frac{\mu}{2}}$  by repeating each block of a  $K_{1,4}$ -RGDD of type  $40^{\frac{\mu}{2}}$  (Theorem 2.16) two times. Then apply Construction 2.2 with a ( $K_{1,4}$ , 2)-RGDD of type  $20^2$  constructed above to get the required design.  $\Box$ 

**Lemma 2.18.** There exists a ( $K_{1,4}$ , 2)-RGDD of type  $1^u$  for  $u \equiv 5 \pmod{20}$  and  $u \ge 5$ .

*Proof:* For u = 5, let the vertex set be  $\mathbb{Z}_5$ , and the groups be  $\{i\}$ ,  $i \in \mathbb{Z}_5$ . The required parallel classes are  $(0; 1, 2, 3, 4) + i, 0 \le i \le 4$ .

For  $u \ge 25$ , there exist a ( $K_{1,4}$ , 2)-frame of type  $4^{\frac{u-1}{4}}$  by Theorem 1.13 and a ( $K_{1,4}$ , 2)-RGDD of type  $1^5$ , we get the conclusion by using Construction 2.3.  $\Box$ 

**Lemma 2.19.** There exists a ( $K_{1,4}$ , 2)-RGDD of type  $10^u$  for  $u \equiv 1 \pmod{2}$  and  $u \ge 3$ .

*Proof:* For u = 3, let the vertex set be  $\mathbb{Z}_{30}$ , and let the groups be  $\{i + 3j \mid 0 \le j \le 9\}$ ,  $0 \le i \le 2$ . The block set  $\{(25; 24, 15, 23, 20), (6; 28, 17, 26, 22), (14; 1, 12, 18, 19)\}$  can generate a parallel class  $P_1$  by +15 (mod 30).  $P_1$  can generate 15 parallel classes by +r (mod 30),  $0 \le r \le 14$ . The blocks (7; 18, 6, 15, 14) and (0; 4, 7, 13, 16) can generate 2 parallel classes  $P_2$  and  $P_3$  by +5 (mod 30). Each  $P_1$  (l = 2, 3) can generate 5 parallel classes by +s (mod 30),  $0 \le s \le 4$ .

For u = 5, there exists a  $K_{1,4}$ -RGDD of type 10⁵ by Theorem 2.16. Repeat each block two times to get the required design.

For  $u \ge 7$ , there exist a  $(K_{1,4}, 2)$ -frame of type  $20^{\frac{u-1}{2}}$  by Theorem 1.13 and a  $(K_{1,4}, 2)$ -RGDD of type  $10^3$ , we get the conclusion by using Construction 2.3.  $\Box$ 

**Lemma 2.20.** There exists a ( $K_{1,4}$ , 2)-RGDD of type  $2^u$  for  $u \equiv 5 \pmod{10}$  and  $u \ge 5$ .

*Proof:* For u = 5, there exists a  $K_{1,4}$ -RGDD of type 2⁵ by Theorem 2.16. Repeat each block two times to get the required design.

For  $u \ge 15$ , there is a  $(K_{1,4}, 2)$ -RGDD of type  $10^{\frac{\mu}{5}}$  by Lemma 2.19 and a  $(K_{1,4}, 2)$ -RGDD of type  $2^5$  which is constructed above, we get the conclusion by using Construction 2.2.

**Lemma 2.21.** There exists a ( $K_{1,4}$ , 2)-RGDD of type  $4^u$  for  $u \equiv 0 \pmod{5}$  and  $u \ge 5$ .

*Proof:* For u = 5, there exists a  $K_{1,4}$ -RGDD of type  $4^5$  by Theorem 2.16. Repeat each block two times to get the required design.

For  $u \ge 10$ , there exist a ( $K_{1,4}$ , 2)-RGDD of type  $20^{\frac{u}{5}}$  by Lemma 2.17 and a ( $K_{1,4}$ , 2)-RGDD of type  $4^5$ , we get the conclusion by using Construction 2.2.

**Lemma 2.22.** There exists a ( $K_{1,4}$ , 2)-RGDD of type  $5^u$  for  $u \equiv 1 \pmod{4}$  and  $u \ge 5$ .

*Proof:* For u = 5, there exists a ( $K_{1,4}$ , 2)-RGDD of type 1⁵ by Lemma 2.18. Then apply Construction 2.1 with m = 5 to get the conclusion.

For u = 9, there exists a  $K_{1,4}$ -RGDD of type 5⁹ by Theorem 2.16. Repeat each block two times to get the required design.

For  $u \ge 13$ , there exist a  $(K_{1,4}, 2)$ -frame of type  $20^{\frac{u-1}{4}}$  by Theorem 1.13 and a  $(K_{1,4}, 2)$ -RGDD of type 5⁵, we get the conclusion by using Construction 2.3.  $\Box$ 

**Theorem 2.23.** A ( $K_{1,4}$ , 2)-RGDD of type  $g^u$  exists if and only if  $g(u - 1) \equiv 0 \pmod{4}$ ,  $gu \equiv 0 \pmod{5}$ ,  $u \ge 2$ , and  $g \equiv 0 \pmod{5}$  when u = 2.

*Proof:* The necessary conditions for the existence of a ( $K_{1,4}$ , 2)-RGDD of type  $g^u$  are clearly established by Theorem 0.2. Now we consider its sufficiency and distinguish into the following 6 cases.

1.  $g \equiv 0 \pmod{20}$  and  $u \ge 2$ .

We use Construction 2.1 with m = g/20 and a ( $K_{1,4}$ , 2)-RGDD of type  $20^u$  by Lemma 2.17 to obtain the required design.

2.  $g \equiv 2, 6, 14, 18 \pmod{20}$  and  $u \equiv 5 \pmod{10}$ ,  $u \ge 5$ .

A ( $K_{1,4}$ , 2)-RGDD of type 2^{*u*} exists by Lemma 2.20. We apply Construction 2.1 with m = g/2 to obtain a ( $K_{1,4}$ , 2)-RGDD of type  $g^u$ .

3.  $g \equiv 4, 8, 12, 16 \pmod{20}$  and  $u \equiv 0 \pmod{5}$ ,  $u \ge 5$ .

Similarly, we can use Construction 2.1 with m = g/4 and a ( $K_{1,4}$ , 2)-RGDD of type 4^{*u*} by Lemma 2.21 to obtain the required design.

4.  $g \equiv 10 \pmod{20}$  and  $u \equiv 1 \pmod{2}$ ,  $u \ge 3$ .

A ( $K_{1,4}$ , 2)-RGDD of type 10^{*u*} exists by Lemma 2.19. We apply Construction 2.1 with m = g/10 to obtain a ( $K_{1,4}$ , 2)-RGDD of type  $q^u$ .

5.  $g \equiv 5 \pmod{10}$  and  $u \equiv 1 \pmod{4}$ ,  $u \ge 5$ .

We apply Construction 2.1 with m = g/5 and a  $(K_{1,4}, 2)$ -RGDD of type  $5^u$  by Lemma 2.22 to get a  $(K_{1,4}, 2)$ -RGDD of type  $g^u$ .

6.  $q \equiv 1, 3, 7, 9 \pmod{10}$  and  $u \equiv 5 \pmod{20}$ ,  $u \ge 5$ .

Similarly, we can use Construction 2.1 with m = g and a ( $K_{1,4}$ , 2)-RGDD of type 1^{*u*} by Lemma 2.18 to obtain the required design.  $\Box$ 

## 2.3. (K_{1,4}, 4)-RGDDs

**Lemma 2.24.** There exists a  $(K_{1,4}, 4)$ -RGDD of type  $10^u$  for  $u \ge 2$ .

*Proof:* For  $u \equiv 1 \pmod{2}$ , there exists a ( $K_{1,4}$ , 2)-RGDD of type  $10^u$  by Theorem 2.23. Repeat each block two times to get the required design.

For  $u \equiv 0 \pmod{2}$ , we first construct a ( $K_{1,4}$ , 4)-RGDD of type  $10^2$ . Let the vertex set be  $\mathbb{Z}_{20}$ , and let the groups be  $\{i+2j \mid 0 \le j \le 9\}$ , i = 0, 1. The parallel class  $P_1 = \{(0; 1, 3, 5, 7), (2; 9, 11, 13, 15), (17; 6, 8, 10, 12), (19; 4, 14, 16, 18)\}$  can generate 20 parallel classes by +1 (mod 20). The block (0; 1, 3, 17, 19) can generate a parallel class  $P_2$  by +5 (mod 20).  $P_2$  can generate 5 parallel classes by +*s* (mod 20),  $0 \le s \le 4$ .

When  $u \ge 4$ , we can obtain a  $(K_{1,4}, 4)$ -RGDD of type  $20^{\frac{1}{2}}$  by repeating each block of a  $(K_{1,4}, 2)$ -RGDD of type  $20^{\frac{1}{2}}$  (Theorem 2.23) two times. Then apply Construction 2.2 with a  $(K_{1,4}, 4)$ -RGDD of type  $10^2$  constructed above to get the required design.  $\Box$ 

**Lemma 2.25.** There exists a ( $K_{1,4}$ , 4)-RGDD of type  $5^u$  for  $u \equiv 1 \pmod{2}$  and  $u \ge 3$ .

*Proof:* For u = 3, let the vertex set be  $\mathbb{Z}_{30}$ , and let the groups be  $\{i + 3j \mid 0 \le j \le 4\}$ ,  $0 \le i \le 2$ . The parallel class  $P_1 = \{(0; 1, 2, 4, 5), (3; 7, 8, 11, 13), (14; 6, 9, 10, 12)\}$  can generate 15 parallel classes by +1 (mod 15). The blocks (0; 1, 2, 4, 8) and (0; 1, 2, 8, 14) can generate 2 parallel classes  $P_2$  and  $P_3$  by +5 (mod 15). Each  $P_i$  (l = 2, 3) can generate 5 parallel classes by +*s* (mod 15),  $0 \le s \le 4$ .

For u = 5, there exists a ( $K_{1,4}$ , 2)-RGDD of type 5⁵ by Theorem 2.23. Repeat each block two times to get the required design.

For  $u \ge 7$ , there exist a ( $K_{1,4}$ , 4)-frame of type  $10^{\frac{u-1}{2}}$  by Lemma 1.15 and a ( $K_{1,4}$ , 4)-RGDD of type 5³, we get the conclusion by using Construction 2.3.  $\Box$ 

**Lemma 2.26.** There exists a  $(K_{1,4}, 4)$ -RGDD of type  $1^u$  for  $u \equiv 5 \pmod{10}$  and  $u \ge 5$ .

*Proof:* For u = 5, there exists a ( $K_{1,4}$ , 2)-RGDD of type 1⁵ by Theorem 2.23. Repeat each block two times to get the required design.

For  $u \ge 15$ , there exist a  $(K_{1,4}, 4)$ -RGDD of type  $5^{\frac{u}{5}}$  by Lemma 2.25 and a  $(K_{1,4}, 4)$ -RGDD of type  $1^5$ , we get the conclusion by using Construction 2.2.

**Lemma 2.27.** There exists a ( $K_{1,4}$ , 4)-RGDD of type  $2^u$  for  $u \equiv 0 \pmod{5}$  and  $u \ge 5$ .

*Proof:* For u = 5, there exists a  $K_{1,4}$ -RGDD of type 2⁵ by Theorem 2.16. Repeat each block four times to get the required design.

For  $u \ge 10$ , there exist a ( $K_{1,4}$ , 4)-RGDD of type  $10^{\frac{u}{5}}$  by Lemma 2.24 and a ( $K_{1,4}$ , 4)-RGDD of type  $2^5$ , we get the conclusion by using Construction 2.2.

**Theorem 2.28.** A ( $K_{1,4}$ , 4)-RGDD of type  $g^u$  exists if and only if  $g(u - 1) \equiv 0 \pmod{2}$ ,  $gu \equiv 0 \pmod{5}$ ,  $u \ge 2$ , and  $g \equiv 0 \pmod{5}$  when u = 2.

*Proof:* The necessary condition is obvious by Theorem 0.2. We distinguish the sufficient conditions into the following 4 cases.

1.  $g \equiv 0 \pmod{10}$  and  $u \ge 2$ .

There exists a ( $K_{1,4}$ , 4)-RGDD of type 10^{*u*} by Lemma 2.24. Then apply Construction 2.1 with m = g/10 to get the required design.

2.  $g \equiv 5 \pmod{10}$  and  $u \equiv 1 \pmod{2}$ ,  $u \ge 3$ .

A ( $K_{1,4}$ , 4)-RGDD of type 5^{*u*} exists by Lemma 2.25. Then we apply Construction 2.1 with m = g/5 to get a ( $K_{1,4}$ , 4)-RGDD of type  $g^{u}$ .

3.  $g \equiv 1, 3, 7, 9 \pmod{10}$  and  $u \equiv 5 \pmod{10}$ ,  $u \ge 5$ .

Similarly, we can use Construction 2.1 with m = g and a ( $K_{1,4}$ , 4)-RGDD of type 1^{*u*} by Lemma 2.26 to obtain the required design.

4.  $g \equiv 2, 4, 6, 8 \pmod{10}$  and  $u \equiv 0 \pmod{5}$ ,  $u \ge 5$ .

We apply Construction 2.1 with m = g/2 and a  $(K_{1,4}, 4)$ -RGDD of type  $2^u$  by Lemma 2.27 to get a  $(K_{1,4}, 4)$ -RGDD of type  $g^u$ .  $\Box$ 

## 2.4. (K_{1,4},8)-RGDDs

**Lemma 2.29.** There exists a ( $K_{1,4}$ , 8)-RGDD of type  $5^u$  for  $u \ge 2$ .

*Proof:* For  $u \equiv 1 \pmod{2}$ , there exists a ( $K_{1,4}$ , 4)-RGDD of type  $5^u$  by Theorem 2.28. Repeat each block two times to get the required design.

For  $u \equiv 0 \pmod{2}$ , we first construct a  $(K_{1,4}, 8)$ -RGDD of type  $5^2$ . Let the vertex set be  $\mathbb{Z}_{10}$ , and let the groups be  $\{i + 2j \mid 0 \le j \le 4\}$ , i = 0, 1. Two parallel classes  $P_1 = \{(0; 1, 3, 5, 7), (9; 2, 4, 6, 8)\}$  and  $P_2 = \{(0; 1, 3, 5, 9), (7; 2, 4, 6, 8)\}$  can generate 20 parallel classes by +1 (mod 10). The block (0; 1, 3, 7, 9) can generate a parallel class  $P_3$  by +5 (mod 10).  $P_3$  can generate 5 parallel classes by +*s* (mod 10),  $0 \le s \le 4$ . When  $u \ge 4$ , we can obtain a  $(K_{1,4}, 8)$ -RGDD of type  $10^{\frac{u}{2}}$  by repeating each block of a  $(K_{1,4}, 4)$ -RGDD of type  $10^{\frac{u}{2}}$  (Theorem 2.28) two times. Then apply Construction 2.2 with a  $(K_{1,4}, 8)$ -RGDD of type  $5^2$  constructed above to get the required design.  $\Box$ 

**Lemma 2.30.** There exists a ( $K_{1,4}$ , 8)-RGDD of type  $1^u$  for  $u \equiv 0 \pmod{5}$  and  $u \ge 5$ .

*Proof:* For u = 5, there exists a ( $K_{1,4}$ , 2)-RGDD of type 1⁵ by Theorem 2.23. Repeat each block four times to get the required design.

For  $u \ge 10$ , there exist a  $(K_{1,4}, 8)$ -RGDD of type  $5^{\frac{u}{5}}$  by Lemma 2.29 and a  $(K_{1,4}, 8)$ -RGDD of type  $1^5$ , we get the conclusion by using Construction 2.2.

**Theorem 2.31.** A ( $K_{1,4}$ , 8)-RGDD of type  $g^u$  exists if and only if  $gu \equiv 0 \pmod{5}$ ,  $u \ge 2$ , and  $g \equiv 0 \pmod{5}$  when u = 2.

*Proof:* The necessary conditions for the existence of ( $K_{1,4}$ , 8)-RGDD of type  $g^{\mu}$  are clearly established by Theorem 0.2. Now we consider its sufficiency and distinguish into 2 cases.

1.  $g \equiv 0 \pmod{5}$  and  $u \ge 2$ .

We use Construction 2.1 with m = g/5 and a ( $K_{1,4}$ , 8)-RGDD of type 5^{*u*} by Lemma 2.29 to obtain the required design.

2.  $g \equiv 1, 2, 3, 4 \pmod{5}$  and  $u \equiv 0 \pmod{5}$ ,  $u \ge 5$ .

A ( $K_{1,4}$ , 8)-RGDD of type 1^{*u*} exists by Lemma 2.30. We apply Construction 2.1 with m = g to obtain a ( $K_{1,4}$ , 8)-RGDD of type  $g^u$ .

## 2.5. Main result on $(K_{1,4}, \lambda)$ -RGDDs

Now we prove our main result. By Theorem 0.2, it is easy to see that the 4 cases  $\lambda = 1, 2, 4, 8$  are crucial for the whole problem.

Proof of Theorem 0.4: We distinguish 4 cases.

1.  $\lambda \equiv 1 \pmod{2}$ .

There exists a  $K_{1,4}$ -RGDD of type  $g^u$  by Theorem 2.16. Repeat each block  $\lambda$  times to get a ( $K_{1,4}$ ,  $\lambda$ )-RGDD of type  $g^u$ .

2.  $\lambda \equiv 2 \pmod{4}$ .

A ( $K_{1,4}$ , 2)-RGDD of type  $g^u$  exists by Theorem 2.23. Repeat each block  $\lambda/2$  times to get the conclusion. 3.  $\lambda \equiv 4 \pmod{8}$ .

A ( $K_{1,4}$ , 4)-RGDD of type  $g^u$  exists by Theorem 2.28. Repeat each block  $\lambda/4$  times to get a ( $K_{1,4}$ ,  $\lambda$ )-RGDD of type  $g^u$ .

4.  $\lambda \equiv 0 \pmod{8}$ .

There exists a ( $K_{1,4}$ , 8)-RGDD of type  $g^u$  by Theorem 2.31. Repeat each block  $\lambda/8$  times to get the required design.  $\Box$ 

## References

- [1] F. Chen, H. Cao, Uniformly resolvable decompositions of  $K_v$  into  $K_2$  and  $K_{1,3}$  graphs, Discrete Math. 339 (2016), 2056–2062.
- [2] F. Chen, H. Cao, On the existence of  $(K_{1,3}, \lambda)$ -frames of type  $g^u$ , Australas J. Combin. **68** (2017), 317–329.
- [3] C. J. Colbourn, J. H. Dinitz, Handbook of Combinatorial Designs (2nd edition), Chapman & Hall/CRC, 2007.
- [4] S. Furino, S. Kageyama, A. C. H. Ling, Y. Miao, J. Yin, Frames with block size four and index three, Discrete Math. 106 (2002), 117–124.
- [5] S. Furino, Y. Miao, J. Yin, Frames and resolvable designs: Uses, Constructions and Existence, CRC Press, Boca Raton, FL, 1996.
- [6] G. Ge, Uniform frames with block size four and index one or three, J. Combin. Des. 9 (2001), 28–39.
- [7] G. Ge, C. W. H. Lam, A. C. H. Ling, Some New uniform frames with block size four and index one or three, J. Combin. Des. 12 (2004), 112–122.
- [8] G. Ge, A. C. H. Ling, A symptotic results on the existience of 4-RGDDs and uniform 5-GDDs, J. Combin. Des. 13 (2005), 222–237.
- [9] M. Gionfriddo, S. Milici, On the existence of uniformly resolvable decompositions of  $K_v$  and  $K_v I$  into paths and kites, Discrete Math. **313** (2013), 2830–2834.
- [10] M. S. Keranen, D. L. Kreher, S. Milici, A. Tripodi, Uniformly resolvable decompositions of K_v in 1-factors and 4-stars, Australas J. Combin. 76 (2020), 55–72.
- [11] S. Küçükçifçi, G. Lo Faro, S. Milici, A. Tripodi, Resolvable 3-star designs, Discrete Math. 338 (2015), 608-614.
- [12] S. Küçükçifçi, S. Milici, Z. Tuza, Maximum uniformly resolvable decompositions of K_v and K_v I into 3-stars and 3-cycles, Discrete Math. 338 (2015), 1667–1673.
- [13] G. Lo Faro, S. Milici, A. Tripodi, Uniformly resolvable decompositions of  $K_v I$  into n-cycles and n-stars, for even n, Mathematics 8 (2020), 1755.
- [14] S. Milici, A note on uniformly resolvable decompositions of  $K_v$  and  $K_v I$  into 2-stars and 4-cycles, Australas J. Combin. 56 (2013), 195–200.
- [15] S. Milici, Z. Tuza, Uniformly resolvable decompositions of K_v into P₃ and K₃ graphs, Discrete Math. 331 (2014), 137–141.
- [16] R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and tree, J. Combin. Theory Ser. A 5 (1987), 207–225.
- [17] R. Rees, D. R. Stinson, Frames with block size four, Canad. J. Math. 44 (1992), 1030–1049.
- [18] M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979), 273–278.
- [19] H. Wei, G. Ge, Some more 5-GDDs, 4-frames and 4-RGDDs, Discrete Math. 336 (2014), 7–21.
- [20] X. Zhang, G. Ge, On the existence of partitionable skew Room frames, Discrete Math. 307 (2007), 2786–2807.