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On some spectral problems for higher order differential operator
equation, I
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Abstract. The aim of the paper is first to study domains of definitions in terms of boundary conditions of
minimal and maximal operators, as well as selfadjoint extensions of the minimal operator associated with
a fourth-order differential operator equation. Further, we give necessary and sufficient conditions for those
operators to have a purely discrete or continuous spectrum, to exist extension with resolvent from σp, study
asymptotics of spectrum in case of pure discrete spectrum.

1. Introduction

Our aim is first to study domains of definition of minimal and maximal operators generated by a
differential operator expression in the space which is larger than one where the differential expression is
considered, [3]. Such operators arise upon consideration of boundary value problems for differential equa-
tions when boundary conditions contain an eigenvalue parameter. Secondly, to give boundary conditions
for defining self-adjoint extensions, extensions with a discrete or continuous spectrum. Thirdly, to derive
an asymptotic formula for a spectrum in the case of purely discrete spectrum, finally, and most importantly
in our opinion to give a new method for finding regularized trace of the operator associated with the
corresponding boundary value problem in one special case. We show a new treat for deriving the trace
formula, which is more general in comparison with one applied in our previous works and may be applied
in future studies.

Consider in L2(H, (0, 1)), where H is an abstract separable Hilbert space, the following differential
expression with operator coefficients

ly ≡ yIV(t) + Ay(t) + q(t)y(t) (1)
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L2(H, (0, 1)) is a class of functions y(t) with values from H, where a scalar product is defined as

(y, z)L2(H,(0,1)) =
1∫

0
(y(t), z(t))Hdt. Further, we will omit index H in integrand (y(t), z(t))H to denote scalar

product in H.
Here A and q(t) are operator coefficients. Our assumptions about them are the followings (later, when

deriving a trace formula we will put some additional requirements on A and q(t)) :

1. A is a selfadjoint operator in H, moreover A > I, where I is an identity operator in H, and A−1
∈ σ∞.

The last condition provides discreteness of the spectrum of A.

2. q(t) is a weakly measurable, selfadjoint, bounded operator-valued function in H for each t ∈ [0, 1].

So, q(t) is bounded in H, while the operator A is bounded only from below. Under that conditions q(t)
is bounded also in L2(H, (0, 1)).

Consider the direct sum spaceH = L2(H, (0, 1))⊕H2 with the elements Y = (y(t), y1, y2), Z = (z(t), z1, z2),
where y1, y2, z1, z2 ∈ H. A scalar product inH is denoted by (·, ·)H and defined by,

(Y,Z)H =
(
y (t) , z(t)

)
L2(H,(0,1)) +

(
Q−

1
2

1 y1,Q
−

1
2

1 z1

)
+

(
Q−

1
2

2 y2,Q
−

1
2

2 z2

)
, (2)

(·, ·) is a scalar product in H.
Define inH an operator L′0 in the following way:

D
(
L
′

0

)
=

(
Y/ such that Y =

{
y (t) ,Q1y (1) ,Q2y

′

(1)
}
, y (t) ∈ C∞0 (H∞, (0, 1]) ,

y (1) ∈ D(Q1), y
′

(1) ∈ D(Q2), y
′′′

(1), y
′′

(1) ∈ H, L
′

0Y = {ly,−y
′′′

(1), y′(1)}, q(t) ≡ 0
)

where, Q1 and Q2 are self-adjoint positive-definite operators in H, C∞0 (H∞, (0, 1]) is a class of vector functions
with the values from H∞ ≡

⋂
∞

j=1 D(A j) and finite in the vicinity of zero. By integrating by parts it may be
easily verified that L′0 is symmetric inH . Denote its closure by L0 and call it a minimal operator. Adjoint of
L0 is denoted by L∗0 and called a maximal operator. For boundary value problems for differential operator
equations of second order see monograph [15]

In [19] the following boundary value problem is considered:

l[y] ≡ yIV(t) + Ay(t) = λy(t) (3)

y
′′′

(0) = λQ1y(0),−y
′′

(0) = λQ2y
′

(0) (4)

cos CY
′

b − sin CYb = 0 (5)

where Q1,Q2 are defined as given above, Yb =
(
yb, y

′

b

)
,Y′b = (y′′′b , y

′′

b ), and yb, y
′

b, y
′′′

b , y
′′

b are regularized values
at t = b of y(t) and its derivatives to third order according to [13]. In [19] the questions of selfadjointness
and compactness of the operator corresponding to that problem with exit to a larger space than L2(H, (0, 1))
are studied. However, we have the following notes regarding the statements in the indicated work:

1) The author defines a minimal symmetric operator associated with problem (3)-(5) in space L2(H, (0, b))
as a closure of the symmetric operator L′0 with domain D

(
L′0

)
= C∞0 (H∞, [0, b)), which is a set of

infinitely many times differentiable vector functions with the values from H∞, finite in the vicinity of b
and L′0y(t) ≡ ly. It is stated in the work that the domain of closure of L′0 is given by (5), which obviously
is not true, since the closure in L2(H, (0, b)) are the functions satisfying y(b) = y′ (b) = y′′ (b) = y′′′ (b) = 0
which are just a part of the set of functions satisfying (5).

The adjoint operator is denoted by L∗0.
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2) In Theorem 1 from [19] it is stated that if Q1 = Q2, then the closure of the operator L′B with domain
of definition

{
Y =

{
y (t) , y1, y2

}
∈ H , y(t) ∈ C∞(H∞ (0, b)

}
, where y1 = Q1y (0) , y2 = Q2y′ (0) and L′B ={

L∗0y (t) , y′′′ (0) ,−y′′ (0)
}

gives an operator of which domain is a class of functions satisfying conditions
(5) and which is selfadjoint (inH . Author defines scalar product by (2).

But this is obviously not true, since the indicated closure consists of the vectors Y =
{
y (t) , y1, y2

}
,

y (t) ∈W4 (0, b) , ly ∈ L2 (H, (0, b)) and y(t) ∈ D(A). W4(0, b) is a closure of C4(H1, [0, b] in the norm∥∥∥y(t)
∥∥∥2

W4(0,b)
=

∥∥∥y(t)
∥∥∥2

L2(H1,(0,b))
+

∥∥∥yIV(t)
∥∥∥2

L2(H,(0,b))

(see [15]).
But, it is obvious that self- adjoint extensions of L0 will be given by (5).
For that reason, we decide not to refer to that but give definitions of the minimal and maximal operators

and self-adjoint extensions, then treat some spectral questions for the operators generated by l[y] in the
direct sum space. Hence:

1. Define a minimal symmetric operator corresponding to differential expression (1) with exit to direct
sum space and give boundary conditions defining selfadjoint extensions of that operator.

2. Give conditions for that extension to have purely discrete spectrum or to have spectrum filling any
preset interval from the real axis. Also, define selfadjoint extensions resolvents of which are from σp
which is a Schatten von Neumann class of functions. Refer here to [19] where the domains of minimal
and maximal operators generated by 2n-th order differential operator expression without exit to larger
space are studied. Note here also [16],[21], where selfadjoint extensions and eigenvalue asymptotics
for the Sturm-Liouville operator equation by exiting to a larger space are searched and [13], where
selfadjoint extensions of operators generated by 2n-th order differential operator expressions (ones
having unbounded operator coefficients) without exit to a larger space are studied.

3. Consider the eigenvalue problem

ly = λy (6)

y(0) = y′′(0) = 0 (7)

−y′′′(1) = λQ1y(1), y′′(1) = λQ2y′(1). (8)

The operator corresponding to this problem is one of selfadjoint extensions of the minimal operator
corresponding to (1) with an exit to a larger space. We study its eigenvalue distribution.

4. Give a regularized trace formula for the operator associated with (6)-(8). For regularized traces, more
general method than one used in our previous works will be suggested. The suggested method will
let to treat these problems from unique point of view.

Results for such problems are applicable to boundary value problems for some classes of partial dif-
ferential equations. At the end of paper we give application of obtained results to partial differential
equations.

Boundary value problems for ordinary differential equations with an unbounded operator coefficient
cover boundary value problems for partial differential equations. Problems with eigenvalue-dependent
boundary conditions arise upon separation of variables in partial differential equations, when boundary
conditions and differential equation both contain a partial derivative with respect to time, hence, for
problems with dynamic boundary conditions. Problems with dynamic boundary conditions are very
natural in many mathematical models as heat transfer in solid in contact with moving fluid, thermoalasticity,
diffusion phenomena, the heat transfer in two-phase medium, thermal energy storage devices, problems
in fluid mechanics, diffusion in porous media, electronics and semiconductors, long cables. We refer here
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to Langer [18], also to Fulton [10], [22], [6] and references given there . For elliptic type partial differential
equations see, for example, [9], [8]. In the scalar case, for spectral problems for Sturm-Liouville equations
with rational Herglotz –Nevanlinna function of eigenvalue parameter in boundary conditions we refer to
[7], [17] and references there and for fourth-order differential equation to [2].

At the end we give an example of a boundary value problem for a partial differential equation which after
separation of variables is reduced to spectral problem for differential operator with unbounded operator
coefficient.

2. Domains of definition of adjoint operator, selfadjoint extensions, selfadjoint extensions with compact
resolvents

Recall that since q(t) is bounded in L2 (H, (0, 1)), the existence of q(t) in l[y] is not essential for the domain
of definitions of minimal, maximal operators and self-adjoint extensions, that is why when studying these
questions we will take q(t) ≡ 0.

We will use the following notations :H j (a scale of Hilbert spaces generated by A)as always denotes
(
j > 0

)
a completion of D(A j) with respect to the scalar product

(
f , 1

)
j =

(
A j f ,A j1

)
(see [2]) for j > k, H j ⊆ Hk ⊆ H.

H− j is a space with a negative norm constructed with respect to H, H j. H− j is the completion of H in the
norm

∥∥∥A− j f
∥∥∥ . H− j is usually considered as an adjoint to H j with respect to the scalar product (·, ·), so that

for 1 ∈ H− j, f ∈ H j, 1( f ) will be written as
(

f , 1
)
. The operator A is an isometric operator from H1 to H. The

adjoint of A denoted by Ã acts from H to H−1 and is the extension of A.

Theorem 2.1. The domain D(L∗0) of L0 consists of those elements Y =
(
y (t) ,Q1y (1) , Q2y′ (1)

)
of the space

H = L2 (H, (0, 1)) ⊕H2, where

y (t) = eα1
4√

Ãt f1 + eα2
4√

Ãt f2 + e−α1
4√A(t−1)11+

+e−α2
4√A(t−1)12 +

∫ 1

0
G (t, s) h(s)ds, (9)

G (t, s) =

 eα1
4√A|t−s|

4α3
1

+
eα2

4√A|t−s|

4α3
2

 A−
3
4 , (10)

f1, f2ϵH− 1
8
, 11, 12ϵH 3

4
(or A

3
4 1i ∈ H, i = 1, 2), Q11i ∈ H, A

1
4 Q2 1iϵH, for i = 1, 2, (11)

α1, α2 are the roots of the equation α4 = −1 with negative real parts, so, α1 = e
3πi
4 , α2 = e

5πi
4 and

L∗0Y =
(
ly,−y

′′′

(1) , y
′′

(1)
)
. (12)

Since 11, 12 ∈ H and f (A)1 = f
(
Ã
)
1 for a bounded function f on H, then in the (9) in third and fourth terms

one may take A but not Ã.

Proof. In [13], ly = (−1)ny(2n) + Ay in L2 (H, (0, 1)) is considered, and there it was shown that the values
of y(t) at endpoints of the interval are from a larger space than H, namely, f1, f2, 11, 12 ∈ H

−
1
8
. But we

take f1, f2 ∈ H
−

1
8
, and 11, 12 ∈ H 3

4
,Q11i ∈ H, A

1
4 Q21i ∈ H, for i = 1, 2, because we define an operator in

H = L2 (H, (0, 1)) ⊕H2 and for that reason y′ (1), y′′′ (1),Q1y (1) , Q2y′′ (1) must be from H.

As it follows from Theorem 2.1 (relations (9), (11)) values of y(t) and its derivatives at zero are distribu-
tions.
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Let Y0 and Y′0 be defined in H2 by

Y0 =
{
y0, y

′

0

}
, Y

′

0 = {y
′′′

0 , y
′′

0 } (13)

where y0, y
′

0, y
′′′

0 , y
′′

0 are regularized values of y(t) and its derivatives at zero which are obtained from [13],by
taking n = 2

y0 = A−
1
8 y (0) , y

′

0 = A−
3
8 y
′

(0), y
′′

0 = A
3
8

(
y
′′

(0) −
√

2A
1
4 y′(0) + A

1
2 y(0)

)
y
′′′

0 = A
1
8

(
−y

′′′

(0) + A
1
2 y
′

(0) +
√

2A
3
4 y(0)

) (14)

Now let ỹ =
{
y0, y′0

}
, ỹ′ =

{
y′′′0, y

′′

0

}
be arbitrary vectors from H2. By the similar way done in [12], [16]

the following lemma might be easily proved

Lemma 2.2. For each
{
ỹ, ỹ′

}
ϵH4 there exists Y =

{
y (t) ,Q1y (1) ,Q2y′ (1)

}
∈ D(L∗0) so that y0, y

′

0, y
′′

0 , y
′′′

0 are defined
by (14)

By the methods of the work [20] (where condition for binary relations to be hermitian is given), and
[12], [13] and [14] (where Sturm-Liouville operator with an unbounded operator coefficient and with exit
to larger space is defined) the following theorem may be easily verified.

Theorem 2.3. The domain of self-adjoint extensions Ls
0 of the operator L0 in H consists of those Y ∈ D

(
L∗0

)
which

satisfy also

cos CY
′

0 − sin CY0 = 0 (15)

with a selfadjoint operator C on H2 : C = (C1,C2) , Ci act in H for i = 1, 2, and Y0,Y
′

0 are defined by (13), (14). For
simplifying the notations, we will take C = (C,C).

Note 2.1. Since q(t) is a selfadjoint and bounded operator in H the statement of the theorem remains
true also for L = L0 +Q, where Q =

{
q (t) , 0, 0

}
Denote selfadjoint extension of L by Ls.

Theorem 2.4. The spectrum of selfadloint extensions Ls
0 of the minimal operator L0 is discrete if and only if cos C is

compact and Q1A−
3
4 ,Q2A−

1
2 are bounded.

Proof. Let λ be non-real, then for selfadjoint extension Ls
0 and h̃ = (h (t) , h1, h2) ∈ H , Y ∈ D

(
Ls

0

)
, we consider

the equation ,

Ls
0Y − λY = h̃ (16)

or in the equivalent form

yIV + Ay − λy = h (t) , (17)

−y
′′′

(1) − λQ1y (1) = h1, (18)

y
′′

(1) − λQ2y′ (1) = h2 (19)

in addition to (17)-(19) Y as a vector from the domain of Ls
0 satisfies the condition (15). From (16)-(19) the

resolvent Rλ(Ls
0) of Ls

0 is

Rλ
(
Ls

0

)
h̃ = Y =

 y(t, λ)
Q1y(1)
Q2y′(1)

 (20)
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where y(t, λ) is the solution of (17) defined by

y (t, λ) = eα1
4√A−λItA

1
8 f1 + eα2

4√A−λItA
1
8 f 2 + e−α1

4√A−λI (t−1)A−
3
4 11+

+e−α2
4√A−λI(t−1)A−

3
4 12 +

∫ 1

0
G (t, s, λ) h(s)ds, (21)

where

f1, f2ϵH, 11, 12ϵH,Q1A−
3
4 1i ∈ H, Q2 A−

1
2 1iϵH, for i = 1, 2. (22)

Introduce the notations:

ω j(t, λ) =

 eαi
4√A−λItA

1
8 , i = 1, 2, j = 1, 2

e−αi
4√A−λI(t−1)A−

3
4 , i = 1, 2, j = 3, 4

(23)

where, ω j (t, λ) fi, ( j = 1, 2, i = 1, 2) and ω j (t, λ) 1i ( j = 3, 4, i = 1, 2) form a fundamental system of solutions
of the homogenous equation corresponding to (??)

Let also Y0 =
{
y0, y

′

0

}
, Y′0 = {y

′′′

0 , y
′′

0 }, elements of which are defined by (14). With (21)-(23) in mind we
can write:

Rλ
(
Ls

0

)
h̃ =

 y(t)
Q1y(1)
Q2y′(1)

 =

=


ω1 (t, λ) f1 + ω2(t, λ) f 2 + ω3(t, λ) 11 + ω4(t, λ) 12 +

∫ 1

0
G (t, s, λ) h(s)ds

Q1ω1 (1, λ) f1 +Q1ω2(1, λ) f 2 +Q1A−
3
4 11 +Q1A−

3
4 12 +Q1

∫ 1

0
G (1, s, λ) h(s)ds

Q2k1ω1 (1, λ) f1 +Q2k2ω2 (1, λ) f2 −Q2k1A−
3
4 11 −Q2k2A−

3
4 12 +Q2

∫ 1

0
G′t (1, s, λ) h(s)ds


ki = αi

4√

A − λI , i = 1, 2.

Rewrite the last relation in the following matrix form:

Rλ
(
Ls

0

)
h̃ =

 ω1 (t, λ)
Q1ω1 (1, λ)

Q2k1ω1 (1, λ)

ω2 (t, λ)
Q1ω2(1, λ)

Q2k2ω2 (1, λ)

ω3 (t, λ)
Q1A−

3
4

−Q2k1A−
3
4

ω4 (t, λ)
Q1A−

3
4

−Q2k2A−
3
4




f1
f2
11
12


+


∫ 1

0 G (t, s, λ) h(s)ds

Q1

∫ 1

0 G (1, s, λ) h(s)ds

Q2

∫ 1

0 G′

t (1, s, λ) h(s)ds

 (24)

Define the vector


f1
f2
11
12

 from equalities (15), (18), (19) by substituting y(t, λ) from (21) into them.

Introduce some notations.
Firstly, let

B j (t, λ) =


e−αi

4√A−λIt

4α3
i

A−
3
4 , i = 1, 2, j = 1, 2

eαi
4√A−λIt

4α3
i

A−
3
4 , i = 1, 2, j = 3, 4

.
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Note that with this notation

G (t, s, λ) =


[
B1(t, λ)eα1

4√A−λIs + B2(t, λ)eα2
4√A−λIs

]
, t ≤ s[

B3(t, λ)eα1
4√A−λI(−s) + B4(t, λ)eα2

4√A−λI(−s)
]
, s ≤ t

(25)

Now we will write boundary conditions (15), (18), (19) in the matrix form with y (t) defined from (21) and
with (25) in mind. For simplifying G(n)(0, s, λ),n = 1, 4, (since t = 0 ≤ s we have to use the second row
expressions from (25)) introduce the following notations, obtained by taking B j(t, λ) in (14) instead of y (t):

B
′′′

1,0 = A
1
8

− 1
4α3

1

(
α1

4√

A − λI
)3

A−
3
4 +

1
4α2

1

4√

A − λIA−
1
4 +

√
2

4α3
1


B
′′′

2,0 = A
1
8

− 1
4α3

2

(
α2

4√

A − λI
)3

A−
3
4 +

1
4α2

2

4√

A − λIA−
1
4 +

√
2

4α3
2


B
′′

1,0 = A
3
8

 1
4α3

1

(
α1

4√

A − λI
)2

A−
3
4 −

√
2

4α2
1

4√

A − λIA−
1
2 +

√
2

4α3
1

A−
1
4


B
′′

2,0 = A
3
8

 1
4α3

2

(
α2

4√

A − λI
)2

A−
3
4 −

√
2

4α2
2

4√

A − λIA−
1
2 +

√
2

4α3
2

A−
1
4


B1,0 =

1
4α3

1

A
−

1
8

A−
3
4 ,B2,0=

1
4α3

2

A
−

1
8

A−
3
4 ,B

′

1,0 = −A−
3
8
α1

4√A − λI
4α3

1

A−
3
4

B
′

2,0 = −A−
3
8
α2

4√A − λI
4α3

2

A−
3
4 (26)

Regularized values of ω j(t, λ ) and its derivatives at zero defined by (14) denote by ω j,0, ω′ j,0, ω′′ j,0, ω′′′ j,0
and for a shortcut of notations denote the values ofω j(t, λ) and its derivatives at 1 byω j (1) , ω′j (1) , ω′′j (1) , ω′′′j (1),
respectively. Hence,

ω j(1, λ) ≡ ω j (1) =
 eαi

4√A−λIA
1
8 , i = 1, 2, j = 1, 2

A−
3
4 , i = 1, 2, j = 3, 4

,

ω
′

j(1, λ) ≡ ω
′

j (1) =

 αi
4√A − λIe

αi
4√A−λI

A
1
8 , i = 1, 2, j = 1, 2

−αi
4√A − λI A−

3
4 , i = 1, 2, j = 3, 4

ω
′′

j (1, λ) ≡ ω
′′

j (1) =


(
αi

4√A − λI
)2

e
αi

4√A−λI
A

1
8 , i = 1, 2, j = 1, 2(

αi
4√A − λI

)2
A−

3
4 , i = 1, 2, j = 3, 4

ω′′′j (1, λ) ≡ ω′′′j (1) =


(
αi

4√A − λI
)3

e
αi

4√A−λI
A

1
8 , i = 1, 2, j = 1, 2(

−αi
4√A − λI

)3
A−

3
4 , i = 1, 2, j = 3, 4

With all that notations substituting y(t, λ) into (15), (18), (19) and then writing them in the matrix form,
we have :




cos C O O O
O cos C O O

O O I O
O O O I



ω′′′1,0 ω′′′2,0 ω′′′3,0 ω′′′4,0
ω′′1,0 ω′′2,0 ω′′3,0 ω′′4,0
ω′′′1 (1)
ω′′1 (1)

ω′′′2 (1)
ω′′2 (1)

ω
′′′

3 (1)
ω
′′

3 (1)
ω
′′′

4 (1)
ω
′′

4 (1)

−



N. Aslanova, Kh. Aslanov / Filomat 39:6 (2025), 1895–1908 1902

−


sin C O O O

O sin C O O
O
O

O
O

I
O

O
I

×

×


ω1,0 ω2,0 ω3,0 ω4,0

ω′1,0 ω′2,0 ω′3,0 ω′4,0
λQ1ω1 (1)
λQ2ω

′

1 (1)
λQ1ω2 (1)
λQ2ω

′

2 (1)
λQ1ω3 (1)
λQ2ω

′

3 (1)
λQ1ω4 (1)
λQ2ω

′

4 (1)





f1
f2
11
12

 =

=




cos CA−

1
8 B′′′1,0 cos CA−

1
8 B′′′2,0 O

cos CA−
1
8 B′′1,0 cos CA−

1
8 B′′2,0 O

O O A−
7
8

4α3
1

[(
α1

4√A − λI
)3
+ λQ1

]
O O A−

7
8

4α3
1

[(
α1

4√A − λI
)2
+ λQ2α1

4√A − λI
]

O O O
O O O

A−
7
8

4α3
2

[(
α2

4√A − λI
)3
+ λQ1

]
I O

A−
7
8

4α3
2

[(
α2

4√A − λI
)2
+ λQ2

(
α2

4√A − λI
)]

O I

 −

−


sin CA−

1
8 B1,0 sin CA−

1
8 B2,0 O O O O

sin CA−
1
8 B′1,0 sin CA−

1
8 B′2,0 O O O O

O O O O O O
O O O O O O


×

×



A
1
8

∫ 1

0 eα1
4√A−λIsh(s)ds

A
1
8

∫ 1

0 eα2
4√A−λIsh(s)ds

A
1
8

∫ 1

0 eα1
4√A−λI (1−s)h(s)ds

A
1
8

∫ 1

0 eα2
4√A−λI (1−s)h (s) ds

h1
h2


(27)

In the last column in (27) the integral terms are from D(A
1
8 ) and to get terms from H we put before them the

factors A
1
8 , that is why there appear the factors A−

1
8 in front of B′s in matrices within braces in right of (27).

Denote the matrix within the brackets in the left hand side of (27) by D, the difference of matrices in the
brackets on the right of (27) by B̃1 − B̃2 and column matrix on the right by H̃, respectively. Each term of

H̃ is from H, because linear operators h(s)→
1∫

0
eαi

4√A−λIsh(s)ds, h(s)→
∫ 1

0 eαi
4√A−λI(1−s)h(s)ds continuously act

from L2 (H, (0, 1)) to H 1
8

as the adjoint to the operator f → eαi
4√A−λIs f which continuously acts from H

−
1
8

to
L2 (H, (0, 1)). Hence,


f1
f2
11
12

 = D−1
(
B̃1 − B̃2

)
H̃. (28)
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Denote in (24), the matrix in front of the vector


f1
f2
11
12

 by J and the second term by G

Rλ
(
L0

s

)
h̃ = JD−1(B̃1 − B̃2)H̃ + G, (29)

Let cos C,Q1A−
3
4 ,Q2A−

1
2 be bounded in H. For Imλ , 0 the inverse operator D−1 exists in H and it may be

easily verified under above conditions is bounded in H. H̃ is continuous from H to H6. Because the first
four terms are continuous from L2 (H, (0, 1)) to H, the last two terms are continuous from H to H.

In the operator matrix B̃2 the term sin CA−
1
8 Bi,0 is sin CA−

1
8 Bi,0 =

sin CA−1

4α3
i

and in B̃1 the term cos CA−
1
8 B′′′i,0

(in other terms too) is representable as cos CA−
1
8 B′′′i,0 = cos C(βI + F) where β is a number defined by the

coefficients of the terms B̃1, F is a bounded operator in H. D−1(B̃1 − B̃2) is completely continuous from H6

to H4 because of cos C is compact by our assumption, Q1A−
7
8 is compact because of Q1A−

7
8 = Q1A−

3
4 A−

1
8 ,

where Q1A−
3
4 is bounded and A−

1
8 is compact, since A−1 is compact, and Q2A−

5
8 is compact, since by our

assumption. Compactness of Q2A−
4
8 and Q2A−

5
8 a obvious under stated requirements of theorem. J is

continuous H4 toH , G is completely continuous fromH toH since the first term is compact in L2 (H, (0, 1))
as an integral operator which kernel G(t, s, λ) with values from H is compact for each (t, s, λ) and next two
terms are compact in H because of the conditions cos C,Q1A−

3
4 ,Q2A−

1
2 are compact.

So, it follows that Rλ
(
L0

s

)
is compact if and only if cos C, Q1A−

3
4 ,Q2A−

1
2 are compact.

Note 2.2. Since q(t) is bounded in L2 (H, (0, 1)), then in virtue of relation

Rλ (Ls) = Rλ
(
L0

s

)
− Rλ (Ls) QRλ

(
L0

s

)
, (30)

where Ls = Ls
0 +Q,

QY =
{
q (t) y (t) , 0, 0

}
, (31)

statement of Theorem 2.4 holds also for selfadjoint extensions Ls of the minimal operator L = L0 +Q.

3. Asymptotics of eigenvalue distribution of a class of selfadjoint extensions, definition of the domain
of selfadjoint extensions with resolvents from σp and extensions with continuous spectrum

Take in boundary conditions (15) C = (C1,C2), where C1 and C2 are operators on H, moreover C1 =
π
2 I (I

is an identity operator in H), C2 = arct1(−
√

2A), then the corresponding selfadjoint extension will be given
by the boundary conditions y(0) = y′′ (0) = 0. The eigenvalue problem corresponding to that operator is:

ly = λy (32)

y(0) = y
′′

(0) = 0. (33)

−y
′′′

(1) = λQ1y(1), y
′′

(1) = λQ2y
′

(1) (34)

Note here that boundary conditions (33),(34) are obtained from (4),(5) with indicated above choice of C and
by the setting b = 1 and making a change of variable 1 − t = x.

The operator corresponding to that problem for q(t) ≡ 0 denote by L0
1 which in virtue of Theorems 2.3

and 2.4 is self-adjoint and has purely discrete spectrum.
Now we study the asymptotics of eigenvalues of that operator.
The solution of (32) is

y (t, λ) = eα1
4√A−λItA

1
8 f1 + eα2

4√A−λItA
1
8 f 2+
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+e−α1
4√A−λI(t−1)A−

3
4 11 + e−α2

4
√

A−λI(t−1)A−
3
4 12 (35)

with f1, f2, 11, 12 ∈ H defined as in (22).
Substituting the function (35) in the the boundary conditions (33),

A
1
8 f1 + A

1
8 f 2 + eα1

4√A−λI A−
3
4 11 + eα2

4√A−λIA−
3
4 12 = 0 (36)(

α1
4√

A − λI
)2

A
1
8

f1 +
(
α2

4√

A − λI
)2

A
1
8

f
2
+

(
α1

4√

A − λI
)2

eα1
4√A−λI

×

×A−
3
4 11 +

(
α2

4√

A − λI
)2

e
α2

4√A−λI
A−

3
4 12 = 0 (37)

rewrite (36), (37) as(
A

1
8 f1 + eα1

4√A−λI A−
3
4 11

)
+

(
A

1
8 f 2 + eα2

4√A−λIA−
3
4 12

)
= 0

(
α1

4√

A − λI
)2

(
A

1
8 f1 + eα1

4√A−λI A−
3
4 11

)
+

+
(
α2

4√

A − λI
)2

(
A

1
8 f 2 + eα2

4√A−λIA−
3
4 12

)
= 0

hence

f1 = −A−
1
8 eα1

4√A−λI A−
3
4 11 = −A−

7
8 eα1

4√A−λI 11 = −A−
7
8 e

4√
λI−A11, (38)

f2 = −A−
1
8 eα2

4√A−λIA−
3
4 12 = −A−

7
8 eα2

4√A−λI12 =

= −A−
7
8 eiα1

4√A−λI12 = −A−
7
8 ei 4√

λI−A12 (39)

Taking in (35) f1 and f2 as in (38), (39) yields

y (t, λ) = −eα1
4√A−λItA

1
8 A−

7
8 e

4√
λI−A11 − eα2

4√A−λItA
1
8 A−

7
8 ei 4√

λI−A12+

+e−
4
√
λI−A(t−1)A−

3
4 11 + e−

4
√
λI−A(t−1)A−

3
4 12 = −e

4√
λI−AtA−

3
4 e

4√
λI−A
11+

+e−
4√
λI−A(t−1)A−

3
4 11 − ei 4√

λI−AtA−
3
4 ei 4√

λI−A12+

+e−i 4√
λI−A(t−1)A−

3
4 12 = −2sh

4√

λI − AtA−
3
4 e

4√
λI−A11 − 2isin

4√

λI − AtA
−

3
4 e

i 4√
λI−A

12.

Denoting F1 = −2e
4√
λI−A A−

3
4 11, F2 = 2ie

4√
λI−AA−

3
4 12, F1, F2ϵH we have

y (t) = sh
4√

λI − AtF1 + sin
4√

λI − AtF2 (40)

Writing that solution in boundary conditions (34), from expansion of a selfadjoint operator with discrete

spectrum A =
∞∑

k=1
γk

(
·, φk

)
φk, where γk are eigenvalues and φk are orthonormal basis formed by the eigen-

vectors of A,we have

−
4
√
λ − γk

3
ch 4

√
λ − γk

(
F1, φk

)
+ 4

√
λ − γk

3
cos 4

√
λ − γk

(
F2, φk

)
=

= λsh 4
√
λ − γk

(
F1, Q1φk

)
+ λ sin 4

√
λ − γk

(
F2, Q1φk

)
(41)

and √
λ − γksh 4

√
λ − γk

(
F1, φk

)
−

√
λ − γk sin 4

√
λ − γk

(
F2, φk

)
=
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λ 4
√
λ − γkch 4

√
λ − γk

(
F1, Q2φk

)
+ λ 4

√
λ − γk cos 4

√
λ − γk

(
F2, Q2φk

)
.

For simplicity of calculations take here Q1 = Q2 = Aα, and 0 < α < 1
2 , which is important for holding the

hypothesis of Theorem 2.4.
By replacing

4
√
λ − γk = z,

(
F1, φk

)
= c1k,

(
F2, φk

)
= c2k (42)

in virtue of Qiφk = γk
αφk, i = 1, 2 we have

−z3chzc1k + z3 cos zc2k =
(
z4 + γk

)
shzγαk c1k +

(
z4 + γk

)
sin zγαk c2k (43)

zshzc1k − z sin zc2k =
(
z4 + γk

)
chzγαk c1k +

(
z4 + γk

)
cos zγαk c2k (44)

which is a system of linear algebraic equations in c1k, c2k and has nonzero roots if and only if the characteristic
determinant ∆(z) of boundary value problem (32)-(34) the (determinant formed by coefficients of (43), (44))
is zero:

∆ (z) =

∣∣∣∣∣∣∣∣∣
−z3chz −

(
z4 + γk

)
shz γαk z3 cos z −

(
z4 + γk

)
sin z γαk

zshz −
(
z4 + γk

)
chz γαk −zsinz −

(
z4 + γk

)
cos z γαk

∣∣∣∣∣∣∣∣∣ = 0 (45)

After simplifications in (45)

t1z =
−2z3

(
z4 + γk

)
γαk + z4thz −

(
z4 + γk

)2
γ2α

k thz

z4 + 2z
(
z4 + γk

)
γαk thz −

(
z4 + γk

)2γ2α
k

(46)

Since λ as the eigenvalue of a selfadjoint operator must be real, feasible values for z are y,−y, iy,−iy(y > 0)
or ±y ± iy.

Thus, (46) may have only real, imaginary roots and the roots of the form y ± iy, where y iare real. It
can’t have other complex roots with exception of these roots, because complex roots will give complex
eigenvalues for a selfadjoint operator, which is impossible.

Hence, setting 4
√
λk, j − γk = zk, j from (46) for real roots as |z| → ∞ we have z = zk, j ∼

π
4 + π j +O

(
1
k

)
, k is

an entire number large in modulus .
Writing in (46) iz in place of z shows that if z is a real root, then iz is also a root of that equation, thus for

imaginary roots

z = izk, j ∼

(
π
4
+ π j +O

(1
k

))
i,

But in virtue of (42)

λ = z4 + γk

which shows that real and imaginary roots of (46) result in the same eigenvalues but in linearly dependent
eigenvectors of the operator and that is why geometric multiplicity of each eigenvalue corresponding to
those roots is 2.

Writing in (46) y ± iy in place of z, after simplifications we get

−4y4

[
sin2y

2
−

sh2y
2i

]
+ 4iy2 (

y + iy
) (
γk − 4y4

)
γk
α

[
cos2y

2i
+

ch2y
2

]

+2y
(
y + iy

) (
γk − 4y4

)
γk
α

[
cos2y

2i
−

ch2y
2i

]
+ 4y4

[
sh2y

2
+

isin2y
2

]
+
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+
(
γk − 4y4

)2
γk

2α

[
sh2y

2
+

isin2y
2

]
−

(
γk − 4y4

)2
γk

2α

[
sin2y

2
+

sh2y
2i

]
= 0 (47)

It is easy to see that (47) has the form K = iK, where K is real and

K = −4y4 sin2y
2
− 4y3

(
γk − 4y4

)
γk
α

[
cos2y

2
+

ch2y
2

]
+ 2

(
γk − 4y4

)
γk
αy

[
cos2y

2
−

ch2y
2

]
+

+4y4 sh2y
2
+

(
γk − 4y4

)2
γk

2α sh2y
2
−

(
γk − 4y4

)2
γk

2α sin2y
2

Equation (47) has solution if and only if

K = 0. (48)

But for the large values of y (48) is equivalent to

4y7γk
αe2y + y7γk

αe2y + 8y8γk
2αe2y + 4y7γk

αe2y + y5γk
αe2y

which has no positive roots. But by applying Descarte’s rule of signs we see that (47) has small in modulus
roots, that is way they don’t change asymptotics of eigenvalues.

Hence, we get the next theorem

Theorem 3.1. The geometric multiplicity of eigenvalues λk, j of the operator L0
1 is two and the following asymptotic

formula is true:

λk, j = γk + z4
k, j, zk, j ∼

 π j + π4 +O
(

1
k

)
,

i
(
π j + π4 +O

(
1
k

)) (49)

as k, j→∞ and

λk, j = γk + η
4
k, j,

where ηk, j are small in modulus roots of (46).
Let for eigenvalues γk, k = 1,∞, of the operator A as k→∞ holds: γk ∼ ckβ, (β > 0).
Analogous to [4], [21] the following statements may be justified:

Lemma 3.2. For the distribution function N (λ) =
∑
λn<λ

1 of the eigenvalues of the operator L0
1 the following relation

N(λ) ∼ C1λ
4+β
4β (50)

is valid for sufficiently large λ .

Lemma 3.3. For large values of n the following asymptotic formula is true

λn ∼ C2n
4β

4+β ,n→∞. (51)

Setting L1 = L0
1 +Q, one can easily see that the hypotheses of Theorem 2.3 and Theorem 2.4 hold also for L1. Denote

the eigenvalues of L1 by
{
µn

}
: µ1 < µ2 < . . . .

From (50) it follows that inverse of L0
1 is from Neumann von Shcetten class σp, if and only if p · 4β

4+β > 1

or β > 4
4p−1 , which means that A−

1
4 ∈ σ4p−1.
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Lemma 3.4. The operator
(
L0

1

)−1
is from σp if and only if A−

1
4 ∈ σ4p−1.

Because of relation (30) that statement holds also for the operator L1.

Now we can prove the next theorem.

Theorem 3.5. Let A−
1
4 ∈ σ4p−1. Then Rλ

(
L0

s

)
, Rλ (Ls) ϵσp (H1) if and only if cosC, Q1A−

3
4 ,Q2A−

1
2 are from σp.

Proof. Setting in formula (29) C = (C1,C2), C1 =
π
2 I, C2 = arct1(−

√
2A) and subtracting obtained by that way

formula from (29) we get

Rλ
(
Ls

0

)
h̃ = Rλ (L0) h̃ + JD−1

(
B̃1 − B̃2

)
H̃ − JD0

−1
(
B̃01 − B̃02

)
H̃ (52)

where D0 and B̃01 − B̃020 are obtained from D and B̃1− B̃2, respectively, by taking there C = (C1,C2), C1 =
π
2 I,

C2 = arct1(−
√

2A). Writing (52) in the open form and with Lemma 3.4 in mind one can easily see that
Rλ

(
L0

s

)
is from σp if and only if cos C, Q1A−

3
4 , Q2A−

1
2 are from σp. Since Q is bounded inH , the statement

of the theorem is true also for Rλ(Ls).

Theorem 3.6. If the inverse of the operator A is compact, then for any closed set F of the real axis, there exists a
selfadjoint extension of the minimal operator L0, which spectrum coincides with F.

Proof. Let C =
(
π
2 I O
O f (A)

)
, where f (µ) is any function Borel measurable on (1,∞). Then boundary

conditions (15) take the form

y (0) = 0, (53)

cos f (A) A
3
8

(
y
′′

(0) −
√

2A
1
4 y′(0) + A

1
2 y(0)

)
− sin f (A) A−

3
8 y
′

(0) = 0 (54)

Let us corresponding to f selfadjoint extension denote by L f . Obviously, λ is an eigenvalue of L f , if in
addition to (53) and (54) holds (34). After substituting y(t, λ) from (35) into those relations and denoting by
K f
λ(A) the determinant of the matrix formed by the coefficients of f1, f2, 11, 12 in relations (53), (54), (34), it

is easy to see that λ is an eigenvalue of L f if and only if the zero is an eigenvalue of K f
λ(A).

Let F be a closed set of real zeros and {λk} is a set dense in F. Construct the function fF(γ) in the following
way:

fF(γ) = fk, f or γk−1 < γ ≤ γk

with fk defined from the equation

K f
λk

(γk) = 0

But from the last relation it follows that 0 is the eigenvale of the operator K fF
λk

, hence λk is an eigenvalue of
the operator L fF .

Therefore, the set {λk} as well as F are contained in the spectrum of L fF . The Theorem is proved.
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would like to thank the conference organizers and attendees for their valuable feedback and insights.



N. Aslanova, Kh. Aslanov / Filomat 39:6 (2025), 1895–1908 1908

References

[1] T. Aiki, Multi-dimensional Stefan problems with dynamic boundary conditions, Applicable Anal. 56 (1993), 71–94.
[2] Z. S. Aliyev, G. T. Mamedova, Spectral properties of a beam equation with eigenvalue parameter occurring linearly in the boundary

conditions, Proc. Royal Soc. Edinburgh: Sec. A Math. 152 (2022), 780–801.
[3] N. Aslanova, Kh. Aslanov, On some boundary value problems for the fourth order differential operator equation, Analysis, Topology and

Applications, 29.06.2024-03.07.2024, Vrnjačka Banja, Serbia.
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