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Abstract. Machine learning plays a key role in this work, designing new technologies for producing carbon
nanotubes (CNTs) and graphene by electrolysis in molten salts. The aim is to achieve non-expensive,
high-quality materials, making them economically viable for various applications. For the production
of multi-walled carbon nanotubes (MWCNTs), experiments employ both non-stationary and stationary
current regimes, while for graphene production, constant and reversing cell voltage as well as constant and
reversing overpotential methods are considered. The electrolysis process offers ecological and economical
advantages with precise control over parameters such as applied voltage, current density, temperature,
electrolyte type, and graphite material. To determine the relationship between these parameters and
material quality, explainable tree-based Machine Learning (ML) models are employed, trained using labeled
data from domain experts. The extracted rules from the ML model guide optimal production, resulting in
high-yield materials that are up to ten times more cost-effective than existing technologies. This contributes
to the advance of cost-efficient and high-quality carbon nanomaterials for a wide range of applications.

1. Introduction

Nanomaterials are materials that have at least one dimension (length, width, or thickness) in the
nanometer scale, typically between 1 and 100 nm (Fig. 1). Nanotechnologies and nanomaterials in the
scientific research over the last couple of decades have increasingly focused on carbon nanostructures due to
their exceptional properties and potential applications across various fields [2]. Among such nanostructures,
carbon nanotubes (CNTs) and graphene, the one atom thick material, have attracted significant attention
due to their remarkable electrical, mechanical, and chemical properties.
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Figure 1: Carbon nanomaterials: graphene and CNTs

Discovered by Lijima [10], CNTs are highly promising in a wide range of applications, including energy
storage, materials for electrochemical capacitors, electrocatalytic supports for fuel cells, fillers in polymer
composites, etc. Similarly, graphene, first isolated by Geim and Novoselov in 2003, is unique in terms
of its extraordinary electrical, thermal, optical, and mechanical properties, earning it the title of ”material
of the future” [6, 7, 11]. The production of CNTs and graphene has advanced significantly, with various
methods developed to optimize their quality and yield. One promising approach to producing CNTs is
through the electrolysis of alkali molten salts. This method, pioneered by [9], involves the electrolysis of
molten lithium chloride on a graphite cathode, resulting in the formation of multi-walled nanotubes due
to the erosion of the cathode during the process. Subsequent research has linked this cathodic erosion to
the intercalation of alkali metals into graphite, a process further refined by Fray and colleagues [4, 13].
These advancements have led to the successful incorporation of CNTs in various applications, including
as electrodes in lithium-ion batteries, where they have demonstrated improved charge-discharge capacity
compared to standard carbon materials [5]. Parallel to the developments in CNT production, the discovery
of graphene has motivated extensive research into its applications, ranging from electronics to energy
storage. The superior properties of graphene and CNTs have encouraged the development of advanced
production techniques, such as chemical vapor deposition (CVD) for graphene and electrolysis in molten
salts for CNTs. Moreover, the complex relationship between the quality of CNTs and the parameters of their
production process has opened up new approaches for data-driven modeling, including the application
of machine learning algorithms. These algorithms offer the potential to optimize production processes
by analyzing experimental data and identifying key factors that influence CNT quality [1, 8, 15, 16]. The
integration of machine learning in optimizing production processes represents a significant step forward
in utilizing the full capabilities of these remarkable materials. This work contributes to production of high
quality carbon nanomaterials by an ecological method that is up to ten times cheaper than other existing
technologies in the field.

2. Production of Carbon Nanomaterials: Graphene and Carbon Nanotubes (CNTs)

The production of carbon nanomaterials, such as graphene and multi-wall carbon nanotubes (MWC-
NTs), is evolving towards methods that enhance quality and yield while reducing costs. Graphene and
CNTs, typically produced through expensive methods with low yield, can be synthesized more efficiently
using electrochemical methods in molten salts, especially with non-stationary current regimes. Our ap-
proach allows precise control of parameters like overpotential, current density, and electrolyte temperature,
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enabling the production of high-quality graphene at a lower cost. This method enables production of carbon
nanomaterisls via ion intercalation during electrolysis, where cations reduce and intercalate at the cathode,
causing exfoliation. The process takes place in a graphite crucible with molten chloride salts, such as LiCl,
inside a sealed Inconel reactor (Fig. 2).

Figure 2: Direct exfoliation of graphene. Schematic of experimental set-up used for conventional electrolysis

Characterization techniques as SEM, TEM, and Raman spectroscopy were used to analyze the obtained
structures (Fig. 3).

3. Methodology

Small datasets were subjects of both graphene and CNT research: 50 experiments for producing multi-
wall CNTs and 30 experiments for producing graphene. The samples were represented with 9 parameters
(features), such as (Table 1):

• Cathode overpotential – measured relevant to a referent electrode

• Type of graphite – EC4, EC17, MSG34

• Time of polarity change – interval in which the polarity of electrodes change

• Experiment type

– Reversing overpotential

– Constant overpotential

– Constant cell potential

A Decision Tree (DT) model was developed to classify the experimentally produced carbon nanoma-
terials into one of three quality classes (1, 2, or 3). These classes serve as indicators of samples’ quality,
where a higher class number corresponds to superior quality, characterized by increased yield and fewer
defects. The rules extracted from the trained DT model are employed to optimize the large-scale produc-
tion of cost-effective, high-quality CNTs. Prior to model training, several data preprocessing steps were
undertaken to ensure the data was suitable for input into the DT model. The preprocessing and modeling
tasks were conducted in Python, utilizing modules such as pandas, NumPy, and scikit-learn. Initially,
feature normalization was applied to scale the attributes so that their mean value was zero, while their
variance was preserved using their standard deviation. This process ensures that each attribute is given
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Figure 3: A. TEM and SEM images of MWCNTs obtained experimentally by electrolyses in molten salts
at the Faculty of Technology and Metallurgy in Skopje; B. TEM and SEM images of graphene obtained
experimentally by electrolyses in molten salts at the Faculty of Technology and Metallurgy in Skopje; C.
Nanodiamonds obtained by electrolyses in molten salts; D. Graphene and CNTs in natural dimensions.

equal weight, preventing any single feature from disproportionately influencing the model due to its value
range. Among various normalization techniques, we employed the Standard Scaler, defined as:

z =
x − µ

s
(1)

where x represents the actual value of the feature, µ is the mean, and s is the standard deviation.
To model the yield of graphene and carbon nanotubes and using a decision tree, a supervised learning

framework was considered, where the dataset D = {(Xi, yi)}Ni=1 consists of N instances. Each instance
comprises a feature vector Xi ∈ Rd, representing d features related to the synthesis parameters of CNTs or
graphene, and a corresponding target variable yi ∈ R, representing the yield.

Data Preprocessing: To prepare the feature matrix X ∈ RN×d, for input into the decision tree algorithm,
categorical features are encoded using one-hot encoding [12]. This encoding process transforms each
categorical variable into a binary vector, expanding the original feature space to X∗ ∈ RN×d∗ , where d∗ ≥ d
accounts for the increased dimensionality due to the encoding.

Model Formulation: The DT model aims to approximate a function f : Rd
→ R that maps the encoded

feature matrix X∗ to the target variable y. The tree is constructed by recursively partitioning the feature
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Table 1: Data sample for MWCNTs

Electrolyte
Tempera-

ture

Type of
Graphite
- Anode

Type of
Graphite
- Cathode

Cell
Potential

Cathode
Overpo-
tential

Time of
Polarity
Change -

Cell

Time of
Polarity
Change -
Cathode

Time of
Polarity
Change -
Anode

Experiment
Type

780 EC4 EC4 5.5 3.0 600 60 60 Reversing
overpo-
tential

780 MSG34 MSG34 4.0 4.0 600 600 600 Constant
overpo-
tential

780 EC17 EC17 3.5 2.0 600 60 60 Reversing
overpo-
tential

640 EC4 EC4 4.5 2.5 600 60 60 Reversing
overpo-
tential

780 EC4 EC4 4.5 2.5 600 60 120 Constant
cell

potential

space into axis-aligned regions. At each node t of the tree, a split is defined by selecting a feature X∗j and a
threshold θ j, such that the feature space is divided into two subsets:

Rleft = {X∗ ∈ Rd∗
|X∗j ≤ θ j}, Rright = {X∗ ∈ Rd∗

|X∗j > θ j}. (2)

The goal is to find the optimal pair ( j, θ j) that minimizes the impurity of the resulting subsets. The
impurity at a node t is quantified by the Gini Index (G.I.) [3] which for a set R(t) is defined as:

G.I.(R(t)) = 1 −
K∑

k=1

p2
k(t), (3)

where pk(t) is the proportion of samples in R(t) that belong to class k, and K is the number of classes.
Optimization Problem: At each node t, the optimal split ( j∗, θ∗j) is found by solving the following

optimization problem:

( j∗, θ∗j) = arg min
( j,θ j)

[
|Rleft(t)|
|R(t)|

G.I. (Rleft(t)) +
|Rright(t)|
|R(t)|

G.I.
(
Rright(t)

)]
. (4)

where |R(t)| is the number of samples at node t. The process continues recursively until a stopping
criterion is met, such as reaching a maximum depth Dmax or reaching a minimum number of samples per
leaf Nmin.

4. Results and Prediction

The performance of the model was tested on a fraction of the original dataset, called a test set. The test
set contains randomly chosen 30% of the data instances of the original dataset, while the other part, called
a training set, was used for training the model. Classification accuracy was used as a performance metric.

Once the tree is fully grown, the prediction for a new instance X∗new ∈ R
d∗ is obtained by traversing the

tree from the root to a leaf node. The predicted yield ŷ is the mean (for regression) or the majority class (for
classification) of the target values yi in the leaf node reached by X∗new.
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samples = 8.7%
value = [0.0, 1.0, 0.0]

class = 2

samples = 17.4%
value = [0.0, 0.5, 0.5]

class = 2

samples = 30.4%
value = [0.286, 0.0, 0.714]

class = 3

samples = 4.3%
value = [0.0, 1.0, 0.0]

class = 2

samples = 8.7%
value = [1.0, 0.0, 0.0]

class = 1

samples = 8.7%
value = [0.5, 0.5, 0.0]

class = 1

Type of graphite_M305 <= 0.5
samples = 26.1%

value = [0.0, 0.667, 0.333]
class = 2

Electrolyte temperature <= 425.0
samples = 34.8%

value = [0.25, 0.125, 0.625]
class = 3

Cell voltage <= 3.25
samples = 17.4%

value = [0.75, 0.25, 0.0]
class = 1

samples = 21.7%
value = [1.0, 0.0, 0.0]

class = 1

Cell voltage <= 3.75
samples = 60.9%

value = [0.143, 0.357, 0.5]
class = 3

Electrolyte temperature <= 385.0
samples = 39.1%

value = [0.889, 0.111, 0.0]
class = 1

Type of graphite_MSG34 <= 0.5
samples = 100.0%

value = [0.435, 0.261, 0.304]
class = 1

Figure 4: DT model to classify graphene samples

The following rules are extracted for graphene samples:
Class 2: The tree predicts class 2 when the graphite is not of type M305 and the electrolyte temperature

is high (above 425°C), or when the graphite is of type M305, the cell voltage is moderate (below 3.75V), and
the electrolyte temperature is high (above 385°C).

Class 3: The tree predicts class 3 when the graphite is not of type M305 and the electrolyte temperature is
moderate (425°C or lower), or when the graphite is of type M305 and the cell voltage is high (above 3.75V),
or when the graphite is of type MSG34 and the electrolyte temperature is moderate (385°C or lower).

Class 1: The tree predicts class 1 when the graphite is of type M305 and the cell voltage is low (3.25V
or lower), or when the graphite is of type MSG34, the cell voltage is moderate (above 3.25V), and the
electrolyte temperature is high (above 385°C).

The following rules are extracted for CNT production: Class 2: The model predicts class 2 when the
electrolyte temperature is moderate to high (above 705°C) or when the time of polarity change at the anode
is short (45 minutes or less), and the cathode overpotential is high (above 2.25V). Additionally, if the type of
graphite used in the anode is not MSG34 and the time of polarity change at the cathode is short (90 minutes
or less), class 2 is predicted.

Class 3: The model predicts class 3 when the cell voltage is low (5.25V or less) and the cathode
overpotential is low (2.25V or less).

Class 1: The model predicts class 1 when the electrolyte temperature is low (705°C or less) and the time
of polarity change at the anode is long (greater than 45 minutes). It also predicts class 1 when the type of
graphite used in the anode is MSG34 or when the time of polarity change at the cathode is long (greater
than 90 minutes).

The experimental results underscore the DT model as a powerful tool for optimizing the production of
carbon nanomaterials, including both graphene and carbon nanotubes (CNTs). This model is particularly
effective in identifying the key parameters that influence the quality of these materials, a task that typically
requires specialized expertise in nanomaterials. By integrating the insights gained from the DT model with
domain expertise, we established general guidelines for producing high-quality graphene and CNTs. These
guidelines enable the production of these materials across various applications without the need for expert
knowledge or high consulting costs, thus streamlining the production process, reducing expenses, and
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samples = 4.0%
value = [0.0, 1.0, 0.0]

class = 2
samples = 24.0%

value = [0.5, 0.5, 0.0]
class = 1

samples = 4.0%
value = [0.0, 1.0, 0.0]

class = 2
samples = 28.0%

value = [0.143, 0.429, 0.429]
class = 2

samples = 12.0%
value = [0.0, 0.0, 1.0]

class = 3
samples = 4.0%

value = [1.0, 0.0, 0.0]
class = 1

samples = 4.0%
value = [1.0, 0.0, 0.0]

class = 1

Electrolyte temperature <= 705.0
samples = 28.0%

value = [0.429, 0.571, 0.0]
class = 2

samples = 4.0%
value = [0.0, 1.0, 0.0]

class = 2

Time of polarity change - anode <= 45.0
samples = 32.0%

value = [0.125, 0.5, 0.375]
class = 2

samples = 16.0%
value = [1.0, 0.0, 0.0]

class = 1

Cell Voltage <= 5.25
samples = 16.0%

value = [0.25, 0.0, 0.75]
class = 3

Cathode overpotential <= 2.25
samples = 32.0%

value = [0.5, 0.5, 0.0]
class = 1

Cathode overpotential <= 2.25
samples = 36.0%

value = [0.111, 0.556, 0.333]
class = 2

Type of graphite - anode_MSG34 <= 0.5
samples = 32.0%

value = [0.625, 0.0, 0.375]
class = 1

Time of polarity change - cathode <= 90.0
samples = 68.0%

value = [0.294, 0.529, 0.176]
class = 2

Type of graphite - anode_EC4 <= 0.5
samples = 100.0%

value = [0.4, 0.36, 0.24]
class = 1

Figure 5: DT model to classify CNT samples

expanding access to superior nanomaterials. In addition to rule extraction, calculating feature importance
within the DT model is critical for further optimizing production processes (Fig. 6). Feature importance
ranks the parameters based on their influence on the final material quality, providing a clear hierarchy
of the most impactful factors. Feature importance measures the decrease in node impurity weighted by
the probability of reaching that node. A higher value indicates greater significance. This ranking allows
producers to focus on the parameters that matter most, leading to more efficient and effective production.
By analyzing the rules derived from the model and validating them with domain expertise, we can ensure
the guidelines are robust, allowing for the production of high-quality CNTs and graphene with consistent
results. The ability to identify the most critical thresholds at decision nodes provides valuable insight into
the parameter ranges that lead to high or low-quality materials, further refining the production process.

0.0 0.1 0.2 0.3 0.4 0.5

Experiment type_Reversing cell voltage

Electrolyte temperature

Cell voltage

Type of graphite_MSG34

Figure 6: Carbon nanomaterials: graphene and CNTs
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5. Conclusion

This research explores a machine learning approach to optimize graphene and multi-walled carbon
nanotube (MWCNT) production using electrolysis in molten salts. Electrolysis in molten salts is a simple,
ecological, and cost-effective method for producing carbon nanomaterials, and is economical but challeng-
ing to control without expensive equipment. Various parameters, such as electrolyte type, voltage, current
density, temperature, and graphite type, can be adjusted to enhance the process. Using datasets from
experimental graphene and CNT production, a machine learning model was developed to optimize the
process. By employing an explainable tree-based machine learning model, rules for optimizing graphene
and CNT production were derived. The model was trained with production parameters as inputs and
graphene and CNT samples quality as the target, with quality labels provided by experts. The decision tree
model, which achieves 80% accuracy, characterizes the obtained samples and describes the relationship be-
tween quality and input parameters. The model aligns well with theoretical expertise, providing practical
rules for improving graphene and CNT quality. By following these rules, one can produce higher-quality
carbon nanomaterials and expand the dataset for better model performance. This method is significantly
cheaper, producing high-quality graphene and CNTs at a cost up to ten times lower than other techniques.
It simplifies the production process, reducing the need for expert intervention.
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