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Uniformly resolvable decompositions of λ-fold complete multipartite
graph into 4-star

Li Wanga

aSchool of Mathematics and Physics, Suqian University, Suqian 223800, China

Abstract. Let λKu[1] be the λ-fold complete multipartite graph with u parts of size 1. A (K1,n, λ)-resolvable
group divisible design (RGDD) of type 1u is a K1,n-decomposition of the graph λKu[1] into parallel classes
each of which is a partition of the vertex set. A (K1,n, λ)-frame of type 1u is a K1,n-decomposition of λKu[1]
into partial parallel classes each of which is a partition of the vertex set except for those vertices in one of
the u parts. In this paper, we completely solve the existence of a (K1,4, λ)-frame and a (K1,4, λ)-RGDD of type
1u for any admissible parameters 1, u and λ.

In this paper, we will focus on a problem of graph decomposition. We denote the vertex set and edge
set (or edge-multiset) of a graph G (or multigraph) by V(G) and E(G), respectively. Given a collection of
graphs H , an H-decomposition of a graph G is a set of subgraphs (blocks) of G whose edge sets partition
E(G), and each subgraph is isomorphic to a graph fromH . WhenH = {H}, we writeH-decomposition as
H-decomposition for brevity. A parallel class of a graph G is a set of subgraphs whose vertex sets partition
V(G). A parallel class is called uniform if each block of the parallel class is isomorphic to the same graph. An
H-decomposition of a graph G is called (uniformly) resolvable if the blocks can be partitioned into (uniform)
parallel classes.

A graph G is called a complete u-partite graph denoted by K[m1,m2, . . . ,mu] if V(G) can be partitioned into
u parts (called groups) Mi, 1 ≤ i ≤ u, such that two vertices of G, say x and y, are adjacent if and only if x ∈Mi
and y ∈ M j with i , j. We use λK[m1,m2, . . . ,mu] for the λ-fold of the complete u-partite graph with mi
vertices in the group Mi. When λ = 1, we usually omit λ in the notation. We denote the complete u-partite
graph with u parts of size 1 by Ku[1] and by Kv the complete graph on v vertices. There are many results on
uniformly resolvableH-decompositions of Kv, especially on uniformly resolvableH-decompositions with
H = {G1,G2}, see [1, 9, 10, 12–16].

A (resolvable) H-decomposition of λK[m1,m2, . . . ,mu] is called a (resolvable) group divisible design,
denoted by (H , λ)-(R)GDD. The type of an (H , λ)-GDD is the multiset of group sizes |Mi|, 1 ≤ i ≤ u, and
we usually use the “exponential” notation for its description: type 1n1

1 1
n2
2 . . . 1

ns
s denotes ni occurrences of 1i

for 1 ≤ i ≤ s in the multiset. If F = {H}, we denote it by (H, λ)-GDD. Let L be a set of positive integers. A
pairwise balanced design, denoted by (L, λ, v)-PBD, is a ({Kk : k ∈ L}, λ)-GDD of type 1v.

For brevity, we use (a; b1, b2, . . . , bk) to denote the k-star K1,k with vertex set {a, b1, b2, . . . , bk} and edge
set {{a, bi} | 1 ≤ i ≤ k}. Tarsi has solved the existence of a (K1,k, λ)-GDD of type 1n in [18]. There are some
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known results on the existence of K1,3-RGDDs. For instance, (K1,3, 1)-RGDDs of types 24 and 44 have been
constructed in [11], and the existence of a (K1,3, 1)-RGDD of type 12u for any u ≥ 2 has been solved in [1].

A set of subgraphs of a complete multipartite graph covering all vertices except those belonging to one
part M is said to be a partial parallel class missing M. A partition of an (H , λ)-GDD of type 1u into partial
parallel classes is said to be an (H , λ)-frame of type 1u. Frames are important combinatorial structures
used in graph decompositions. The existence of a (K4, λ)-frame of type 1u has been completely solved in
[4, 6–8, 17, 19, 20]. Chen and Cao have proved the existence of a (K1,3, λ)-frame of type 1u in [2]. It is not
difficult to get the following necessary conditions for the existence of two designs.

Theorem 0.1. The necessary conditions for the existence of a (K1,n, λ)-frame of type 1u are λ1(n+ 1) ≡ 0 (mod 2n),
1(u − 1) ≡ 0 (mod n + 1), u ≥ 3, and 1 ≡ 0 (mod n + 1) when u = 3.

Theorem 0.2. The necessary conditions for the existence of a (K1,n, λ)-RGDD of type 1u areλ1(u−1) ≡ 0 (mod 2n),
1u ≡ 0 (mod n + 1), u ≥ 2, and 1 ≡ 0 (mod n + 1) when u = 2.

In this paper, we focus on two designs related to the 4-star K1,4 and prove the following main results.

Theorem 0.3. There exists a (K1,4, λ)-frame of type 1u if and only if λ1 ≡ 0 (mod 8), 1(u − 1) ≡ 0 (mod 5), u ≥ 3
and 1 ≡ 0 (mod 5) when u = 3.

Theorem 0.4. A (K1,4, λ)-RGDD of type 1u exists if and only if λ1(u − 1) ≡ 0 (mod 8), 1u ≡ 0 (mod 5), u ≥ 2,
and 1 ≡ 0 (mod 5) when u = 2.

1. The existence of (K1,4, λ)-frames

Now we state some basic recursive constructions for a (K1,n, λ)-frame. Similar proofs of these construc-
tions can be found in [2].

Construction 1.1. If there exists a (K1,n, λ)-frame of type 1u1
1 1

u2
2 . . . 1

ut
t , then there is a (K1,n, λ)-frame of type

(m11)u1 (m12)u2 . . . (m1t)ut for any m ≥ 1.

Construction 1.2. If there exist a ({Kk : k ∈ L}, 1)-GDD of type 1u1
1 1

u2
2 . . . 1

ut
t and a (K1,n, λ)-frame of type mk for

each k ∈ L, then there exists a (K1,n, λ)-frame of type (m11)u1 (m12)u2 . . . (m1t)ut .

Construction 1.3. If there is a (K1,n, λ)-RGDD of type 12, then there exists a (K1,n, λ)-frame of type 12u+1 for any
u ≥ 1.

Construction 1.4. If there exist a (K1,n, λ)-frame of type (m11)u1 (m21)u2 . . . (mt1)ut and a (K1,n, λ)-frame of type
1mi+ε for any 1 ≤ i ≤ t, then there exists a (K1,n, λ)-frame of type 1

∑t
i=1 miui+ε, where ε = 0, 1.

1.1. (K1,4, 1)-frames
First, we give a direct construction about n-star.

Lemma 1.5. Let n ≥ 4 be even. There exists a (K1,n, 1)-frame of type (2n)n+2.

Proof: Let the vertex set beZ2n(n+2), and let the groups be Gu = {u+v(n+2) | 0 ≤ v ≤ 2n−1}, 0 ≤ u ≤ n+1. The
required n+1 partial parallel classes with respect to the group Gu are {Qi

u = {Si+ l+u | l ∈ (n+2)Z2n(n+2)} | 1 ≤
i ≤ n + 1}, where Si = (i; i + ci1, . . . , i + cin), 1 ≤ i ≤ n + 1, and

ci j = (n + 2)(i − 1) + j − i + 1, 1 ≤ i ≤ n
2 , i ≤ j ≤ n,

ci j = (n + 2)(i − 1) + j − i, 2 ≤ i ≤ n+2
2 , 1 ≤ j < i,

ci j = n(n + 2) − cn+2−i,n+1− j, i = n+2
2 ,

n+2
2 ≤ j ≤ n or n+4

2 ≤ i ≤ n + 1, 1 ≤ j ≤ n.

For each 1 ≤ i ≤ n + 1, the n + 1 integers i, i + ci j, 1 ≤ j ≤ n, are all distinct modulo n + 2. Then each Qi
u is a

partial parallel class.
We provide a construction about a (K1,n, 1)-RGDD of type (2n(n+ 1))2. Note that another solution for the

case n = 4 is provided in [10].
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Lemma 1.6. Let n ≥ 4 be even. There exists a (K1,n, 1)-RGDD of type (2n(n + 1))2.

Proof: Let the vertex set beZ4n(n+1), and let the groups be {u+2v | 0 ≤ v ≤ 2n(n+1)−1}, u = 0, 1. The required
(n+1)2 parallel classes can be generated from n+1 parallel classes {Pi = {Si+ l,Ti+ l | l ∈ 2(n+1)Z4n(n+1)} | 0 ≤
i ≤ n}, by +2s (mod 4n(n + 1)), 0 ≤ s ≤ n, where Si = (si0; si1, . . . , sin), Ti = (ti0; ti1, . . . , tin), 0 ≤ i ≤ n, and

si0 = 0; si j = 2ni + 2 j − 1, 0 ≤ i ≤ n, 1 ≤ j ≤ n,

ti0 = 2n + 1 − 2i; ti j = ti0 + ci j, 0 ≤ i ≤ n, 1 ≤ j ≤ n,

ci j = 2(n + 1)i + 2 j + 1, 0 ≤ i ≤ n−2
2 , i < j ≤ n,

ci j = 2(n + 1)i + 2 j − 2n − 3, 1 ≤ i ≤ n
2 , 1 ≤ j ≤ i,

ci j = 2n(n + 1) − cn−i,n+1− j, i = n
2 ,

n+2
2 ≤ j ≤ n or n+2

2 ≤ i ≤ n, 1 ≤ j ≤ n.

For each 0 ≤ i ≤ n, since the 2(n + 1) integers si j, ti j, 0 ≤ j ≤ n, are all distinct modulo 2(n + 1), each Pi is a
parallel class. The proof is complete.

Lemma 1.7. There exists a (K1,4, 1)-frame of type 40u for u ≥ 3.

Proof: For two values u = 3, 5, there exists a (K1,4, 1)-RGDD of type 402 by Lemma 1.6. Apply Construction 1.3
to get the required (K1,4, 1)-frame of type 40u.

For u = 4, 6, 8, let the vertex set be Z40u, and let the groups be Gi = {i + uj | 0 ≤ j ≤ 39}, 0 ≤ i ≤ u − 1.
The required 25 partial parallel classes with respect to the group Gi can be generated from 5 partial parallel
classes {Qik = {B+ l+ i | B ∈ Ck, |Ck| = u− 1, l ∈ (5u)Z40u} | 1 ≤ k ≤ 5} by +us (mod 40u), 0 ≤ s ≤ 4. The blocks
in each Ck are listed below respectively.

u = 4: C1 (1; 2, 3, 6, 7) (5; 14, 15, 18, 19) (10; 13, 17, 29, 31)
C2 (1; 18, 19, 23, 26) (2; 13, 17, 25, 31) (9; 35, 47, 50, 54)
C3 (1; 31, 34, 35, 38) (2; 29, 33, 37, 59) (5; 47, 63, 66, 70)
C4 (1; 47, 50, 51, 54) (2; 45, 49, 53, 75) (17; 79, 83, 86, 98)
C5 (1; 55, 71, 78, 86) (9; 83, 87, 102, 110) (14; 53, 77, 85, 119)

u = 6: C1 (1; 2, 3, 4, 5) (7; 14, 15, 16, 17) (8; 13, 19, 21, 22)
(9; 25, 26, 28, 29) (10; 41, 50, 53, 57)

C2 (1; 16, 22, 23, 26) (2; 25, 28, 29, 34) (3; 37, 38, 40, 41)
(5; 44, 49, 50, 51) (13; 69, 75, 77, 87)

C3 (1; 29, 34, 50, 51) (2; 43, 53, 55, 57) (3; 68, 70, 71, 74)
(5; 75, 82, 86, 88) (9; 67, 106, 107, 109)

C4 (1; 53, 58, 62, 64) (3; 76, 79, 82, 85) (5; 74, 80, 97, 98)
(9; 89, 100, 103, 131) (17; 105, 116, 141, 147)

C5 (1; 86, 87, 88, 104) (2; 97, 103, 106, 130) (4; 33, 109, 110, 119)
(8; 115, 125, 129, 137) (22; 81, 131, 135, 173)

u = 8: C1 (1; 2, 3, 4, 5) (6; 11, 12, 13, 15) (7; 17, 18, 19, 20) (9; 23, 26, 27, 28)
(10; 25, 30, 31, 33) (14; 36, 39, 61, 69) (34; 62, 75, 77, 78)

C2 (1; 27, 28, 30, 31) (2; 33, 35, 36, 37) (3; 39, 45, 49, 52) (4; 54, 55, 57, 58)
(6; 51, 63, 65, 66) (7; 59, 69, 74, 78) (10; 93, 100, 101, 102)

C3 (1; 38, 39, 59, 62) (2; 65, 67, 68, 70) (3; 73, 76, 77, 84) (5; 74, 87, 89, 90)
(6; 92, 93, 95, 100) (11; 106, 109, 111, 134) (17; 138, 141, 143, 155)

C4 (1; 76, 77, 78, 79) (2; 95, 99, 101, 103) (3; 105, 106, 108, 109)
(4; 111, 113, 114, 115) (5; 127, 130, 132, 134) (6; 137, 138, 140, 147)
(9; 142, 171, 173, 190)

C5 (1; 109, 114, 115, 116) (2; 118, 119, 132, 137) (3; 140, 143, 145, 146)
(4; 150, 151, 153, 165) (13; 131, 166, 167, 214) (18; 169, 175, 188, 259)
(22; 61, 170, 187, 197)

Let L = {3, 4, 5, 6, 8}, for all other values of u with u ≥ 3 and u < L, there exists an (L, 1,u)-PBD from
[3] which is actually a ({Kk : k ∈ L}, 1)-GDD of type 1u. Apply Construction 1.2 with a (L, 1,u)-PBD and a
(K1,4, 1)-frame of type 40k for each k ∈ L constructed above to obtain the (K1,4, 1)-frame of type 40u for u ≥ 3
and u < L.

Lemma 1.8. There exists a (K1,4, 1)-frame of type 8u for u ≡ 1 (mod 5) and u ≥ 6.
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Proof: For u = 6, the conclusion comes from Lemma 1.5.

For u = 11, let the vertex set beZ88, and let the groups be Gi = {i+11 j | 0 ≤ j ≤ 7}, 0 ≤ i ≤ 10. The required
5 partial parallel classes with respect to the group Gi are {Qik = {B+l+i |B ∈ Ck, |Ck| = 2, l ∈ 11Z88} | 1 ≤ k ≤ 5}.
The blocks in each Ck are listed below respectively.

C1 (1; 2, 3, 4, 5) (6; 18, 19, 20, 21) C2 (1; 6, 7, 8, 9) (2; 21, 25, 26, 27)
C3 (1; 10, 17, 18, 19) (2; 31, 36, 37, 38) C4 (1; 21, 27, 28, 29) (2; 41, 42, 47, 48)
C5 (1; 31, 32, 39, 57) (4; 14, 41, 51, 71)

For u ≥ 16, we begin with a (K1,4, 1)-frame of type 40
u−1

5 by Lemma 1.7 and apply Construction 1.4 with
ε = 1 to get the required (K1,4, 1)-frame of type 8u, where the input design a (K1,4, 1)-frame of type 86.

Theorem 1.9. There exists a (K1,4, 1)-frame of type 1u if and only if 1 ≡ 0 (mod 8), 1(u − 1) ≡ 0 (mod 5), u ≥ 3
and 1 ≡ 0 (mod 5) when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the
following two cases.

1. 1 ≡ 0 (mod 40) and u ≥ 3.

There exists a K1,4-frame of type 40u by Lemma 1.7. Then apply Construction 1.1 with m = 1/40 to get
the required design.

2. 1 ≡ 8, 16, 24, 32 (mod 40) and u ≡ 1 (mod 5), u ≥ 6.

A K1,4-frame of type 8u exists by Lemma 1.8. Then we apply Construction 1.1 with m = 1/8 to get a
K1,4-frame of type 1u.

1.2. (K1,4, 2)-frames

Lemma 1.10. There exists a (K1,4, 2)-RGDD of type 202.

Proof: Let the vertex set beZ40, and let the groups be {2u+v | 0 ≤ u ≤ 19}, v = 0, 1. For the required 25 parallel
classes, 20 of which can be generated from a parallel class {{(0; 1, 3, 5, 7), (2; 9, 11, 13, 15), (17; 6, 8, 12, 30), (19; 4,
16, 18, 34)} + 20h | h = 0, 1} by +i (mod 40), 0 ≤ i ≤ 19. The last 5 parallel classes can be generated from a
parallel class {(0; 17, 19, 21, 23) + 5l | 0 ≤ l ≤ 7} by + j (mod 40), 0 ≤ j ≤ 4.

Lemma 1.11. There exists a (K1,4, 2)-frame of type 20u for u ≥ 3.

Proof: For u = 3, 5, there exists a (K1,4, 2)-RGDD of type 202 by Lemma 1.10. Apply Construction 1.3 to get
the required (K1,4, 2)-frame of type 20u.

For u = 4, 6, 8, let the vertex set beZ20u, and let the groups be Gi = {i + uj | 0 ≤ j ≤ 19}, 0 ≤ i ≤ u − 1. The
required 25 partial parallel classes with respect to the group Gi are {Ql

ik = {i + ul +Qk} | 1 ≤ k ≤ 5, 0 ≤ l ≤ 4},
where each Qk = {B + 5ut | B ∈ Ck, |Ck| = u − 1, 0 ≤ t ≤ 3} is a partial parallel class with respect to G0. The
blocks in each Ck are listed below.
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u = 4: C1 (1; 2, 63, 66, 67) (5; 10, 34, 71, 15) (18; 9, 39, 37, 53)
C2 (1; 3, 55, 14, 71) (2; 19, 9, 53, 5) (7; 10, 38, 26, 57)
C3 (1; 14, 18, 35, 47) (2; 17, 43, 9, 25) (13; 46, 51, 50, 39)
C4 (1; 23, 70, 26, 79) (2; 29, 27, 25, 51) (15; 53, 77, 58, 74)
C5 (1; 31, 46, 7, 10) (2; 29, 43, 35, 13) (19; 14, 18, 25, 77)

u = 6: C1 (1; 34, 3, 35, 2) (11; 7, 8, 10, 39) (15; 77, 29, 76, 26) (43; 82, 51, 23, 80)
(44; 58, 87, 85, 79)

C2 (2; 109, 77, 97, 105) (13; 118, 46, 111, 44) (27; 4, 59, 35, 86) (31; 69, 8, 11, 100)
(33; 85, 112, 80, 113)

C3 (1; 111, 82, 50, 17) (2; 58, 115, 113, 27) (3; 59, 19, 97, 95) (4; 98, 69, 13, 71)
(45; 74, 116, 100, 76)

C4 (1; 58, 94, 119, 38) (3; 80, 47, 49, 106) (2; 101, 103, 37, 70) (35; 82, 75, 85, 81)
(83; 39, 86, 104, 117)

C5 (1; 52, 16, 23, 28) (2; 103, 65, 77, 9) (4; 86, 111, 71, 14) (8; 19, 70, 37, 3)
(25; 20, 29, 57, 75)

u = 8: C1 (1; 22, 110, 45, 101) (28; 126, 151, 2, 26) (39; 157, 129, 18, 84) (67; 54, 97, 76, 100)
(93; 145, 35, 33, 143) (95; 118, 34, 139, 123) (149; 130, 127, 131, 12)

C2 (3; 113, 74, 49, 105) (53; 79, 137, 150, 52) (62; 19, 55, 103, 149) (100; 27, 31, 26, 6)
(124; 2, 41, 21, 155) (127; 138, 117, 116, 68) (130; 118, 5, 94, 51)

C3 (13; 60, 33, 74, 102) (17; 155, 109, 70, 147) (47; 129, 94, 139, 12) (77; 106, 79, 23, 108)
(84; 55, 45, 101, 158) (105; 71, 46, 130, 51) (121; 138, 3, 76, 82)

C4 (18; 73, 137, 93, 55) (51; 61, 50, 106, 100) (121; 159, 118, 124, 85) (59; 74, 86, 87, 2)
(68; 49, 54, 3, 111) (143; 147, 77, 150, 155) (145; 69, 62, 36, 92)

C5 (11; 2, 6, 78, 138) (39; 130, 19, 53, 153) (68; 147, 62, 117, 41) (76; 71, 146, 89, 154)
(109; 103, 75, 14, 84) (110; 25, 17, 12, 125) (123; 141, 15, 60, 127)

Let L = {3, 4, 5, 6, 8}, for all other values of u with u ≥ 3 and u < L, apply Construction 1.2 with
a (L, 1,u)-PBD from [3] and a (K1,4, 2)-frame of type 20k for each k ∈ L constructed above to obtain the
conclusion.

Lemma 1.12. There exists a (K1,4, 2)-frame of type 4u for u ≡ 1 (mod 5) and u ≥ 6.

Proof: For u = 6, 11, let the vertex set be Z4u, and let the groups be Gi = {i, i + u, i + 2u, i + 3u}, 0 ≤ i ≤ u − 1.
The required 5 partial parallel classes with respect to the group Gi are {Qik = {B + i + uj | B ∈ Ck, |Ck| =
u−1

5 , 0 ≤ j ≤ 3} | 1 ≤ k ≤ 5}. The blocks in each Ck are listed below respectively.

u = 6: C1 (2; 9, 13, 11, 4) C2 (1; 23, 21, 22, 2) C3 (1; 22, 11, 21, 14) C4 (2; 1, 9, 10, 11)
C5 (3; 8, 11, 13, 22)

u = 11: C1 (1; 2, 3, 4, 5) (6; 7, 8, 9, 10) C2 (1; 6, 7, 8, 9) (2; 10, 12, 14, 15)
C3 (1; 6, 7, 8, 10) (2; 12, 14, 15, 16) C4 (1; 10, 15, 16, 17) (2; 18, 19, 20, 21)
C5 (1; 16, 18, 19, 20) (4; 24, 25, 27, 28)

For u ≥ 16, we begin with a (K1,4, 2)-frame of type 20
u−1

5 by Lemma 1.11 and apply Construction 1.4 with
ε = 1 to get the required (K1,4, 2)-frame of type 4u, where the input design a (K1,4, 2)-frame of type 46.

Theorem 1.13. There exists a (K1,4, 2)-frame of type 1u if and only if 1 ≡ 0 (mod 4), 1(u − 1) ≡ 0 (mod 5), u ≥ 3
and 1 ≡ 0 (mod 5) when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the
following two cases.

1. 1 ≡ 0 (mod 20) and u ≥ 3.
There exists a (K1,4, 2)-frame of type 20u by Lemma 1.11. Then apply Construction 1.1 with m = 1/20 to

get the required design.
2. 1 ≡ 4, 8, 12, 16 (mod 20) and u ≡ 1 (mod 5), u ≥ 6.
A (K1,4, 2)-frame of type 4u exists by Lemma 1.12. Then we apply Construction 1.1 with m = 1/4 to get a

(K1,4, 2)-frame of type 1u.

1.3. (K1,4, 4)-frames

Lemma 1.14. There exists a (K1,4, 4)-RGDD of type 102.
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Proof: Let the vertex set beZ20, and let the groups be {2u+ i | 0 ≤ u ≤ 9}, i = 0, 1. For the required 25 parallel
classes, 20 of which can be generated from a parallel class {(0; 1, 3, 5, 7), (2; 9, 11, 13, 15), (17; 6, 8, 10, 12), (19; 4,
14, 16, 18)} by +1 (mod 20). The last 5 parallel classes can be generated from a parallel class {(0; 1, 3, 17, 19)+
5l | 0 ≤ l ≤ 3} by + j (mod 20), 0 ≤ j ≤ 4.

Lemma 1.15. There exists a (K1,4, 4)-frame of type 10u for u ≥ 3.

Proof: For u = 3, 5, there exists a (K1,4, 4)-RGDD of type 102 by Lemma 1.14. Apply Construction 1.3 to get
the required (K1,4, 4)-frame of type 10u.

For u = 4, 6, 8, let the vertex set be Z10u, and let the groups be Gi = {i + uj | 0 ≤ j ≤ 9}, 0 ≤ i ≤ u − 1. The
required 25 partial parallel classes with respect to the group Gi are {Ql

ik = {i + ul +Qk} | 1 ≤ k ≤ 5, 0 ≤ l ≤ 4},
where each Qk = {B + 5ut | B ∈ Ck, |Ck| = u − 1, t = 0, 1} is a partial parallel class with respect to G0. The
blocks in each Ck are listed below.

u = 4: C1 (1; 2, 3, 6, 7) (5; 10, 11, 14, 15) (18; 9, 13, 17, 19)
C2 (1; 2, 3, 6, 7) (5; 11, 14, 15, 18) (10; 13, 17, 19, 29)
C3 (1; 3, 11, 14, 15) (2; 5, 9, 13, 19) (7; 10, 17, 18, 26)
C4 (1; 3, 14, 15, 18) (2; 5, 9, 13, 27) (17; 6, 10, 31, 39)
C5 (1; 14, 15, 18, 19) (2; 17, 23, 25, 27) (11; 26, 29, 30, 33)

u = 6: C1 (1; 34, 3, 2, 35) (7; 10, 9, 41, 8) (13; 47, 16, 15, 14) (19; 22, 23, 21, 20)
(29; 25, 58, 57, 56)

C2 (3; 19, 20, 17, 14) (31; 8, 11, 9, 40) (32; 13, 7, 45, 46) (34; 51, 55, 26, 53)
(57; 28, 29, 5, 52)

C3 (1; 11, 8, 39, 10) (2; 37, 15, 16, 13) (3; 47, 49, 20, 14) (34; 51, 26, 55, 23)
(57; 29, 35, 28, 52)

C4 (2; 21, 22, 15, 47) (3; 43, 19, 16, 53) (5; 44, 58, 56, 37) (20; 27, 4, 55, 59)
(31; 40, 9, 8, 41)

C5 (1; 16, 8, 4, 51) (2; 39, 47, 7, 22) (3; 26, 59, 58, 44) (10; 35, 41, 43, 25)
(23; 15, 19, 50, 57)

u = 8: C1 (1; 53, 5, 43, 31) (22; 65, 28, 19, 58) (27; 77, 74, 10, 42) (47; 54, 12, 11, 73)
(57; 78, 69, 66, 36) (61; 23, 6, 39, 75) (70; 20, 15, 44, 49)

C2 (3; 34, 9, 2, 53) (18; 4, 57, 54, 5) (20; 22, 7, 77, 61) (26; 12, 71, 75, 68)
(33; 29, 50, 23, 55) (39; 46, 65, 27, 19) (76; 70, 51, 38, 1)

C3 (2; 25, 49, 15, 7) (17; 43, 6, 63, 69) (35; 53, 28, 36, 26) (41; 58, 37, 19, 12)
(44; 78, 71, 61, 62) (45; 34, 30, 33, 11) (60; 54, 50, 67, 39)

C4 (5; 42, 46, 63, 52) (14; 25, 34, 66, 10) (22; 61, 7, 77, 3) (38; 41, 35, 51, 33)
(39; 49, 68, 70, 19) (58; 60, 76, 29, 15) (67; 53, 31, 44, 57)

C5 (3; 5, 1, 74, 12) (29; 14, 10, 17, 28) (30; 53, 65, 75, 77) (33; 67, 6, 44, 76)
(42; 47, 23, 15, 61) (62; 9, 11, 31, 59) (78; 60, 26, 58, 79)

Let L = {3, 4, 5, 6, 8}, for all other values of u with u ≥ 3 and u < L, apply Construction 1.2 with a (L, 1,u)-
PBD from [3] and a (K1,4, 4)-frame of type 10k for each k ∈ L constructed above to get the conclusion.

Lemma 1.16. There exists a (K1,4, 4)-frame of type 2u for u ≡ 1 (mod 5) and u ≥ 6.

Proof: For u = 6, 11, let the vertex set beZ2u, and let the groups be Gi = {i, i+u}, 0 ≤ i ≤ u− 1. The required 5
partial parallel classes with respect to the group Gi are {Qik = {B+i+uj |B ∈ Ck, |Ck| =

u−1
5 , j = 0, 1} | 1 ≤ k ≤ 5}.

The blocks in each Ck are listed below respectively.

u = 6: C1 (1; 11, 2, 9, 4) C2 (1; 8, 4, 3, 5) C3 (2; 1, 4, 5, 9) C4 (2; 1, 3, 4, 5) C5 (3; 7, 8, 10, 11)
u = 11: C1 (1; 2, 3, 4, 5) (6; 7, 8, 9, 10) C2 (1; 6, 7, 9, 8) (2; 10, 14, 15, 16)

C3 (1; 2, 3, 4, 5) (6; 7, 8, 9, 10) C4 (1; 6, 7, 8, 9) (3; 10, 13, 16, 15)
C5 (1; 6, 7, 8, 14) (4; 9, 10, 13, 16)

For u ≥ 16, we begin with a (K1,4, 4)-frame of type 10
u−1

5 by Lemma 1.15 and apply Construction 1.4 with
ε = 1 to get the required (K1,4, 4)-frame of type 2u, where the input design a (K1,4, 4)-frame of type 26.

Theorem 1.17. There exists a (K1,4, 4)-frame of type 1u if and only if 1 ≡ 0 (mod 2), 1(u − 1) ≡ 0 (mod 5), u ≥ 3
and 1 ≡ 0 (mod 5) when u = 3.
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Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the
following 2 cases.

1. 1 ≡ 0 (mod 10) and u ≥ 3.
There exists a (K1,4, 4)-frame of type 10u by Lemma 1.15. Then apply Construction 1.1 with m = 1/10 to

get the required design.
2. 1 ≡ 2, 4, 6, 8 (mod 10) and u ≡ 1 (mod 5), u ≥ 6.
A (K1,4, 4)-frame of type 2u exists by Lemma 1.16. Then we apply Construction 1.1 with m = 1/2 to get a

(K1,4, 4)-frame of type 1u.

1.4. (K1,4, 8)-frames
Lemma 1.18. There exists a (K1,4, 8)-RGDD of type 52.

Proof: Let the vertex set be Z10 and the groups be {i, 2 + i, 4 + i, 6 + i, 8 + i}, i = 0, 1. For the required
25 parallel classes, 20 of which can be generated from two parallel classes {(0; 1, 3, 5, 7), (9; 2, 4, 6, 8)} and
{(0; 1, 3, 5, 9), (7; 2, 4, 6, 8)} by +1 (mod 10). The last 5 parallel classes can be generated from a parallel class
{(0; 1, 3, 7, 9), (5; 6, 8, 2, 4)} by + j (mod 10), 0 ≤ j ≤ 4.

Lemma 1.19. There exists a (K1,4, 8)-frame of type 5u for u ≥ 3.

Proof: For u = 3, 5, there exists a (K1,4, 8)-RGDD of type 52 by Lemma 1.18. Apply Construction 1.3 to get
the required (K1,4, 8)-frame of type 5u.

For u = 4, 6, 8, let the vertex set be Z5u, and let the groups be Gi = {i + uj | 0 ≤ j ≤ 4}, 0 ≤ i ≤ u − 1.
The required 25 partial parallel classes with respect to the group Gi can be generated from 5 partial parallel
classes {Qik = {i + Qk} | 1 ≤ k ≤ 5} by +u (mod 5u), where Qk is a partial parallel class with respect to G0.
The blocks in each Qk are listed below.

u = 4: Q1 (1; 10, 6, 19, 3) (2; 7, 13, 17, 9) (5; 18, 15, 11, 14)
Q2 (2; 15, 9, 5, 17) (13; 7, 11, 6, 3) (19; 18, 14, 1, 10)
Q3 (1; 15, 3, 6, 7) (5; 2, 14, 11, 18) (10; 13, 19, 9, 17)
Q4 (3; 14, 2, 9, 6) (17; 7, 18, 11, 19) (15; 13, 10, 1, 5)
Q5 (7; 18, 9, 6, 10) (2; 1, 3, 5, 15) (14; 19, 13, 17, 11)

u = 6: Q1 (11; 28, 20, 22, 27) (13; 2, 8, 9, 17) (26; 10, 21, 25, 29) (7; 16, 14, 5, 23) (4; 19, 15, 3, 1)
Q2 (22; 2, 15, 26, 1) (29; 25, 7, 16, 21) (27; 17, 8, 19, 4) (9; 10, 11, 20, 23) (28; 3, 14, 13, 5)
Q3 (10; 9, 11, 3, 23) (25; 29, 8, 28, 21) (22; 17, 20, 2, 14) (16; 27, 15, 19, 7) (4; 1, 26, 5, 13)
Q4 (8; 3, 25, 15, 22) (28; 5, 23, 17, 20) (16; 14, 19, 7, 27) (9; 29, 26, 10, 11) (4; 21, 13, 2, 1)
Q5 (25; 17, 20, 27, 15) (23; 13, 3, 8, 9) (26; 22, 16, 11, 29) (5; 1, 21, 14, 28) (2; 7, 19, 10, 4)

u = 8: Q1 (23; 26, 33, 34, 35) (21; 36, 22, 20, 3) (31; 27, 2, 30, 17) (9; 6, 29, 18, 37)
(10; 12, 39, 38, 15) (13; 11, 25, 28, 4) (1; 19, 14, 7, 5)

Q2 (35; 31, 17, 38, 9) (26; 3, 6, 7, 5) (29; 11, 22, 12, 4) (23; 1, 34, 18, 33)
(14; 13, 39, 15, 20) (25; 10, 36, 2, 37) (21; 28, 27, 19, 30)

Q3 (10; 27, 14, 15, 38) (31; 33, 26, 1, 11) (4; 23, 22, 18, 17) (30; 37, 25, 9, 19)
(6; 12, 21, 20, 2) (36; 13, 5, 39, 29) (34; 3, 28, 35, 7)

Q4 (35; 4, 37, 12, 17) (27; 21, 1, 39, 34) (11; 13, 25, 14, 2) (30; 36, 10, 3, 7)
(18; 29, 15, 28, 22) (38; 9, 19, 20, 23) (5; 26, 6, 33, 31)

Q5 (11; 13, 6, 21, 38) (9; 35, 36, 5, 34) (10; 15, 14, 23, 17) (28; 18, 30, 7, 37)
(12; 2, 19, 39, 22) (4; 3, 25, 27, 1) (26; 29, 20, 33, 31)

Let L = {3, 4, 5, 6, 8}, for all other values of u with u ≥ 3 and u < L, apply Construction 1.2 with a (L, 1,u)-
PBD from [3] and a (K1,4, 8)-frame of type 5k for each k ∈ L constructed above to obtain the conclusion.

Lemma 1.20. There exists a (K1,4, 8)-frame of type 1u for u ≡ 1 (mod 5) and u ≥ 6.

Proof: For u = 6, 11, let the vertex set be Zu, and let the groups be Gi = {i}, 0 ≤ i ≤ u − 1. The required 5
partial parallel classes with respect to the group Gi are {Qik = {B + i | B ∈ Ck, |Ck| =

u−1
5 } | 1 ≤ k ≤ 5}. The

blocks in each Ck are listed below respectively.

u = 6: C1 (1; 2, 3, 4, 5) C2 (2; 1, 3, 4, 5) C3 (3; 1, 2, 4, 5) C4 (4; 1, 2, 3, 5) C5 (5; 1, 2, 3, 4)
u = 11: C1 (2; 1, 5, 6, 4) (3; 7, 8, 10, 9) C2 (1; 2, 9, 3, 10) (5; 6, 8, 7, 4)

C3 (6; 9, 10, 7, 8) (1; 3, 5, 2, 4) C4 (1; 5, 3, 2, 6) (4; 8, 7, 10, 9)
C5 (1; 2, 4, 6, 7) (5; 3, 8, 9, 10)
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For u ≥ 16, we begin with a (K1,4, 8)-frame of type 5
u−1

5 by Lemma 1.19 and apply Construction 1.4 with
ε = 1 to get the required (K1,4, 8)-frame of type 1u, where the input design a (K1,4, 8)-frame of type 16.

Theorem 1.21. There exists a (K1,4, 8)-frame of type 1u if and only if 1(u − 1) ≡ 0 (mod 5), u ≥ 3 and 1 ≡ 0
(mod 5) when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the
following 2 cases.

1. 1 ≡ 0 (mod 5) and u ≥ 3.
There exists a (K1,4, 8)-frame of type 5u by Lemma 1.19. Then apply Construction 1.1 with m = 1/5 to get

the required design.
2. 1 ≡ 1, 2, 3, 4 (mod 5) and u ≡ 1 (mod 5), u ≥ 6.
A (K1,4, 8)-frame of type 1u exists by Lemma 1.20. Then we apply Construction 1.1 with m = 1 to get a

(K1,4, 8)-frame of type 1u.

1.5. Main results on (K1,4, λ)-frames
Proof of Theorem 0.3: The necessary conditions for the existence of a (K1,4, λ)-frame of type 1u are clearly
established by Theorem 0.1. Now we consider its sufficiency and distinguish into 4 cases.

1. λ ≡ 1 (mod 2).
There exists a K1,4-frame of type 1u by Theorem 1.9. Repeat each block λ times to get a (K1,4, λ)-frame of

type 1u.
2. λ ≡ 2 (mod 4).
A (K1,4, 2)-frame of type 1u exists by Theorem 1.13. Repeat each block λ/2 times to get the conclusion.
3. λ ≡ 4 (mod 8).
A (K1,4, 4)-frame of type 1u exists by Theorem 1.17. Repeat each block λ/4 times to get a (K1,4, λ)-frame

of type 1u.
4. λ ≡ 0 (mod 8).
There exists a (K1,4, 8)-frame of type 1u by Theorem 1.21. Repeat each block λ/8 times to get the required

design.

2. The existence of (K1,4, λ)-RGDDs

Now we state some basic recursive constructions for (K1,n, λ)-RGDDs. Similar proofs of these construc-
tions can be found in [1, 2, 5].

Construction 2.1. If there exists a (K1,n, λ)-RGDD of type 1u, then there is a (K1,n, λ)-RGDD of type (m1)u for any
m ≥ 1.

Construction 2.2. If there exist a (K1,n, λ)-RGDD of type (1u)l and a (K1,n, λ)-RGDD of type 1u, then there is a
(K1,n, λ)-RGDD of type 1ul.

Construction 2.3. If there exist a (K1,n, λ)-frame of type (1(u − 1))l and a (K1,n, λ)-RGDD of type 1u, then there
exists a (K1,n, λ)-RGDD of type 1l(u−1)+1.

Proof: Suppose there is a (K1,n, λ)-frame of type (1(u − 1))l with the groups G j, 1 ≤ j ≤ l, then there are
λ1(n+1)(u−1)

2n partial parallel classes missing G j, 1 ≤ j ≤ l, denoted by {Qi
j | 1 ≤ i ≤ λ1(n+1)(u−1)

2n }. Add 1 new
common vertices to the vertex set of G j and form a new vertex set G′j. Then break up G′j with a (K1,n, λ)-
RGDD of type 1u with the groups G1

j ,G
2
j , . . . ,G

u−1
j ,M, where the 1 common vertices are viewed as a new

group M. It has λ1(n+1)(u−1)
2n parallel classes, denoted by {Pi

j | 1 ≤ i ≤ λ1(n+1)(u−1)
2n }. Hence, Qi

j ∪ Pi
j is a parallel

class of the required (K1,n, λ)-RGDD of type 1l(u−1)+1, 1 ≤ i ≤ λ1(n+1)(u−1)
2n , 1 ≤ j ≤ l. Thus, we get λ1l(n+1)(u−1)

2n
parallel classes as required.
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Before the following construction, we first introduce a concept. Suppose H is a subgraph of a graph
G, we use G − V(H) to denote the subgraph of G obtained by deleting the vertices in V(H) and all edges
incident with them, and use G − E(H) to denote a subgraph of G obtained by deleting all edges in E(H).

Definition 2.4. Let G be aλ-fold complete (u+l)-partite graph with u+l groups M1,M2, . . . ,Mu+l such that |Mi| = 1
for each 1 ≤ i ≤ u + l. Let H be a λ-fold complete l-partite graph with l groups (called holes) Mu+1,Mu+2, . . . ,Mu+l.
An incomplete resolvable (K1,n, λ)-group divisible design of type 1u with l holes, denoted by (K1,n, λ)-IRGDD of
type 1(u+l,l), is a resolvable (K1,n, λ)-decomposition of G − E(H) in which there are λ1u(n+1)

2n parallel classes of G and
λ1(n+1)(l−1)

2n partial parallel classes of G − V(H).

Lemma 2.5. There exists a (K1,4, 1)-IRGDD of type 1(65,25).

Proof: Let the vertex set be Z40 ∪ {∞0,∞1, . . . ,∞24}, and let the groups be {u}, u ∈ Z40, and {∞l}, 0 ≤ l ≤ 24.
The required 25 parallel classes and 15 partial parallel classes can be generated from 5 parallel classes
{Pi | 1 ≤ i ≤ 5}, and 3 partial parallel classes {Q j | 1 ≤ j ≤ 3}, by +8 (mod 40), respectively. The blocks in
each Pi and Q j are listed below respectively.

P1 (0; 14, 15,∞7,∞6) (1; 16, 17,∞11,∞12) (2; 10, 11,∞17,∞8) (3; 12, 21,∞22,∞13)
(4; 23,∞9,∞5,∞18) (5; 29,∞10,∞23,∞14) (6; 36,∞15,∞16,∞19) (7; 22,∞20,∞21,∞24)
(∞0; 8, 9, 18, 19) (∞1; 26, 27, 20, 13) (∞2; 28, 37, 30, 31) (∞3; 38, 39, 24, 25)
(∞4; 32, 33, 34, 35)

P2 (0; 16, 17,∞12,∞11) (1; 18, 19,∞16,∞17) (2; 12, 22,∞22,∞13) (3; 28, 29,∞2,∞18)
(4; 31,∞14,∞10,∞23) (5; 14,∞15,∞3,∞19) (6; 13,∞20,∞21,∞24) (7; 23,∞0,∞1,∞4)
(∞5; 8, 9, 10, 11) (∞6; 26, 27, 20, 21) (∞7; 36, 37, 30, 15) (∞8; 38, 39, 24, 25)
(∞9; 32, 33, 34, 35)

P3 (0; 18, 21,∞17,∞16) (1; 23, 28,∞21,∞22) (2; 8, 9,∞2,∞18) (3; 11, 30,∞7,∞23)
(4; 12,∞19,∞15,∞3) (5; 39,∞20,∞8,∞24) (14; 29,∞0,∞1,∞4) (7; 38,∞5,∞6,∞9)
(∞10; 16, 17, 10, 19) (∞11; 26, 27, 20, 13) (∞12; 36, 37, 6, 15) (∞13; 22, 31, 24, 25)
(∞14; 32, 33, 34, 35)

P4 (0; 22, 23,∞22,∞21) (1; 21, 29,∞1,∞2) (2; 28, 35,∞7,∞23) (3; 8, 9,∞12,∞3)
(4; 10,∞24,∞20,∞8) (13; 31,∞0,∞13,∞4) (6; 12,∞5,∞6,∞9) (7; 30,∞10,∞11,∞14)
(∞15; 16, 17, 18, 11) (∞16; 26, 19, 20, 5) (∞17; 36, 37, 14, 15) (∞18; 38, 39, 24, 25)
(∞19; 32, 33, 34, 27)

P5 (0; 28, 29,∞2,∞1) (1; 30, 31,∞6,∞7) (2; 23, 37,∞12,∞3) (3; 36, 38,∞17,∞8)
(4; 9,∞4,∞0,∞13) (5; 18,∞5,∞18,∞9) (6; 16,∞10,∞11,∞14) (7; 19,∞15,∞16,∞19)
(∞20; 8, 17, 10, 11) (∞21; 26, 27, 12, 13) (∞22; 20, 21, 14, 15) (∞23; 22, 39, 24, 25)
(∞24; 32, 33, 34, 35)

Q1 (0; 1, 2, 3, 4) (5; 6, 7, 8, 9) (10; 11, 12, 13, 14) (15; 16, 17, 18, 19)
(20; 21, 22, 23, 24) (25; 26, 27, 28, 29) (30; 31, 32, 33, 34) (35; 36, 37, 38, 39)

Q2 (0; 5, 6, 7, 8) (1; 9, 10, 11, 12) (2; 13, 14, 15, 16) (3; 17, 18, 19, 20)
(4; 21, 22, 24, 26) (23; 28, 31, 32, 34) (29; 35, 36, 37, 39) (38; 25, 27, 30, 33)

Q3 (0; 9, 10, 11, 12) (1; 7, 8, 13, 15) (2; 17, 18, 19, 21) (3; 16, 22, 23, 24)
(4; 20, 25, 29, 30) (5; 31, 32, 35, 36) (14; 26, 33, 37, 38) (39; 6, 27, 28, 34)

Lemma 2.6. There exists a (K1,4, 1)-IRGDD of type 4(15,5).

Proof: Let the vertex set beZ40 ∪ {∞0,∞1, . . . ,∞19}, and let the groups be {u, 10+ u, 20+ u, 30+ u}, 0 ≤ u ≤ 9,
and {∞l,∞5+l,∞10+l,∞15+l}, 0 ≤ l ≤ 4. The required 25 parallel classes and 10 partial parallel classes can
be generated from 5 parallel classes {Pi | 1 ≤ i ≤ 5}, and 2 partial parallel classes {Q j | 1 ≤ j ≤ 2}, by +8
(mod 40), respectively. The blocks in each Pi and Q j are listed below respectively.
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P1 (0; 9, 11,∞5,∞6) (1; 8, 14,∞9,∞10) (2; 10, 17,∞14,∞15) (3; 12, 16,∞18,∞19)
(4; 15, 18,∞4,∞7) (5; 19, 20,∞8,∞11) (6; 13, 21,∞12,∞13) (7; 22, 23,∞16,∞17)
(∞0; 24, 25, 26, 27) (∞1; 34, 35, 28, 29) (∞2; 36, 37, 38, 39) (∞3; 30, 31, 32, 33)

P2 (0; 14, 15,∞9,∞10) (1; 16, 17,∞13,∞14) (2; 8, 9,∞18,∞19) (3; 10, 11,∞2,∞3)
(4; 12, 19,∞8,∞11) (5; 18, 21,∞12,∞15) (6; 20, 23,∞16,∞17) (7; 13, 38,∞0,∞1)
(∞4; 24, 25, 26, 27) (∞5; 34, 35, 28, 29) (∞6; 36, 37, 30, 39) (∞7; 22, 31, 32, 33)

P3 (0; 16, 17,∞13,∞14) (1; 15, 18,∞17,∞18) (2; 19, 20,∞2,∞3) (3; 8, 9,∞6,∞7)
(4; 10, 11,∞12,∞15) (5; 12, 14,∞16,∞19) (6; 22, 39,∞0,∞1) (7; 21, 29,∞4,∞5)
(∞8; 24, 25, 26, 27) (∞9; 34, 35, 28, 13) (∞10; 36, 37, 30, 31) (∞11; 23, 38, 32, 33)

P4 (0; 18, 19,∞17,∞18) (1; 20, 22,∞1,∞2) (2; 21, 23,∞6,∞7) (3; 14, 25,∞10,∞11)
(4; 9, 31,∞16,∞19) (5; 10, 11,∞0,∞3) (6; 24, 29,∞4,∞5) (7; 12, 16,∞8,∞9)
(∞12; 8, 17, 26, 27) (∞13; 34, 35, 28, 13) (∞14; 36, 37, 38, 39) (∞15; 15, 30, 32, 33)

P5 (0; 21, 23,∞1,∞2) (1; 28, 29,∞5,∞6) (2; 18, 30,∞10,∞11) (3; 22, 31,∞14,∞15)
(4; 16, 20,∞0,∞3) (13; 24, 35,∞4,∞7) (6; 17, 19,∞8,∞9) (15; 26, 33,∞12,∞13)
(∞16; 8, 9, 10, 11) (∞17; 34, 27, 36, 37) (∞18; 5, 7, 12, 14) (∞19; 25, 32, 38, 39)

Q1 (0; 1, 2, 3, 4) (5; 6, 7, 8, 9) (10; 11, 12, 13, 14) (15; 16, 17, 18, 19)
(20; 21, 22, 23, 24) (25; 26, 27, 28, 29) (30; 31, 32, 33, 34) (35; 36, 37, 38, 39)

Q2 (0; 5, 6, 7, 8) (1; 9, 10, 12, 13) (2; 11, 14, 15, 16) (3; 17, 18, 19, 20)
(4; 21, 22, 23, 32) (30; 25, 35, 36, 38) (37; 24, 26, 28, 29) (39; 27, 31, 33, 34)

Construction 2.7. Suppose there exist a (K1,n, λ)-frame of type (1u)t, a (K1,n, λ)-IRGDD of type 1(u+l,l), and a
(K1,n, λ)-RGDD of type 1u+l, then there exists a (K1,n, λ)-RGDD of type 1ut+l.

Proof: We start with a (K1,n, λ)-frame of type (1u)t with the groups G j, 1 ≤ j ≤ t. There are λ1u(n+1)
2n partial

parallel classes missing G j, denoted by {Qi
j | 1 ≤ i ≤ λ1u(n+1)

2n }. Add 1l new common vertices to the vertex set
of each G j and form a new vertex set G′j.

For 1 ≤ j ≤ t − 1, break up G′j with a (K1,n, λ)-IRGDD of type 1(u+l,l) with the groups G1
j ,G

2
j , . . . ,G

u
j ,

M1,M2, . . . ,Ml, where the 1l common vertices are viewed as l holes M1,M2, . . . , Ml. It has λ1u(n+1)
2n parallel

classes (denoted by {Ri
j | 1 ≤ i ≤ λ1u(n+1)

2n }) and λ1(n+1)(l−1)
2n partial parallel classes (denoted by {Si

j | 1 ≤ i ≤
λ1(n+1)(l−1)

2n }).
For the last set G′t, we break up it with a (K1,n, λ)-RGDD of type 1u+l with the groups G1

t ,G
2
t , . . . ,G

u
t ,

M1,M2, . . . ,Ml. Its λ1(n+1)(u+l−1)
2n parallel classes are denoted by {Ri

t | 1 ≤ i ≤ λ1(n+1)(u+l−1)
2n }.

Let Fi
j = Ri

j ∪Qi
j, 1 ≤ i ≤ λ1u(n+1)

2n , 1 ≤ j ≤ t, and let Tk = R
λ1u(n+1)

2n +k
t ∪ (∪t−1

j=1Sk
j), 1 ≤ k ≤ λ1(n+1)(l−1)

2n . It is easy

to see Fi
j and Tk are parallel classes of the required (K1,n, λ)-RGDD of type 1ut+l.

Construction 2.8. Suppose there exist a (K1,n, λ)-IRGDD of type 1(u+l,l) and a (K1,n, λ)-RGDD of type 1l, then there
exists a (K1,n, λ)-RGDD of type 1u+l.

Proof: We start with (K1,n, λ)-IRGDD of type 1(u+l,l) whose α = λu(n+1)
2n parallel classes are denoted by

{Pi | 1 ≤ i ≤ α}, and whose β = λ(n+1)(l−1)
2n partial parallel classes are denoted by {Q j | 1 ≤ j ≤ β}. And

(K1,n, λ)-RGDD of type 1l with β parallel classes denoted by {P′j | 1 ≤ j ≤ β}. Let A j = Q j ∪ P′j, 1 ≤ j ≤ β. Then

both A j and Pi are parallel classes on the whole vertex set, and they form a (K1,n, λ)-RGDD of type 1u+l.

2.1. (K1,4, 1)-RGDDs

Lemma 2.9. There exists a (K1,4, 1)-RGDD of type 5u for u ≡ 1 (mod 8) and u ≥ 9.

Proof: For u = 9, let the vertex set beZ45, and let the groups be {i+9 j | 0 ≤ j ≤ 4}, 0 ≤ i ≤ 8. Let C1 = (0; 1, 2, 3, 4)
and C2 = (0; 6, 7, 8, 14). For j = 1, 2, each C j can generate a parallel class P j by+5 (mod 45). P j can generate 5
parallel classes by +r (mod 45), 0 ≤ r ≤ 4. Thus, we get 10 parallel classes. The other 15 parallel classes can
be generated from a parallel class {(0; 5, 10, 11, 12), (1; 6, 13, 14, 16), (2; 7, 15, 17, 18), (3; 19, 20, 24, 37), (4; 21, 25,
26, 36) (8; 27, 29, 30, 33), (9; 28, 31, 39, 44), (22; 32, 38, 41, 42), (23; 34, 35, 40, 43)} by +3 (mod 45).
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For u = 17, let the vertex set be Z17 ×Z5, and let the groups be {i} ×Z5, i ∈ Z17. For each 1 ≤ j ≤ 16, the
block C j can generate a parallel class by (+1 (mod 17),−). The other 34 parallel classes can be generated
from two parallel classes P1 and P2 by (+1 (mod 17),−). P1, P2 and C j are listed below respectively.

P1 (74; 83, 123, 04, 84) (03; 43, 24, 54, 104) (81; 61, 71, 42, 113) (130; 10, 40, 101, 114)
(50; 20, 150, 31, 93) (153; 02, 13, 73, 163) (91; 11, 41, 142, 124) (121; 00, 60, 100, 21)
(152; 80, 140, 131, 162) (120; 110, 160, 151, 72) (111; 01, 141, 82, 122) (32; 62, 102, 63, 103)
(132; 22, 112, 14, 34) (12; 52, 92, 23, 44) (33; 133, 143, 144, 164) (94; 53, 64, 134, 154)
(90; 30, 70, 51, 161)

P2 (152; 32, 83, 113, 143) (162; 133, 94, 134, 144) (70; 12, 42, 33, 53) (04; 30, 62, 82, 132)
(104; 50, 160, 24, 124) (34; 00, 80, 120, 61) (154; 60, 90, 92, 142) (54; 10, 01, 91, 101)
(63; 110, 81, 111, 121) (31; 161, 22, 112, 122) (164; 71, 151, 13, 44) (20; 52, 72, 102, 163)
(64; 40, 100, 21, 41) (43; 130, 140, 150, 51) (103; 123, 153, 14, 74) (131; 03, 23, 93, 114)
(84; 11, 141, 02, 73)

C1 (00; 81, 92, 53, 164) C2 (00; 51, 62, 33, 104) C3 (00; 41, 42, 23, 74) C4 (00; 11, 22, 13, 14)
C5 (01; 80, 72, 73, 164) C6 (01; 70, 62, 53, 104) C7 (01; 60, 42, 23, 84) C8 (01; 10, 32, 13, 64)
C9 (02; 70, 71, 63, 164) C10 (02; 40, 61, 53, 134) C11 (02; 20, 51, 43, 124) C12 (02; 10, 21, 23, 24)
C13 (03; 80, 91, 92, 94) C14 (03; 70, 81, 82, 74) C15 (03; 60, 71, 62, 64) C16 (03; 10, 31, 52, 34)

For u ≥ 25, a (K1,4, 1)-frame of type 40
u−1

8 exists by Theorem 1.9 and a (K1,4, 1)-RGDD of type 59 constructed
above, we get the conclusion by applying Construction 2.3.

Lemma 2.10. There exists a (K1,4, 1)-RGDD of type 1u for u ≡ 25 (mod 40) and u ≥ 25.

Proof: For u = 25, let the vertex set be Z5 × Z5, and let the groups be {i}, i ∈ Z5 × Z5. The block
C1 = (00; 10, 20, 31, 42) can generate a parallel class P1 by (−,+1 (mod 5)). The blocks C2 = (00; 01, 02, 33, 14)
and C3 = (00; 11, 12, 23, 34) can generate two parallel classes P2 and P3 by (+1 (mod 5),−). We can get 5
parallel classes from P1 by (+1 (mod 5),−) and 10 parallel classes from P2 and P3 by (−,+1 (mod 5)). We
get the required 15 parallel classes.

For u = 65, there exist a (K1,4, 1)-IRGDD of type 1(65,25) by Lemma 2.5 and a (K1,4, 1)-RGDD of type 125

constructed above, we get a (K1,4, 1)-RGDD of type 165 by using Construction 2.8.
For u = 105, let the vertex set beZ21 ×Z5, and let the groups be {i}, i ∈ Z21 ×Z5. For each 1 ≤ j ≤ 44, the

block C j can generate a parallel class by (+1 (mod 21),−). The other 21 parallel classes can be generated
from a parallel classes P by (+1 (mod 21),−). The blocks in P and C j are listed below respectively.

P (00; 30, 20, 10, 01) (11; 31, 191, 21, 02) (12; 32, 22, 192, 83) (13; 23, 133, 33, 174)
(14; 24, 74, 44, 40) (50; 100, 110, 90, 193) (51; 101, 91, 201, 34) (52; 102, 92, 162, 200)
(63; 113, 123, 103, 81) (64; 154, 84, 144, 82) (60; 180, 170, 111, 112) (61; 181, 161, 42, 163)
(62; 122, 182, 183, 104) (203; 93, 173, 54, 120) (114; 164, 184, 130, 41) (70; 150, 140, 53, 124)
(71; 141, 151, 194, 160) (72; 142, 202, 80, 121) (73; 03, 153, 131, 152) (94; 204, 134, 132, 43)
(190; 171, 172, 143, 04)

C1 (01; 02, 03, 04, 10) C2 (02; 03, 04, 00, 31) C3 (03; 04, 00, 11, 12)
C4 (04; 00, 11, 12, 13) C5 (00; 11, 12, 13, 14) C6 (01; 12, 13, 14, 30)
C7 (02; 13, 14, 30, 41) C8 (03; 14, 10, 31, 22) C9 (04; 10, 31, 32, 23)
C10 (00; 21, 22, 23, 34) C11 (01; 22, 23, 24, 40) C12 (02; 23, 24, 40, 61)
C13 (03; 24, 30, 41, 32) C14 (04; 40, 41, 52, 33) C15 (00; 31, 32, 33, 44)
C16 (01; 32, 33, 34, 50) C17 (02; 33, 34, 50, 71) C18 (03; 34, 40, 51, 42)
C19 (04; 50, 51, 62, 43) C20 (00; 41, 42, 43, 64) C21 (01; 42, 43, 44, 60)
C22 (02; 43, 54, 60, 81) C23 (03; 44, 60, 71, 52) C24 (04; 60, 61, 72, 63)
C25 (00; 61, 72, 53, 74) C26 (01; 52, 53, 54, 70) C27 (02; 53, 64, 70, 91)
C28 (03; 74, 80, 81, 62) C29 (04; 70, 71, 82, 73) C30 (00; 71, 82, 63, 84)
C31 (01; 62, 63, 64, 80) C32 (02; 63, 74, 80, 101) C33 (03; 84, 90, 91, 72)
C34 (04; 80, 81, 92, 83) C35 (00; 81, 92, 73, 94) C36 (01; 72, 73, 84, 100)
C37 (02; 83, 84, 90, 111) C38 (03; 94, 100, 101, 102) C39 (04; 90, 101, 102, 93)
C40 (00; 91, 102, 93, 104) C41 (01; 82, 83, 94, 110) C42 (02; 93, 94, 100, 121)
C43 (03; 104, 110, 121, 112) C44 (04; 100, 111, 112, 103)

For u ≥ 145, a (K1,4, 1)-frame of type 40
u−25

40 exists by Theorem 1.9, a (K1,4, 1)-IRGDD of type 1(65,25) exists
by Lemma 2.5, and a (K1,4, 1)-RGDD of type 125 which is constructed above. Then apply Construction 2.7
to get the required design.

Lemma 2.11. There exists a (K1,4, 1)-RGDD of type 2u for u ≡ 5 (mod 20) and u ≥ 5.



L. Wang / Filomat 39:5 (2025), 1717–1733 1728

Proof: For u = 5, let the vertex set be Z10, and let the groups be {i, i + 5}, 0 ≤ i ≤ 4. The required 5 parallel
classes are {(0; 1, 2, 3, 4) + i, (6; 7, 8, 9, 10) + i}.

For u ≥ 25, a (K1,4, 1)-frame of type 8
u−1

5 exists by Theorem 1.9 and a (K1,4, 1)-RGDD of type 25 is
constructed above, we get the conclusion by applying Construction 2.3.

Lemma 2.12. There exists a (K1,4, 1)-RGDD of type 10u for u ≡ 1 (mod 4) and u ≥ 5.

Proof: For u = 5, apply Construction 2.1 with m = 5 and a (K1,4, 1)-RGDD of type 25 which exists by
Lemma 2.11 to obtain the conclusion.

For u = 9, apply Construction 2.1 with m = 2 and a (K1,4, 1)-RGDD of type 59 which exists by Lemma 2.9
to obtain the required design.

For u ≥ 13, a (K1,4, 1)-frame of type 40
u−1

4 exists by Theorem 1.9 and a (K1,4, 1)-RGDD of type 105 is
constructed above, we get the conclusion by using Construction 2.3.

Lemma 2.13. There exists a (K1,4, 1)-RGDD of type 20u for u ≡ 1 (mod 2) and u ≥ 3.

Proof: For u = 3, the conclusion comes from [10].
For u = 5, apply Construction 2.1 with m = 10 and a (K1,4, 1)-RGDD of type 25 which exists by Lemma 2.11

to obtain the conclusion.
For u ≥ 7, there exist a (K1,4, 1)-frame of type 40

u−1
2 by Theorem 1.9 and a (K1,4, 1)-RGDD of type 203 from

[10], we get the conclusion by using Construction 2.3.

Lemma 2.14. There exists a (K1,4, 1)-RGDD of type 4u for u ≡ 5 (mod 10) and u ≥ 5.

Proof: For u = 5, apply Construction 2.1 with m = 2 and a (K1,4, 1)-RGDD of type 25 which exists by
Lemma 2.11 to obtain the conclusion.

For u = 15, let the vertex set be Z60, and let the groups be {i + 15 j | 0 ≤ j ≤ 3}, 0 ≤ i ≤ 14. The block
(0; 4, 23, 31, 32) can generate a parallel class P1 by +5 (mod 60). The block set {(7; 20, 21, 23, 29), (5; 10, 11, 12,
13), (19; 39, 44, 52, 58), (0; 1, 2, 3, 24), (8; 26, 27, 34, 25), (6; 15, 16, 17, 18)} can generate a parallel class P2 by +30
(mod 60). We can get 5 parallel classes from P1 by +r (mod 60), 0 ≤ r ≤ 4, and 30 parallel classes from P2
by +s (mod 60), 0 ≤ s ≤ 29. Thus, we get the required 35 parallel classes.

For u = 25, apply Construction 2.1 with m = 4 and a (K1,4, 1)-RGDD of type 125 which exists by
Lemma 2.10 to obtain the conclusion.

For u ≥ 35, a (K1,4, 1)-frame of type 40
u−5
10 exists by Theorem 1.9, a (K1,4, 1)-IRGDD of type 4(15,5) exists by

Lemma 2.6, and a (K1,4, 1)-RGDD of type 415 which is constructed above. Then apply Construction 2.7 to
get the required design.

Lemma 2.15. There exists a (K1,4, 1)-RGDD of type 8u for u ≡ 0 (mod 5) and u ≥ 5.

Proof: For u = 5, apply Construction 2.1 with m = 4 and a (K1,4, 1)-RGDD of type 25 which exists by
Lemma 2.11 to obtain the conclusion.

For u = 10, let the vertex set beZ80, and let the groups be {i+10 j | 0 ≤ j ≤ 7}, 0 ≤ i ≤ 9. For each 1 ≤ l ≤ 4,
the block set Cl can generate a parallel class Pl by +10 (mod 80). Each Pl can generate 10 parallel classes by
+r (mod 80), 0 ≤ r ≤ 9. The block (0; 36, 37, 38, 39) can generate a parallel class P5 by +5 (mod 80). P5 can
generate 5 parallel classes by +s (mod 80), 0 ≤ s ≤ 4. The blocks in Cl are listed below respectively.

C1 (0; 1, 2, 3, 4) (5; 16, 17, 18, 19) C2 (0; 5, 6, 7, 8) (1; 19, 22, 23, 24)
C3 (0; 9, 15, 16, 17) (1; 28, 32, 33, 34) C4 (0; 19, 24, 25, 26) (3; 31, 32, 37, 38)

For u ≥ 15, there exist a (K1,4, 1)-RGDD of type 40
u
5 from [10] and a (K1,4, 1)-RGDD of type 85 which is

constructed above, we get the conclusion by using Construction 2.2.

Theorem 2.16. A K1,4-RGDD of type 1u exists if and only if 1(u − 1) ≡ 0 (mod 8), 1u ≡ 0 (mod 5), u ≥ 2, and
1 ≡ 0 (mod 5) when u = 2.
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Proof: The necessary condition is obvious by Theorem 0.2. We distinguish the sufficient conditions into the
following 8 cases.

1. 1 ≡ 0 (mod 40) and u ≥ 2.
There exists a K1,4-RGDD of type 40u from [10]. Then apply Construction 2.1 with m = 1/40 to get the

required design.
2. 1 ≡ 4, 12, 28, 36 (mod 40) and u ≡ 5 (mod 10), u ≥ 5.
A K1,4-RGDD of type 4u exists by Lemma 2.14. Then we apply Construction 2.1 with m = 1/4 to get a

K1,4-RGDD of type 1u.
3. 1 ≡ 8, 16, 24, 32 (mod 40) and u ≡ 0 (mod 5), u ≥ 5.
Similarly, we can use Construction 2.1 with m = 1/8 and a K1,4-RGDD of type 8u by Lemma 2.15 to

obtain the required design.
4. 1 ≡ 20 (mod 40) and u ≡ 1 (mod 2), u ≥ 3.
We apply Construction 2.1 with m = 1/20 and a K1,4-RGDD of type 20u by Lemma 2.13 to get a K1,4-RGDD

of type 1u.
5. 1 ≡ 10 (mod 20) and u ≡ 1 (mod 4), u ≥ 5.
A K1,4-RGDD of type 10u exists by Lemma 2.12. Then we apply Construction 2.1 with m = 1/10 to get a

K1,4-RGDD of type 1u.
6. 1 ≡ 2, 6, 14, 18 (mod 20) and u ≡ 5 (mod 20), u ≥ 5.
We apply Construction 2.1 with m = 1/2 and a K1,4-RGDD of type 2u by Lemma 2.11 to get a K1,4-RGDD

of type 1u.
7. 1 ≡ 5 (mod 10) and u ≡ 1 (mod 8), u ≥ 9.
Similarly, we can use Construction 2.1 with m = 1/5 and a K1,4-RGDD of type 5u by Lemma 2.9 to obtain

the required design.
8. 1 ≡ 1, 3, 7, 9 (mod 10) and u ≡ 25 (mod 40), u ≥ 25.
A K1,4-RGDD of type 1u exists by Lemma 2.10. Then we apply Construction 2.1 with m = 1 to get a

K1,4-RGDD of type 1u.

2.2. (K1,4, 2)-RGDDs

Lemma 2.17. There exists a (K1,4, 2)-RGDD of type 20u for u ≥ 2.

Proof: For u ≡ 1 (mod 2), there exists a K1,4-RGDD of type 20u by Theorem 2.16. Repeat each block two
times to get a (K1,4, 2)-RGDD of type 20u.

For u ≡ 0 (mod 2), we first construct a (K1,4, 2)-RGDD of type 202. Let the vertex set be Z40, and let the
groups be {i+ 2 j | 0 ≤ j ≤ 19}, i = 0, 1. The block set {(0; 1, 3, 5, 7), (2; 9, 11, 13, 15), (17; 6, 8, 12, 30), (19; 4, 16, 18,
34)} can generate a parallel class P1 by +20 (mod 40). P1 can generate 20 parallel classes by +r (mod 40),
0 ≤ r ≤ 19. The block (0; 17, 19, 21, 23) can generate a parallel class P2 by +5 (mod 40). P2 can generate 5
parallel classes by +s (mod 40), 0 ≤ s ≤ 4.

When u ≥ 4, we can obtain a (K1,4, 2)-RGDD of type 40
u
2 by repeating each block of a K1,4-RGDD of type

40
u
2 (Theorem 2.16) two times. Then apply Construction 2.2 with a (K1,4, 2)-RGDD of type 202 constructed

above to get the required design.

Lemma 2.18. There exists a (K1,4, 2)-RGDD of type 1u for u ≡ 5 (mod 20) and u ≥ 5.

Proof: For u = 5, let the vertex set be Z5, and the groups be {i}, i ∈ Z5. The required parallel classes are
(0; 1, 2, 3, 4) + i, 0 ≤ i ≤ 4.

For u ≥ 25, there exist a (K1,4, 2)-frame of type 4
u−1

4 by Theorem 1.13 and a (K1,4, 2)-RGDD of type 15, we
get the conclusion by using Construction 2.3.

Lemma 2.19. There exists a (K1,4, 2)-RGDD of type 10u for u ≡ 1 (mod 2) and u ≥ 3.



L. Wang / Filomat 39:5 (2025), 1717–1733 1730

Proof: For u = 3, let the vertex set be Z30, and let the groups be {i + 3 j | 0 ≤ j ≤ 9}, 0 ≤ i ≤ 2. The block
set {(25; 24, 15, 23, 20), (6; 28, 17, 26, 22), (14; 1, 12, 18, 19)} can generate a parallel class P1 by +15 (mod 30). P1
can generate 15 parallel classes by +r (mod 30), 0 ≤ r ≤ 14. The blocks (7; 18, 6, 15, 14) and (0; 4, 7, 13, 16)
can generate 2 parallel classes P2 and P3 by +5 (mod 30). Each Pl (l = 2, 3) can generate 5 parallel classes
by +s (mod 30), 0 ≤ s ≤ 4.

For u = 5, there exists a K1,4-RGDD of type 105 by Theorem 2.16. Repeat each block two times to get the
required design.

For u ≥ 7, there exist a (K1,4, 2)-frame of type 20
u−1

2 by Theorem 1.13 and a (K1,4, 2)-RGDD of type 103, we
get the conclusion by using Construction 2.3.

Lemma 2.20. There exists a (K1,4, 2)-RGDD of type 2u for u ≡ 5 (mod 10) and u ≥ 5.

Proof: For u = 5, there exists a K1,4-RGDD of type 25 by Theorem 2.16. Repeat each block two times to get
the required design.

For u ≥ 15, there is a (K1,4, 2)-RGDD of type 10
u
5 by Lemma 2.19 and a (K1,4, 2)-RGDD of type 25 which

is constructed above, we get the conclusion by using Construction 2.2.

Lemma 2.21. There exists a (K1,4, 2)-RGDD of type 4u for u ≡ 0 (mod 5) and u ≥ 5.

Proof: For u = 5, there exists a K1,4-RGDD of type 45 by Theorem 2.16. Repeat each block two times to get
the required design.

For u ≥ 10, there exist a (K1,4, 2)-RGDD of type 20
u
5 by Lemma 2.17 and a (K1,4, 2)-RGDD of type 45, we

get the conclusion by using Construction 2.2.

Lemma 2.22. There exists a (K1,4, 2)-RGDD of type 5u for u ≡ 1 (mod 4) and u ≥ 5.

Proof: For u = 5, there exists a (K1,4, 2)-RGDD of type 15 by Lemma 2.18. Then apply Construction 2.1 with
m = 5 to get the conclusion.

For u = 9, there exists a K1,4-RGDD of type 59 by Theorem 2.16. Repeat each block two times to get the
required design.

For u ≥ 13, there exist a (K1,4, 2)-frame of type 20
u−1

4 by Theorem 1.13 and a (K1,4, 2)-RGDD of type 55, we
get the conclusion by using Construction 2.3.

Theorem 2.23. A (K1,4, 2)-RGDD of type 1u exists if and only if 1(u − 1) ≡ 0 (mod 4), 1u ≡ 0 (mod 5), u ≥ 2,
and 1 ≡ 0 (mod 5) when u = 2.

Proof: The necessary conditions for the existence of a (K1,4, 2)-RGDD of type 1u are clearly established by
Theorem 0.2. Now we consider its sufficiency and distinguish into the following 6 cases.

1. 1 ≡ 0 (mod 20) and u ≥ 2.
We use Construction 2.1 with m = 1/20 and a (K1,4, 2)-RGDD of type 20u by Lemma 2.17 to obtain the

required design.
2. 1 ≡ 2, 6, 14, 18 (mod 20) and u ≡ 5 (mod 10), u ≥ 5.
A (K1,4, 2)-RGDD of type 2u exists by Lemma 2.20. We apply Construction 2.1 with m = 1/2 to obtain a

(K1,4, 2)-RGDD of type 1u.
3. 1 ≡ 4, 8, 12, 16 (mod 20) and u ≡ 0 (mod 5), u ≥ 5.
Similarly, we can use Construction 2.1 with m = 1/4 and a (K1,4, 2)-RGDD of type 4u by Lemma 2.21 to

obtain the required design.
4. 1 ≡ 10 (mod 20) and u ≡ 1 (mod 2), u ≥ 3.
A (K1,4, 2)-RGDD of type 10u exists by Lemma 2.19. We apply Construction 2.1 with m = 1/10 to obtain

a (K1,4, 2)-RGDD of type 1u.
5. 1 ≡ 5 (mod 10) and u ≡ 1 (mod 4), u ≥ 5.
We apply Construction 2.1 with m = 1/5 and a (K1,4, 2)-RGDD of type 5u by Lemma 2.22 to get a

(K1,4, 2)-RGDD of type 1u.
6. 1 ≡ 1, 3, 7, 9 (mod 10) and u ≡ 5 (mod 20), u ≥ 5.
Similarly, we can use Construction 2.1 with m = 1 and a (K1,4, 2)-RGDD of type 1u by Lemma 2.18 to

obtain the required design.
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2.3. (K1,4, 4)-RGDDs
Lemma 2.24. There exists a (K1,4, 4)-RGDD of type 10u for u ≥ 2.

Proof: For u ≡ 1 (mod 2), there exists a (K1,4, 2)-RGDD of type 10u by Theorem 2.23. Repeat each block two
times to get the required design.

For u ≡ 0 (mod 2), we first construct a (K1,4, 4)-RGDD of type 102. Let the vertex set be Z20, and let the
groups be {i+2 j | 0 ≤ j ≤ 9}, i = 0, 1. The parallel class P1 = {(0; 1, 3, 5, 7), (2; 9, 11, 13, 15), (17; 6, 8, 10, 12), (19; 4,
14, 16, 18)} can generate 20 parallel classes by +1 (mod 20). The block (0; 1, 3, 17, 19) can generate a parallel
class P2 by +5 (mod 20). P2 can generate 5 parallel classes by +s (mod 20), 0 ≤ s ≤ 4.

When u ≥ 4, we can obtain a (K1,4, 4)-RGDD of type 20
u
2 by repeating each block of a (K1,4, 2)-RGDD

of type 20
u
2 (Theorem 2.23) two times. Then apply Construction 2.2 with a (K1,4, 4)-RGDD of type 102

constructed above to get the required design.

Lemma 2.25. There exists a (K1,4, 4)-RGDD of type 5u for u ≡ 1 (mod 2) and u ≥ 3.

Proof: For u = 3, let the vertex set beZ30, and let the groups be {i+3 j | 0 ≤ j ≤ 4}, 0 ≤ i ≤ 2. The parallel class
P1 = {(0; 1, 2, 4, 5), (3; 7, 8, 11, 13), (14; 6, 9, 10, 12)} can generate 15 parallel classes by+1 (mod 15). The blocks
(0; 1, 2, 4, 8) and (0; 1, 2, 8, 14) can generate 2 parallel classes P2 and P3 by +5 (mod 15). Each Pl (l = 2, 3) can
generate 5 parallel classes by +s (mod 15), 0 ≤ s ≤ 4.

For u = 5, there exists a (K1,4, 2)-RGDD of type 55 by Theorem 2.23. Repeat each block two times to get
the required design.

For u ≥ 7, there exist a (K1,4, 4)-frame of type 10
u−1

2 by Lemma 1.15 and a (K1,4, 4)-RGDD of type 53, we
get the conclusion by using Construction 2.3.

Lemma 2.26. There exists a (K1,4, 4)-RGDD of type 1u for u ≡ 5 (mod 10) and u ≥ 5.

Proof: For u = 5, there exists a (K1,4, 2)-RGDD of type 15 by Theorem 2.23. Repeat each block two times to
get the required design.

For u ≥ 15, there exist a (K1,4, 4)-RGDD of type 5
u
5 by Lemma 2.25 and a (K1,4, 4)-RGDD of type 15, we

get the conclusion by using Construction 2.2.

Lemma 2.27. There exists a (K1,4, 4)-RGDD of type 2u for u ≡ 0 (mod 5) and u ≥ 5.

Proof: For u = 5, there exists a K1,4-RGDD of type 25 by Theorem 2.16. Repeat each block four times to get
the required design.

For u ≥ 10, there exist a (K1,4, 4)-RGDD of type 10
u
5 by Lemma 2.24 and a (K1,4, 4)-RGDD of type 25, we

get the conclusion by using Construction 2.2.

Theorem 2.28. A (K1,4, 4)-RGDD of type 1u exists if and only if 1(u − 1) ≡ 0 (mod 2), 1u ≡ 0 (mod 5), u ≥ 2,
and 1 ≡ 0 (mod 5) when u = 2.

Proof: The necessary condition is obvious by Theorem 0.2. We distinguish the sufficient conditions into the
following 4 cases.

1. 1 ≡ 0 (mod 10) and u ≥ 2.
There exists a (K1,4, 4)-RGDD of type 10u by Lemma 2.24. Then apply Construction 2.1 with m = 1/10 to

get the required design.
2. 1 ≡ 5 (mod 10) and u ≡ 1 (mod 2), u ≥ 3.
A (K1,4, 4)-RGDD of type 5u exists by Lemma 2.25. Then we apply Construction 2.1 with m = 1/5 to get

a (K1,4, 4)-RGDD of type 1u.
3. 1 ≡ 1, 3, 7, 9 (mod 10) and u ≡ 5 (mod 10), u ≥ 5.
Similarly, we can use Construction 2.1 with m = 1 and a (K1,4, 4)-RGDD of type 1u by Lemma 2.26 to

obtain the required design.
4. 1 ≡ 2, 4, 6, 8 (mod 10) and u ≡ 0 (mod 5), u ≥ 5.
We apply Construction 2.1 with m = 1/2 and a (K1,4, 4)-RGDD of type 2u by Lemma 2.27 to get a

(K1,4, 4)-RGDD of type 1u.
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2.4. (K1,4, 8)-RGDDs

Lemma 2.29. There exists a (K1,4, 8)-RGDD of type 5u for u ≥ 2.

Proof: For u ≡ 1 (mod 2), there exists a (K1,4, 4)-RGDD of type 5u by Theorem 2.28. Repeat each block two
times to get the required design.

For u ≡ 0 (mod 2), we first construct a (K1,4, 8)-RGDD of type 52. Let the vertex set be Z10, and
let the groups be {i + 2 j | 0 ≤ j ≤ 4}, i = 0, 1. Two parallel classes P1 = {(0; 1, 3, 5, 7), (9; 2, 4, 6, 8)} and
P2 = {(0; 1, 3, 5, 9), (7; 2, 4, 6, 8)} can generate 20 parallel classes by +1 (mod 10). The block (0; 1, 3, 7, 9) can
generate a parallel class P3 by +5 (mod 10). P3 can generate 5 parallel classes by +s (mod 10), 0 ≤ s ≤ 4.
When u ≥ 4, we can obtain a (K1,4, 8)-RGDD of type 10

u
2 by repeating each block of a (K1,4, 4)-RGDD of type

10
u
2 (Theorem 2.28) two times. Then apply Construction 2.2 with a (K1,4, 8)-RGDD of type 52 constructed

above to get the required design.

Lemma 2.30. There exists a (K1,4, 8)-RGDD of type 1u for u ≡ 0 (mod 5) and u ≥ 5.

Proof: For u = 5, there exists a (K1,4, 2)-RGDD of type 15 by Theorem 2.23. Repeat each block four times to
get the required design.

For u ≥ 10, there exist a (K1,4, 8)-RGDD of type 5
u
5 by Lemma 2.29 and a (K1,4, 8)-RGDD of type 15, we

get the conclusion by using Construction 2.2.

Theorem 2.31. A (K1,4, 8)-RGDD of type 1u exists if and only if 1u ≡ 0 (mod 5), u ≥ 2, and 1 ≡ 0 (mod 5) when
u = 2.

Proof: The necessary conditions for the existence of (K1,4, 8)-RGDD of type 1u are clearly established by
Theorem 0.2. Now we consider its sufficiency and distinguish into 2 cases.

1. 1 ≡ 0 (mod 5) and u ≥ 2.
We use Construction 2.1 with m = 1/5 and a (K1,4, 8)-RGDD of type 5u by Lemma 2.29 to obtain the

required design.
2. 1 ≡ 1, 2, 3, 4 (mod 5) and u ≡ 0 (mod 5), u ≥ 5.
A (K1,4, 8)-RGDD of type 1u exists by Lemma 2.30. We apply Construction 2.1 with m = 1 to obtain a

(K1,4, 8)-RGDD of type 1u.

2.5. Main result on (K1,4, λ)-RGDDs

Now we prove our main result. By Theorem 0.2, it is easy to see that the 4 cases λ = 1, 2, 4, 8 are crucial
for the whole problem.
Proof of Theorem 0.4: We distinguish 4 cases.

1. λ ≡ 1 (mod 2).
There exists a K1,4-RGDD of type 1u by Theorem 2.16. Repeat each block λ times to get a (K1,4, λ)-RGDD

of type 1u.
2. λ ≡ 2 (mod 4).
A (K1,4, 2)-RGDD of type 1u exists by Theorem 2.23. Repeat each block λ/2 times to get the conclusion.
3. λ ≡ 4 (mod 8).
A (K1,4, 4)-RGDD of type 1u exists by Theorem 2.28. Repeat each block λ/4 times to get a (K1,4, λ)-RGDD

of type 1u.
4. λ ≡ 0 (mod 8).
There exists a (K1,4, 8)-RGDD of type 1u by Theorem 2.31. Repeat each block λ/8 times to get the required

design.
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