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Abstract. Let f be a real- or complex-valued function that is measurable in Lebesgue’s sense on some
interval (x0,∞), where x0 ≥ 0. It is known that the existence of ordinary limit of function f implies the
statistical limit of f . However, the converse implication is not always true. In this study we introduce some
Tauberian conditions in terms of the general control modulo of integer order r ≥ 1. Also we consider the
Tauberian conditions of slow decrease and slow oscillation. Under these Tauberian conditions, we obtain
the ordinary limit of a function from its statistical limit. The main results generalize some classical type
Tauberian theorems given for statistical convergence.

1. Summability (C, 1) of integrals over R+ and Tauberian theorems

Let f be a real- or complex-valued function on (0,∞) which is locally integrable in Lebesgue’s sense on
(0,∞), in symbols: f ∈ L1

loc(R+) and

s(x) =
∫ x

0
f (t)dt (1)

for x > 0. The (C, 1) mean of (1) is defined by

σ(x) =
1
x

∫ x

0
s(u)du (2)

for x > 0. The k-fold application of (C, 1) summability method gives σ(k)(x) as follows

σ(k)(x) =
1
x

∫ x

0
σ(k−1)(u)du (3)
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for x > 0 and k ≥ 1, where σ(0)(x) = s(x) and σ(1)(x) = σ(x). The integral
∫
∞

0 f (t)dt is said to be summable
(C, 1) to a finite number α, symbolically lim

x→∞
s(x) = α(C, 1) if the limit of (2)

lim
x→∞
σ(x) = α (4)

exists. Naturally the integral 1
x

∫ x

0 σ(k−1)(u)du is said to be summable (C, 1) to a finite number α, symbolically
lim
x→∞
σ(k−1)(x) = α(C, 1) if the limit of (3)

lim
x→∞
σ(k)(x) = α (5)

exists. It is clear that if the limit of (1)

lim
x→∞

s(x) = α (6)

exists, then limit (4) and (5) also exists. However the existence of the limit (4) or (5) does not necessitate the
existence of the limit (6) in general. We need some additional conditions to make this statement true. Such
conditions are called ‘Tauberian conditions’ and the resulting theorems are called ‘Tauberian theorems’
after A. Tauber [15], who was the first to prove such theorems.

For a function, we have the following identiy:

s(x) − σ(x) = τ(x), (7)

where τ(x) =
1
x

∫ x

0
t f (t)dt. The k-fold application of (C, 1) summability method to τ(x) gives τ(k)(x) as follows

τ(k)(x) =
1
x

∫ x

0
τ(k−1)(u)du (8)

for x > 0 and k ≥ 1, where τ(0)(x) = τ(x). The identity (7) is known as the Kronecker identity for the functions
in literature. The classical control modulo of s(x) is denoted by

ω(0)(x) = x f (x) (9)

and general control modulo of integer order r ≥ 1 of s(x) is defined by

ω(r)(x) = ω(r−1)(x) − σ(ω(r−1)(x)). (10)

The concepts of the classical and general control modulo were introduced by Dik [2] for sequences.
We recall that a real-valued function s(x) is said to be slowly decreasing if

lim
λ→1+

lim inf
x→∞

min
x≤t≤λx

(s(t) − s(x)) ≥ 0 (11)

Furthermore, if a function s(x) is slowly decreasing, then its (C, 1) mean is also slowly decreasing [8] and
we denote the set of all slowly decreasing functions by SD.

It is easy to check that (11) is satisfied if and only if for every ϵ > 0 there exist x0 = x0(ϵ) > 0 and
λ0 = λ0(ϵ) > 1, such that

s(t) − s(x) ≥ −ϵ

whenever x0 ≤ x ≤ t ≤ λ0x0. Historically, the term of ‘slowly decreasing’ for a sequence of real numbers
was introduced by Schmidt [12].

We recall that a complex-valued function s(x) is said to be slowly oscillating if

lim
λ→1+

lim sup
x→∞

max
x≤t≤λx

|s(t) − s(x)| = 0. (12)
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Furthermore, if a function s(x) is slowly oscillating, then its (C, 1) mean is also slowly oscillating [8] and we
denote the set of all slowly oscillating functions by SO.

It is easy to check that (12) is satisfied if and only if for every ϵ > 0 there exist x0 = x0(ϵ) > 0 and
λ0 = λ0(ϵ) > 1, such that

|s(t) − s(x)| ≤ ϵ

whenever x0 ≤ x ≤ t ≤ λ0x0. Historically, the term of ‘slowly oscillating’ for a sequence of complex numbers
was introduced by Hardy [6].

Throughout this paper, we accept the following notational conventions:

(i) f (x) = O(1) denotes that | f (x)| ≤ H for H > 0 and sufficiently large x.

(ii) f (x) = OL(1) means that f (x) ≥ −K for K > 0 and sufficiently large x.

(iii) f (x) ∈ SOmeans that f (x) is slowly oscillating function.

(iv) f (x) ∈ SDmeans that f (x) is slowly decreasing function.

In [10], it was investigated that slow decrease of s(x) and x d
dx s(x) = OL(1) are Tauberian conditions for

(C, 1) summable integrals of real-valued functions.

Theorem 1.1. If a real-valued function f ∈ L1
loc(R+) is such that integral (1) is summable (C, 1) to a finite number α

and slowly decreasing, then s(x) is convergent to α.

Theorem 1.2. If a real-valued function f ∈ L1
loc(R+) is such that integral (1) is summable (C, 1) to α and x d

dx s(x) =
OL(1), then s(x) is convergent to α.

It is easy to check that the condition of slow decrease is satisfied if the condition x d
dx s(x) = OL(1) holds. The

following theorems are used in important steps of proofs of the our main theorems.
Analogously, it was investigated that slow oscillation of s(x) and x d

dx s(x) = O(1) are Tauberian conditions
for (C, 1) summable integrals of complex-valued functions in [10].

Theorem 1.3. If a complex-valued function f ∈ L1
loc(R+) is such that integral (1) is summable (C, 1) to α and slowly

oscillating, then s(x) is convergent to α.

Theorem 1.4. If a complex-valued function f ∈ L1
loc(R+) is such that integral (1) is summable (C, 1) to α and

x d
dx s(x) = O(1), then s(x) is convergent to α.

It is clear that the condition of slow oscillation is satisfied if the condition x d
dx s(x) = O(1) holds. Indeed,

|s(t) − s(x)| =

∣∣∣∣∣∣
∫ t

x

d
du

s(u)du

∣∣∣∣∣∣
≤

∫ t

x

1
u

du

≤ log t − log x.

Now taking the maximum as x ≤ t ≤ λx and lim sup as x→∞ of both sides we conclude that

lim
λ→1+

lim sup
x→∞

max
x≤t≤λx

|s(t) − s(x)| = 0

after taking limit as λ → 1+. So condition (12) is satisfied. In [1], Totur and Çanak benefit from general
control modulo and presented the following lemmas.
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Lemma 1.5. For each integer m ≥ 0, we have the following identity:

x
d

dx
(σ(m+1)(x)) = τ(m)(x).

Lemma 1.6. For each integer m ≥ 1, we have the following identity:

ω(m)(x) =
(
x

d
dx

)
m
τ(m−1)(x)

where(
x

d
dx

)
m

f (x) =

(
x

d
dx

)
m−1

(
x

d
dx

f (x)
)

=

(
x

d
dx

) ((
x

d
dx

)
m−1

f (x)
)
.

Here, for k = 0 we have,(
x

d
dx

)
0

f (x) = f (x)

and for k = 1 we have,(
x

d
dx

)
1

f (x) = x
d
dx

f (x).

2. Statistical summability (C, 1) of integrals over R+ and Tauberian theorems

The notion of statistical convergence was introduced by Fast [3]. Some basic properties of statistical
convergence were proved by Schoenberg [13] in 1959. Fridy [5] showed that Hardy’s boundedness condition
is a Tauberian condition for statistical convergence. In [4], Fridy and Khan extended Hardy’s well-known
Tauberian theorem and Landau’s ‘one-sided’ Tauberian theorem for the (C, 1) summability method to the
case of statistical convergence. Furthermore, they extended classical Tauberian theorem of Hardy and
Littlewood to the case of statistical convergence. Móricz [9] studied statistical convergence for double
sequences and extended Fridy and Khan’s Tauberian condition to slow decrease and slow oscillation in [7].
After that Móricz [8] studied these theorems for the complex-valued functions in nondiscrete setting. In [17],
Totur and Çanak generalised the results of Móricz’s theorems in [8] by adding some conditions on general
control modulo of the oscillatory behaviour of nonnegative integer order m ≥ 0 of the sequence. Later,
the subject of statistical convergence continued to attract the attention of mathematicians. Many studies
have been presented by synthesizing statistical convergence with methods such as weighted summability
method and logarithmic summability method for the sequences [14, 16]. In addition, some studies of
statistical convergence have been done for sequences of fuzzy numbers [11, 18].

Let f be a real- or complex-valued function that is measurable in Lebesgue’s sense on some interval
(x0,∞), where x0 ≥ 0. A function f has statistical limit at ∞, if there exists a number α such that for every
ϵ > 0,

lim
v→∞

1
v − u

|{x ∈ (u, v) : | f (x) − α| > ϵ}| = 0, (13)

where the notion |{·}| indicates the Lebesgue measure of the set {·}. If (13) exists, then we write

st − lim
x→∞

f (x) = α. (14)
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Also a function f ∈ Lloc(R+) is said to be statistically summable (C, 1) to α, if

st − lim
x→∞

σ(x) = α (15)

[8]. It is clear that the existence of the limit (6) implies the limit (14). However, (14) may imply (6) by adding
some suitable conditions on the function f . In [8], Móricz presented following results:

Lemma 2.1. Let f ∈ Lloc(R+) be bounded almost everywhere onR+ and statistically converges toα, then f statistically
(C, 1) converges to α.

Theorem 2.2. If a real-valued measurable function f is slowly decreasing on R+ and statistical summable to a finite
number α, then the ordinary limit of f also exists and equals α.

Theorem 2.3. If a real-valued function f ∈ Lloc(R+) is slowly decreasing and statistical summable (C, 1) to a finite
number α, then the ordinary limit of f also exists and equals α.

Theorem 2.4. If a complex-valued measurable function f is slowly oscillating on R+ and statistical summable to a
finite number α, then the ordinary limit of f also exists and equals α.

Theorem 2.5. If a complex-valued function f ∈ Lloc(R+) is slowly oscilating and statistical summable (C, 1) to a
finite number α, then the ordinary limit of f also exists and equals α.

In this work, we give Theorem 3.2 and Theorem 3.4 firstly. So we generalize Theorem 2.2 and Theorem
2.3. After these generalizations, we present Theorem 3.7 and Theorem 3.9 in the complex-valued case. With
these results we generalize Theorem 2.4 and Theorem 2.5 respectively. We establish our main theorems
by using general control modulo of the oscillatory behaviour of nonnegative integer order m ≥ 0 of the
function s(x).

3. Main results

Firstly, we consider real-valued functions and prove the following Tauberian theorems.
First of all, we establish the convergence of s(x) from the statistical convergence of σ(k)(x).

Remark 3.1. The following theorem generalizes Theorem 2.3. It is clear that if we take r = 1 in Theorem 3.2, Theorem
2.3 is obtained.

Theorem 3.2. Let s(x) ∈ L1
loc(R+) be a real-valued function. If the statistical limit α of σ(r)(x) exists at ∞ for some

nonnegative integer r and s(x) ∈ SD, then the ordinary limit of s(x) also exists at∞ and equals α.

Proof. From the assumption of s(x) ∈ SDwe have σ(r)(x) ∈ SD for each integer r ≥ 1. By taking r = k in the
statistical convergence of σ(r)(x) and using Theorem 2.2, we get

lim
x→∞
σ(k)(x) = α.

Now taking r = k − 1 in the statistical convergence of σ(r)(x) and using Theorem 1.1 again, we obtain

lim
x→∞
σ(k−1)(x) = α.

If we continue in this vein, we get that

lim
x→∞
σ(1)(x) = α

and it’s mean that s(x), summable (C, 1) to α. Hence we conclude that the ordinary limit of s(x) exists at∞
and equals α by Theorem 1.1.
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Remark 3.3. The next theorem generalizes Theorem 2.2. Indeed if s(x) ∈ SD, then we get σ(1)(ω(0)(x)) ∈ SD by the
identity (7). However the assumption σ(1)(ω(0)(x)) ∈ SD does not imply s(x) ∈ SD.

Theorem 3.4. Let s(x) be a real-valued and measurable function with the assumption of s(x) = O(1). If the statistical
limit α of s(x) exists at∞ and σ(1)(ω(r)(x)) ∈ SD for some nonnegative integer r, then the ordinary limit of s(x) also
exists at∞ and equals α.

Proof. By Lemma 2.1, we have

st − lim
x→∞
σ(1)(ω(r)(x)) = 0. (16)

It follows from assumption of σ(1)(ω(r)(x)) ∈ SD for some nonnegative integer r and (16) that

lim
x→∞
σ(1)(ω(r)(x)) = 0

with the help of Theorem 2.2. Using Lemma 1.5 and Lemma 1.6 with the identity (10), we can establish that

σ(1)(ω(r)(x)) = x
d

dx
σ(2)(ω(r−1)(x)).

Therefore we obtain that

x
d

dx
σ(2)(ω(r−1)(x)) = OL(1). (17)

And the equality (17) yields σ(2)(ω(r−1)(x)) ∈ SD. It follows from Kronecker identity (7) and the hypothesis
of σ(1)(ω(r)(x)) ∈ SD that σ(1)(ω(r−1)(x)) ∈ SD. Continuing in this vein, we obtain that σ(1)(ω(0)(x)) ∈ SD. By
applying Theorem 2.2 to this result and (16) with r = 0 we get

lim
x→∞
σ(1)(ω(0)(x)) = 0. (18)

Now we conclude that σ(1)(x) is slowly decreasing. Also if we use Lemma 2.1 again, we have

st − lim
x→∞
σ(1)(x) = α. (19)

Hence we obtain that

lim
x→∞
σ(1)(x) = α (20)

by Theorem 2.2 and (19). Combining (18) and (20) with the help of Kronecker identity (7), we get that the
ordinary limit of s(x) exists at∞ and equals α.

Corollary 3.5. Let s(x) be a real-valued and measurable function with the assumption of s(x) = O(1). If the statistical
limit α of s(x) exists at ∞ and ω(r)(x) = OL(1) for some nonnegative integer r, then the ordinary limit of s(x) also
exists at∞ and equals α.

Proof. By using the identity

ω(r)(x) = x
d

dx
σ(1)(ω(r−1)(x)),

we obtain that σ(1)(ω(r−1)(x)) ∈ SD and σ(1)(ω(r)(x)) ∈ SD. Then, the proof ends since the conditions in
Theorem 3.4 are met.

Secondly, we consider complex-valued functions and give the following Tauberian theorems.
In the following theorem, we obtain the convergence of s(x) from the statistical convergence of σ(k)(x).
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Remark 3.6. The following theorem generalizes Theorem 2.5. Obviously, if we take r = 1 in Theorem 3.7, then we
obtain Theorem 2.5.

Theorem 3.7. Let s(x) ∈ L1
loc(R+) be a complex-valued function. If the statistical limit α of σ(r)(x) exists at ∞ for

some nonnegative integer r and s(x) ∈ SO, then the ordinary limit of s(x) exists at∞ and equals α.

Proof. By the assumption of s(x) ∈ SO we have σ(r)(x) ∈ SO for each integer r ≥ 1. Now taking r = k in the
statistical convergence of σ(r)(x) and using Theorem 2.4, we get

lim
x→∞
σ(k)(x) = α.

After taking r = k − 1 in the statistical convergence of σ(r)(x) and using Theorem 1.3, we conclude that

lim
x→∞
σ(k−1)(x) = α.

If we continue in this way, we obtain that

lim
x→∞
σ(1)(x) = α.

s(x) is summable (C, 1) to α in other words. Eventually, the conditions in Theorem 1.3 are satisfied. Hence
we obtain that the ordinary limit of s(x) exists at∞ and equals α.

Remark 3.8. The next theorem generalizes Theorem 2.4. Indeed if we take r = 0 in the next theorem, we get
σ(1)(ω(0)(x)) ∈ SO and from the slow oscillation of s(x) and the identity (7) we can conclude this. However the
assumption σ(1)(ω(0)(x)) ∈ SO does not imply s(x) ∈ SO.

Theorem 3.9. Let s(x) be a complex-valued and measurable function with the assumption of s(x) = O(1). If the
statistical limit α of s(x) exists at ∞. and σ(1)(ω(r)(x)) ∈ SO for some nonnegative integer r, then the ordinary limit
of s(x) also exists at∞ and equals α.

Proof. From Lemma 2.1, we have (16) and it follows from assumption of σ(1)(ω(r)(x)) ∈ SO for some
nonnegative integer r and (16) that

lim
x→∞
σ(1)(ω(r)(x)) = 0

with the help of Theorem 2.4. By benefit from identity

σ(1)(ω(r)(x)) = x
d

dx
σ(2)(ω(r−1)(x)),

we get that

x
d

dx
σ(2)(ω(r−1)(x)) = O(1). (21)

And the equality (21) yields σ(2)(ω(r−1)(x)) ∈ SO. It follows from Kronecker identity (7) and the assumption
of σ(1)(ω(r)(x)) ∈ SO that σ(1)(ω(r−1)(x)) ∈ SO. Continuing in this way, we have σ(1)(ω(0)(x)) ∈ SO. By applying
Theorem 2.4 to this result and (16) with r = 0 we obtain (18). Hence σ(1)(x) is slowly oscillating. By Lemma
2.1, we have (19). Therefore we conclude that (20) by Theorem 2.4 and (19). Finally using (18) and (20) in
the Kronecker identity (7), we obtain that the ordinary limit of s(x) exists at∞ and equals α.

Corollary 3.10. Let s(x) be a complex-valued and measurable function with the assumption of s(x) = O(1). If the
statistical limit α of s(x) exists at∞ and ω(r)(x) = O(1) for some nonnegative integer r, then the ordinary limit of s(x)
also exists at∞ and equals α.

Proof. By using the identity

ω(r)(x) = x
d

dx
σ(1)(ω(r−1)(x)),

we obtain that σ(1)(ω(r−1)(x)) ∈ SO and σ(1)(ω(r)(x)) ∈ SO. Then, the proof ends since the conditions in
Theorem 3.9 are met.
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