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Abstract. In this study, we aim to determine the unique tetracyclic graph that maximizes the signless
Laplacian Estrada index (SLEE) among all tetracyclic graphs. The SLEE of a graphΩ is defined as the sum
of the exponentials of its eigenvalues, expressed as follows:

SLEE(Ω) =
n∑

i=1

esi ,

where s1, s2, ..., sn are the eigenvalues of the signless Laplacian matrix of Ω. By identifying this unique
tetracyclic graph, we desire to understand the specific structural characteristics that contribute to the
maximum SLEE within the class of tetracyclic graphs.

1. Introduction

Consider the connected simple graphΩ = (V,E) where |V(Ω)| = n and |E(Ω)| = m. A graphΩ is called a
c-cyclic graph if m = n+ c−1. In particular,Ω is referred to as a tetracyclic graph if c = 4. Let dΩ(v) = |NΩ(v)|
be the degree of vertex v in Ω if NΩ(v) stands for the neighbor set of vertex v in Ω. A vertex of degree 1 is
called a pendant vertex. A pendant edge is the incidence of an edge with a pendant vertex.

Let A(Ω) =
[
ai j

]
be the adjacency matrix of Ω and let D(Ω) = dia1 (d1, d2, ..., dn) be the degree matrix

whose diagonal elements are the vertex degrees. The typical Laplacian matrix of Ω is represented by
L(Ω) = D(Ω) − A(Ω). The signless Laplacian matrix is represented by S(Ω) = D(Ω) + A(Ω) where A(Ω),
L(Ω) and S(Ω) are real symmetric matrices. Their eigenvalues are hence real numbers. For A(Ω), L(Ω) and
S(Ω), we represent the eigenvalues as λ1, λ2, ..., λn, µ1, µ2, ..., µn and s1, s2, ..., sn, respectively. The largest
eigenvalue of signless Laplacian matrix is called the signless Laplacian spectral radius of Ω.
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The Estrada index of a graphΩ is defined as EE(Ω) =
n∑

i=1
eλi . It was initially proposed as a measure of the

degree folding of a protein [9], however, it has since been found in a variety of biochemical and complex
networks related issues. The Laplacian Estrada index shortly extended in [17], and Ayyasamy et al. [2]
described the signless Laplacian Estrada index (abbreviated SLEE) of a graph Ω as

SLEE(Ω) =
n∑

i=1

esi .

Additionally, they established some bounds for SLEE. In order to define the extremal graph, an upper
bound for SLEE based on the vertex connectivity of a graph was constructed by Binthiya et al. [4]. In
[7], Ellahi et al. determined the unique graph with maximum SLEE among graphs with diameter, number
of bridges, vertex connectivity, pendant vertices, and edge connectivity. Additionally, they characterized
the unicyclic graphs with the first two smallest and largest SLEE in [8]. Wang et al. in [15] characterized
the bicyclic graphs and determined the maximal SLEE of both the bipartite bicyclic graphs and bicyclic
graphs. Moreover, Ellahi et al. [11] demonstrated that, out of all tricyclic graphs, only two graphs have the
maximum SLEE.

Motivated by these research efforts, we aim to extend the study to tetracyclic graphs and characterize
those with the maximum SLEE. Building upon the existing knowledge of extremal graphs and maximizing
SLEE in various graph classes, we seek to identify and elucidate the unique tetracyclic graphs that achieve
the highest SLEE values, further contributing to the understanding of this intriguing graph parameter.

2. Preliminaries

In this section, we begin with some definitions and notations that were utilized in our research, and
then we restate some results that were proven in references [5], [7]. Following that, we provide an auxiliary
lemma that is required in order to accomplish the objectives of this paper.

Recall that Tk(Ω) represents the kth signless Laplacian spectral moment of a graph Ω, expressed as
Tk(Ω) =

∑n
i=1 sk

i . Let Sk represents the kth power of the matrix S(Ω). Accordingly, based on the definition
of Tk(Ω), it is evident that Tk(Ω) = The trace of the matrix Sk. Put differently, Tk(Ω) = Tr

(
Sk
)
. As a result,

SLEE(Ω), given by the Taylor expansion of the exponential function esi and the definition of SLEE(Ω), can

be expressed as SLEE(Ω) =
∞∑

k=0

Tk(Ω)
k! .

This equation inspires us to consider the concept of signless Laplacian spectral moments of graphs as a
means to compare their SLEE values. To further explore this concept, we require a closely related notion
that captures the essence of signless Laplacian spectral moments. The following definition and proposition
offer this suitable notion and outline its close relation to the signless Laplacian spectral moments of a graph.

Definition 2.1. [5] A k-length semi-edge walk in Ω, is an alternating sequence W = y1e1y2e2...ykekyk+1 of vertices
y1, y2, ..., yk, yk+1 and edges e1, e2, ..., ek such that for any i = 1, 2, 3, ..., k, the vertices yi and yi+1 are end vertices
(which can be non-distinct) of edge ei. We can define W as a closed semi-edge walk if y1 = yk+1.

Proposition 2.2. [5] Let S as the signless Laplacian matrix of a graphΩ. The
(
x, y
)th entry in the matrix Sk is equal

to the cardinality of k length semi-edge walks beginning at a vertex x and terminating at vertex y.

Based on the aforementioned propositions, we can deduce that the cardinality of k-length closed semi-
edge walk in Ω equals the spectral moment Tk(Ω).

Let Ω and Γ be two graphs, with u, v ∈ V(Ω), and x, y ∈ V(Γ) respectively. Let SeWk (Ω; u, v) be the
collection of all k-length semi-edge walk in Ω, that begin at u and terminate at v, and |SeWk (Ω; u, v)| =
Tk (Ω; u, v). If Tk (Ω; u, v) ≤ Tk

(
Γ; x, y

)
, for all k > 0.

In addition, if (Ω; u, v)≺s
(
Γ; x, y

)
, and there exists some k0 such that

∣∣∣SeWk0 (Ω; u, v)
∣∣∣ < ∣∣∣SeWk0

(
Γ; x, y

)∣∣∣.
Then we write (Ω; u, v)≺s

(
Γ; x, y

)
.
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Let SeWk (Ω; u,u) = SeWk (Ω; u), Tk (Ω; u,u) = Tk (Ω; u) and (Ω; u,u) = (Ω; u).
We can rewrite the following lemma, which serves as a valuable tool for comparing the SLEE values of

two graphs, especially when each graph contains a specific subgraph that is isomorphic.

Lemma 2.3. [7] LetΩ be a graph where x, y,w1,w2, ...,wr be the vertices ofΩ. Assume that the subsets of edges Ey ={
e1 = yw1, ..., er = ywr

}
and Ex = {e1

′ = xw1, ..., er
′ = xwr}, that are not in Ω, i.e., ei, ei

′ < E(Ω), for (i = 1, 2, ..., r).
Let Ωx � Ω + Ex and Ωy � Ω + Ey. If for each i = 1, 2, 3, ..., r,

(
Ω; y
)
≺s (Ω; x) and

(
Ω; wi, y

)
≺s (Ω; wi, x) , then

SLEE
(
Ωy

)
< SLEE (Ωx).

Using the aforementioned lemma, we can state that the graphΩx is obtained fromΩy by transferring vertices
w1,w2, ...,wr from N(y) to N(x). In this scenario, we refer to the vertices w1,w2, ...,wr as the transferred
neighbors, and the graphΩ is termed the transfer route. It is important to note thatΩ is a subgraph of both
Ωx and Ωy.

While Lemma 2.3 serves as a valuable tool, it is often accompanied by various conditions that must be
met to apply it successfully. To address this issue, the following lemma offers a special case that allows us
to identify the necessary conditions for using Lemma 2.3.

Lemma 2.4. LetΩ be a graph with x, y ∈ V(Ω). If N(y) ⊆ N(x)∪{x}, then
(
Ω; y
)
≺s (Ω; x), and

(
Ω; w, y

)
≺s (Ω; w, x)

for each w ∈ V(Ω)\
{
y
}
. Furthermore, if dΩ(y) < dΩ(x), then

(
Ω; y
)
≺s (Ω; x), where dΩ(y) is the degree of vertex y

in the graph Ω.

Proof. Let Ω be a graph. Assume that x, y ∈ V (Ω). When k ≥ 0, W ∈ SeWk
(
Ω; y
)
. Decompose W into three

distinct parts, W1,W2 and W3, where W1 and W3 should be as long as possible and should only contain the
vertex y and the edges yw, where w ∈ N(y)\{x}. When W does not contain any other vertex than y, then
W2 and W3 are empty. By changing the vertex y by x and the edges yw by xw where w is adjacent to y, not
to x, we can obtain W′

j from W j, when j = 1, 3. The map f : SeWk
(
Ω; y
)
→ SeWk (Ω; x) defined by the rule

f (W1W2W3) =W1
′W2W3

′ is injective. This establishes that (Ω; y) ≺s (Ω; x).
Similarly, through the decomposition of each semi-edge walk in SeWk

(
Ω; w, y

)
and modifying their

concluding segments, it can be inferred that, for each w ∈ V(Ω), the relation
(
Ω; w, y

)
≺s (Ω; w, x) holds true.

Since dΩ(y) =
∣∣∣SeWk

(
Ω; y
)∣∣∣, where dΩ(y) is the degree of the vertex y in graph Ω, the comparision

dΩ(y) < dΩ(x) leads to the conclusion that
(
Ω; y
)
≺s (Ω; x)

3. Maximum SLEE of tetracyclic graphs

Let Fn be the class of n-vertex tetracyclic graphs. The unique maximal subgraphs of a tetracyclic graph
Ω that have no pendant vertices are defined as base of the graph, denoted by the symbol B(Ω). In fact, Ω
can be obtained from B(Ω) which is the only minimal tetracyclic subgraph of Ω, by adding some trees to
some vertices of B(Ω).

The lemma highlights the crucial role played by the rule governing the base of an extremal graph that
attains the maximum SLEE.

Lemma 3.1. Let an extremal graph Ω that possesses the maximum SLEE among all graphs in Fn. In this graph,
each vertex belongs to either B(Ω) or is a pendant vertex.

Proof. Consider a subgraph T ofΩ that shares exactly one vertex, denoted as x, with B(Ω). If T is not a star
with x as the center vertex, then there exists a neighbor y of x in T such that the degree of y in Ω is greater
than 1. Let Ω′ be the graph obtained by transferring all vertices in N(y)\ {x} from the neighborhood of y
to the neighborhood of x, and let Γ be the corresponding transfer route graph. According to Lemma 2.4, it
implies that (Γ; y) ≺s (Γ; x), leading to SLEE(Ω) < SLEE(Ω′), by Lemma 2.3, which results in a contradiction.
Therefore, every subgraph of Ω sharing a single vertex x with B(Ω) is indeed a star with x as the center
vertex, and this establishes the desired result.
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Figure 1: The graphs B4
i : i ∈ {1, 2, 3, ...33}

Figure 2: The graphs B5
i : i ∈ {1, 2, 3, ...33}
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Figure 3: The graphs B6
i : i ∈ {1, 2, 3, ...6}

Figure 4: The graphs B7
i : i ∈ {1, 2, 3, ...18}

Figure 5: The graphs B8
i : i ∈ {1, 2, 3, 4}, B10

i : i ∈ {1, 2, 3, ..., 7}, B11
i : i ∈ {1, 2, 3, 4}, B12

i : i ∈ {1, 2, 3}, B13
i : i ∈ {1}, B14

i : i ∈ {1, 2}, B15
i : i ∈ {1}
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According to [3], the following types of bases are presented in tetracyclic graphs, as depicted in Figure. 1–5.
Let

F
4

n =
{
Ω|B(Ω) � B4

i , i ∈ {1, 2, 3, ...33}
}

;

F
5

n =
{
Ω|B(Ω) � B5

i , i ∈ {1, 2, 3, ...33}
}

;

F
6

n =
{
Ω|B(Ω) � B6

i , i ∈ {1, 2, 3, ...6}
}

;

F
7

n =
{
Ω|B(Ω) � B7

i , i ∈ {1, 2, 3, ...18}
}

;

F
8

n =
{
Ω|B(Ω) � B8

i , i ∈ {1, 2, 3, 4}
}

;

F
10

n =
{
Ω|B(Ω) � B10

i , i ∈ {1, 2, 3, ...7}
}

;

F
11

n =
{
Ω|B(Ω) � B11

i , i ∈ {1, 2, 3, 4}
}

;

F
12

n =
{
Ω|B(Ω) � B12

i , i ∈ {1, 2, 3}
}

;

F
13

n =
{
Ω|B(Ω) � B13

i , i ∈ {1}
}

;

F
14

n =
{
Ω|B(Ω) � B14

i , i ∈ {1, 2}
}

;

F
15

n =
{
Ω|B(Ω) � B15

i , i ∈ {1}
}
.

By employing this classification, we can confidently assert that Fn = F
4

n ∪ F
5

n ... ∪ F
8

n ∪ F
10

n ∪ F
11

n ... ∪ F
15

n .
Within the vast set of bases for tetracyclic graphs, only eight bases exhibit the distinct property that every
edge within them is part of atleast one triangle. These bases are denoted as A j

i (as illustrated in figure 6)
and are defined as follows:
B(Ω) � A j

i , for some j ∈ {4, 10}, i ∈ {1, 2, 3, 4},
B(Ω) � A5

i , for some i ∈ {1, 2, 3, ..., 7},
B(Ω) � A6

i , for some i ∈ {1, 2, 3},
B(Ω) � A7

i , for some i ∈ {1, 2, 3, 4, 5},
B(Ω) � A j

1, for some j ∈ {8, 11, 12, 13}.
Based on the above notations, the objective of this section is to demonstrate that Γn

j is the unique extremal

graph with the maximum SLEE among the members of F j
n , where j ∈ {4, 5, 6, 7, 8, 10, 11, 12, 13}. To achieve

this objective, we require a suitable tool for comparing the SLEE values of graphs with the same type of
bases. The following lemma provides such a tool.

Lemma 3.2. LetΩ be a tetracyclic graph with x, y ∈ V(Ω), where e = xy ∈ E(Ω) and N(x) ∩N(y) = ∅. IfΩ ∈ Fn
j,

for some j ∈ {4, 5, 6, 7, 8, 10, ..., 13}, then there exists another graph Ω′ ∈ F j
n such that SLEE (Ω) < SLEE (Ω′).

Proof. ByΩ′ represent the graph obtained fromΩ by transferring all of the vertices in N(y)\ {x} from N(y) to
N(x), and Γ represent a transfer route graph. According to Lemma 2.4, SLEE (Ω) < SLEE (Ω′) is implied, by
Lemma 2.3, which states that

(
Γ; y
)
≺s (Γ; x). However, the aforementioned transfer has no effect on either

the number of simple cycles or edges, therefore, we deduce that Ω′ ∈ F j
n .

Note: According to Lemma 3.2, if the base of the tetracyclic graph Ω contains a path that is not part of
a simple cycle. For example, Figure 1.(B4

5) shows that Ω is not a maximal SLEE if it has a path Pl with
no simple cycle. Additionally, if two consecutive vertices y1 and y2 of a simple cycle Cq = y1y2...yqy1 of
Ω do not share any neighbors (i.e.N(y1) ∩ N(y2) = ∅). Then Ω is not an SLEE maximal graph in F j

n for
j ∈ {4, 5, 6, 7, 8, 10, 11, 12, 13}. As a result, if B(Ω) is the base of an extremal tetracyclic graph in F j

n with
maximum SLEE, then B(Ω) � A j

i , j ∈ {4, 5, 6, 7, 8, 10, 11, 12, 13}.
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Lemma 3.3. If Ω is an SLEE maximal graph in F j
n , for j = 4, 5, 6, 7, 8, 10, 12, 13, then B(Ω) � A j

1.

Proof. Let B(Ω) � A4
1. AssumeΩ is an SLEE maximal graph in F 4

n such that B(Ω) � A4
2. Assume thatΩ′ is a

graph that results fromΩ by transferring all vertices N(x)\
{
z, y
}

from N(x) to N(z), and that Γ is the transfer
route graph. It is noteworthy that B(Ω′) = A4

1. Since NΓ(x) ⊆ NΓ(z) ∪ {z}, it implied by Lemma 2.4 that
(Γ; x)≺s (Γ; z). This led to the contradiction SLEE (Ω) < SLEE (Ω′) in Lemma 2.3. Therefore if Ω is an SLEE
maximal graph in F 4

n , then B(Ω) = A4
1. Similar verification was made for the proof for the case B(Ω) � A j

1
for j = {5, 6, 7, 8, 10, 12, 13}.

Figure 6: The bases of tetracyclic graphs

4. Main results

Theorem 4.1. Let Ω be the n-vertex tetracyclic graphs and exactly j simple cycles (i.e., a cycle with no repeated
vertices) where j ∈ {4, 5, ..., 8, 10, 12, 13}. IfΩ is an extremal graph with the maximum SLEE, thenΩ � Γn

j , where Γn
j

is as shown in figure 7, for j = 4, 5, 6, 7, 8, 10, 12, 13.

Proof. Assume that Ω is a SLEE maximal graph over F j
n , where j ∈ {4, 5, ...8, 10, 12, 13}. Ω is obtained by

attaching a few pendant vertices of A j
1. Assume that u is a vertex of A j

1, where u , z and it has a few pendant
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Figure 7: Extremal graphs with the maximum SLEE

neighbors (fig.6 shows the vertex z). Let Nnp(u) is the collection of all non- pendant neighbors of u. Since
Nnp(u) ⊆ N(z) ∪ {z}, by transferring pendant neighbors of u from N(u) to N(z) and by Lemma 2.4 is used to

obtain the graphΩ′ which results in the contradiction SLEE (Ω) < SLEE (Ω′). Therefore all of the n−
∣∣∣∣V(A j

1)
∣∣∣∣

pendant vertices of Ω are attached to z. Hence Ω � Γn
j .

According to the aforementioned Theorem 4.1. The extremal graph Γn
j with the maximum SLEE among the

members of A j
i (as shown in fig 7.) For j = 4, 5...8, 10, 12, 13, ϕ(Γn

j , x), be the characteristic polynomial of Γn
j

are as follows.

ϕ(Γn
4)= (−1)n(x − 1)6[x6

−(n + 12)x5+(12n + 54)x4
−(54n + 124)x3+(108n + 225)x2

− (81n + 432)x + 432] = (−1)n(x − 1)6 f4(x)

ϕ(Γn
5)= (−1)n(x − 1)6[x6

−(n + 12)x5+(12n + 53)x4
−(53n + 118)x3+(102n + 208)x2

− (72n + 376)x + 336] = (−1)n(x − 1)6 f5(x)

ϕ(Γn
6)= (−1)n(x − 1)6[x6

−(n + 12)x5+(12n + 52)x4
−(52n + 112)x3+(96n + 192)x2

− (64n + 320)x + 256] = (−1)n(x − 1)6 f6(x)

ϕ(Γn
7)= (−1)n(x − 1)6[x6

−(n + 12)x5+(12n + 51)x4
−(51n + 108)x3+(92n + 180)x2

− (60n + 288)x + 224] = (−1)n(x − 1)6 f7(x)

ϕ(Γn
8)= (−1)n(x − 1)6[x6

−(n + 12)x5+(12n + 51)x4
−(51n + 108)x3+(92n + 180)x2

− (60n + 288)x + 224] = (−1)n(x − 1)6 f8(x)

ϕ(Γn
10)= (−1)n(x − 1)6[x6

−(n + 12)x5+(12n + 48)x4
−(48n + 96)x3+(80n + 144)x2

− (48n + 192)x + 128] = (−1)n(x − 1)6 f10(x)
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n 5 6 7 8 9 10 11 12

Γn
10 - 1822.75 3103.12 6087.59 13361.49 31654.47 78663.07 201279.65

Γn
12 974.53 1514.69 2725.89 5596.12 12673.44 30614.29 76969.21 198326.21

Γn
13 761.71 1262.34 2410.23 5174.69 12068.03 29676.41 75407.79 195560.12

Γn
7 - - 2285.33 4982.49 11754.15 29134.39 74424.25 193696.10

Γn
8 - 1176.12 2285.33 4982.49 11754.15 29134.39 74424.25 193696.10

Γn
6 - - 2061.68 4671.57 11288.58 28384.29 73133.19 191344.67

Γn
5 - - - 4502.34 11015.56 27913.44 72274.09 189703.10

Γn
4 - - - - 10743.85 27444.88 71418.6 188066.1

Table 1: SLEE(Γn
j )

ϕ(Γn
12)= (−1)n(x − 1)6[x6

−(n + 12)x5+(12n + 49)x4
−(49n + 98)x3+(82n + 152)x2

− (48n + 216)x + 144] = (−1)n(x − 1)6 f12(x)

ϕ(Γn
13)= (−1)n(x − 1)6[x6

−(n + 12)x5+(12n + 50)x4
−(50n + 100)x3+(84n + 157)x2

− (45n + 240)x + 144] = (−1)n(x − 1)6 f13(x)

For j = 4, 5, 6, 7, 8, 10, 12, 13, the signless Laplacian Estrada index SLEE(Γn
j ) are computed in Tabel 1.

Lemma 4.2. Let Ω be an extremal graph with the maximum SLEE in Fn. Then B(Ω) � A10
1 .

Proof. ConsiderΩ be an extremal graph with the maximum SLEE in Fn. According to Lemma 3.3, proving
that B(Ω) is not isomorphic to either A4

1 or A5
1 is sufficient. Let us assume B(Ω) � A4

1 or A5
1. Now, consider

Ω′ the graph obtained by relocating all vertices in N(v)\z from N(v) to N(u), and let H be the transfer route
graph. Since NH(v) ⊂ NH(u), it follows that (H; v) ≺s (H; u) and (H; w, v) ≺s (H; w,u), by Lemma 2.4, for each
w ∈ N(v)\z. Consequently, by Lemma 2.3, we observe that SLEE(Ω) < SLEE(Ω′), leading to a contradiction.
Therefore B(Ω) � A10

1 .

Theorem 4.3. If Ω is an n-vertex tetracyclic graph (n ≥ 6), then SLEE (Ω) ≤ SLEE
(
Γn

10

)
with equality if and only

if Ω � Γn
10.

Proof. Let Ω be a graph in Γn
j . The characteristic polynomial of Γn

j is ϕ
(
Γn

j

)
= (−1)n(x − 1)6 f j(x), for j =

4, 5, 6, 7, 8, 10, 12, 13.
Consider

f10(x) = x6
− (n + 12)x5 + (12n + 48)x4

− (48n + 96)x3 + (80n + 144)x2
− (48n + 192)x + 128.
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Let x = n − 3, then

f4(n − 3) = −3n5 + 81n4
− 880n3 + 4824n2

− 13392n + 15120

f5(n − 3) = −3n5 + 81n4
− 877n3 + 4771n2

− 13072n + 14460

f6(n − 3) = −3n5 + 81n4
− 874n3 + 4718n2

− 12755n + 13825

f7(n − 3) = −3n5 + 81n4
− 871n3 + 4671n2

− 12510n + 13400

f8(n − 3) = −3n5 + 81n4
− 871n3 + 4671n2

− 12510n + 13400

f10(n − 3) = −3n5 + 81n4
− 862n3 + 4530n2

− 11775n + 12125

f12(n − 3) = −3n5 + 81n4
− 865n3 + 4571n2

− 11964n + 12420

f13(n − 3) = −3n5 + 81n4
− 868n3 + 4612n2

− 12144n + 12672

For n ≥ 6, we get f10(n − 3) − f4(n − 3) > 0⇒ SLEE
(
Γn

10

)
> SLEE

(
Γn

4

)
. Therefore, we deduce that, for n ≥ 6,

f10(n − 3) − f j(n − 3) > 0 where j = 4, 5, 6, 7, 8, 12, 13.
This suggests that SLEE

(
Γn

10

)
> SLEE

(
Γn

j

)
.

As a result, let Γn
10 be the only extremal graph with the maximum SLEE.

5. Conclusion

The study has determined the maximum value of the signless Laplacian Estrada index among tetracyclic
graphs. This value represents the highest possible spectral characteristic within this class of graphs. The
tetracyclic graphs attaining the largest signless Laplacian Estrada index offer valuable insights into their
structural properties. These graphs exhibit unique connectivity patterns and cycle structures that contribute
to their maximized index value.

Acknowledgement: The authors are grateful to the referees for carefully reading the paper and making
valuable suggestions and comments.
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