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Abstract. An H-space, denoted as (R, τA), hasR as its point set and a basis consisting of usual open interval
neighborhoods at points of A while taking Sorgenfrey neighborhoods at points of R \ A. In this paper, we
mainly discuss some topological properties of H-spaces. In particular, we prove that, for any subset A ⊂ R,

(1) (R, τA) is zero-dimensional iff R \ A is dense in (R, τE), where τE is the natural topology on R;
(2) (R, τA) is locally compact iff (R, τA) is a kω-space;
(3) if (R, τA) is σ-compact, thenR\A is countable and nowhere dense; ifR\A is countable and scattered

in the real line, then (R, τA) is σ-compact;
(4)
∏
∞

i=1(R, τAi ) is perfectly subparacompact, where each Ai is a subset of R;
(5) there exists a subset A ⊂ R such that (R, τA) is not quasi-metrizable;
(6) (R, τA) is metrizable if and only if (R, τA) is a β-space.

1. Introduction

The usual topology on R, induced by the standard absolute value, is coarser than the topology of
the Sorgenfrey line which has been studied intensively. It is well known that Sorgenfrey line has a basis
consisting of all half-open intervals of the form [a, b), where a < b. The topology of an H-space, mentioned
in [14], is between the usual topology of the set of real numbers and the topology of the Sorgenfrey line
S, was described by Hattori in [10]. The H-space, denoted as (R, τA), has R as its point set and a basis
consisting of usual open interval neighborhoods at points of A while taking Sorgenfrey neighborhoods at
points of R \ A, that is, the topology τA is defined as follows:

(1) For each x ∈ A, {(x − ε, x + ε) : ε > 0} is the neighborhood base at x, and
(2) for each x ∈ R \ A, {[x, x + ε) : ε > 0} is the neighborhood base at x.

Chatyrko and Hattori were first who began to study the properties of such spaces, many interesting
results were obtained, see [5] and [6]. In particular, for any A ⊂ R, the H-space (R, τA) is a regular,
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hereditarily Lindelöf, hereditarily separable and Baire space. Moreover, for any closed subset A of R,
they proved that (R, τA) is homeomorphic to the Sorgenfrey line S if and only if A is countable. In [14],
Kulesza made an improvement and a summary on the basis of Chatyrko and Hattori’s work. He called
spaces of this kind H-spaces and demonstrated properties of H-spaces with respect to homeomorphisms,
functions, completeness and reversibility. In particular, Kulesza proved that (R, τA) is homeomorphic to S
if and only if A is scattered, and (R, τA) is complete if and only if R \ A is countable, which implies that
(R, τP) is complete, where P is the set of the irrational numbers. Then Bouziad and Sukhacheva in [1] gave
characterizations of some topological properties of (R, τA), such as total imperfectness, local compactness.
In this paper, we continue the work of Chatyrko and Hattori by suggesting additional information about
the spaces (R, τA). The remaining of this paper is organized as follows.

Section 2 is dedicated to outline some concepts and terminologies. In Section 3, we mainly discuss some
topological properties of H-spaces, such as zero-dimensionality, σ-compactness, kω-property, perfectness,
quasi-metrizability. In particular, we give the characterizations of A or R \A such that (R, τA) has topolog-
ical properties of zero-dimensionality, σ-compactness, and kω-property respectively. Moreover, we show
that

∏
∞

i=1(R, τAi ) is perfectly subparacompact, where each Ai is a subset of R. Further, we discuss some
generalized metric properties of (R, τA), and prove that there exists a subset A ⊂ R such that (R, τA) is not
quasi-metrizable. In Section 4, we pose some interesting questions about H-spaces.

2. Preliminaries

In this section, we introduce the necessary notations and terminologies. First of all, let N, Z and R
denote the sets of all positive integers, all integers and all real numbers, respectively. Throughout this
paper, all spaces are assumed to be regular and all results are in the standard set theory ZFC. For undefined
terminologies, the reader refer to [7] and [9].

Definition 2.1. ([7]) Let X be a topological space.
(1) X is called zero-dimensional if it has a base of open sets that are at the same time open and closed in it

(that is, indX = 0).
(2) X is called strongly zero-dimensional if, for each non-empty closed subset A and open subset U with

A ⊂ U, there exists a clopen subset V such that A ⊂ V ⊂ U (that is, IndX = 0).
(3) X is called a Baire space if every intersection of a countable collection of open dense sets in X is also

dense in X.
(4) X is called locally compact, if every point x of X has a compact neighbourhood, i.e., there exist an open

set U and a compact set K, such that x ∈ U ⊆ K.
(5) X is called a kω-space if there exists a family of countably many compact subsets {Kn : n ∈ N} of X

such that each subset F of X is closed in X provided that F ∩ Kn is closed in Kn for each n ∈N.
(6) X is σ-compact if it is the union of countably many compact subsets of X.
(7) X is Lindelöf if every open cover of X has a countable subcover.
Clearly, each kω-space is σ-compact and each σ-compact is Lindelöf.

Definition 2.2. ([7, 9]) (1) A space X is subparacompact if each open cover of X has a σ-locally finite closed
refinement.

(2) A space X is perfect if each closed subset of X is a Gδ in X.
(3) A space X is perfectly subparacompact if it is perfect and subparacompact.
(4) A space X is weakly θ-refinable if for each open cover U of X, there exists an open cover V =

⋃
∞

n=1 V (n)
of X which refines U and which has the property that if x ∈ X, then there exists an n ∈N such that x belongs
to exactly k members of V (n) for some k ∈N.

(5) A family U of open sets in X is called interior-preserving if for F ⊂ U and y ∈
⋂

F ,
⋂

F is an open
neighborhood of y.
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Definition 2.3. ([7]) A family P of subsets of a space X is a network for X if for each point x ∈ X and any
neighbhorhood U of x there is an P ∈P such that x ∈ P ⊂ U. The network weight of a space X is defined as
the smallest cardinal number of the form |P |, where P is a network for X, this cardinal number is denoted
by nw(X).

Definition 2.4. ([9]) Recall that (X, τ) is a β-space if there exists a function 1 : ω×X→ τ such that if x ∈ 1(n, xn)
for every n ∈ ω then the sequence {xn} has a cluster point in X.

Definition 2.5. ([6]) Let A be a subset of R of the real number. Define the topology τA on R as follows:

(1) For each x ∈ A, {(x − ϵ, x + ϵ) : ϵ > 0} is the neighborhood base at x,

(2) For each x ∈ R − A, {[x, x + ϵ) : ϵ > 0} is the neighborhood base at x.

Then (R, τA) is called an H-space. The point x is called an R-point, if x ∈ A, otherwise, x is called an
S-point.

Let τE and τS denote the usual (Euclidean) topology of R and the topology of the Sorgenfrey line S
respectively. It is clear that τA = τE if A = R and τA = τS if A = ∅. And it is also obvious that τE ⊂ τA ⊂ τS.

Some topological properties of (R, τE) and (R, τS) are shown in the Table 1 below.

Table 1: Some topological properties of (R, τE) and (R, τS)

Number Property (R, τE) (R, τS)
1 metrizable Yes No
2 Hereditarily Separable Yes Yes
3 Normality Yes Yes
4 Lindelöff Yes Yes
5 Baire Space Yes Yes
6 Zero-dimension No Yes
7 Compactness No No
8 Countably Compact No No
9 Local Compactness Yes No

10 Sequential Compactness No No
11 Paracompactness Yes Yes
12 σ-Compactness Yes No
13 Connectedness Yes No
14 Path Connectedness Yes No
15 Local Connectedness Yes No
16 Every compact subset is countable No Yes
17 First countability Yes Yes

By Table 1, it is easy to see that, for every subset A of real numbers, an H-space is always a hereditarily
separable, paracompact, Lindelöff, normal and first-countable space. And we also know that, an H-space is
always not a compact, countably compact or sequentially compact space for any subset A of R. According
to [6, Proposition 2.3], H-space (R, τA) is second-countable if and only if R − A is countable.

3. The main results

In this section, we mainly discuss some topological properties of H-spaces, such as zero-dimensionality,
σ-compactness, kω-property, perfectness, quasi-metrizability. First, we give an obvious lemma.

Lemma 3.1. Let D be a dense subset of (R, τA). Then D is dense in (R, τE) and (R, τS).
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Proof. Obviously, D is a dense subset of (R, τE) since τA is finer than τE. In order to prove D being dense in
(R, τS), take an arbitrary non-empty open subset U in τS, then there exists a non-empty open subset V ⊂ U
in τE, hence ∅ , V ∩D ⊂ U ∩D. Therefore, D is also dense in (R, τS).

By Lemma 3.1, we have the following corollary.

Corollary 3.2. For an arbitrary subset A of R, we have d(R, τA) = d(R, τE) = d(R, τS) = ω.

Since (R, τE) and (R, τS) are all Baire, we have the following corollary.

Corollary 3.3. ([6, Proposition 3.1]) For an arbitrary subset A of R, the H-space (R, τA) is a Baire space.

Proposition 3.4. For an arbitrary subset A of R, the H-space (R, τA) is homeomorphic to (R, τE) if and only if
A = R.

Proof. Assume that (R, τA) is homeomorphic to (R, τE) and A , R. HenceR \A , ∅. Take an arbitrary point
a ∈ R \ A. Then (−∞, a) is an open and closed subset in (R, τA). Hence (R, τA) is not connected. However,
(R, τE) is connected. Hence A = R.

Now, we can prove one of the main results of this paper, which gives a characterization of subset R \ A
such that (R, τA) is zero-dimensional.

The following lemma is evident.

Lemma 3.5. Let A ⊂ R and x, y ∈ R such that x < y.

(1) If (x, y) ⊂ A then ind(R, τA) = 1.

(2) If {x, y} ⊂ R \ A then [x, y) is a clopen subset of (R, τA).

Theorem 3.6. For an arbitrary subset A of R, the following are equivalent:

(1) (R, τA) is zero-dimensional;

(2) (R, τA) is strongly zero-dimensional;

(3) R \ A is dense in (R, τE).

Proof. (2)⇔ (1) by [7, Theorem 7.1.11]. (1)⇔ (3) by Lemma 3.5.

Clearly, if A is a subset of R such that R \ A is dense in (R, τE), then arbitrary product of (R, τA) is
zero-dimensional.

Remark 3.7. Let A ⊂ R. (1) If (R, τA) is homeomorphic to P, then the product
∏

1 = (R, τA) × (R, τA) is
also homeomorphic to P. In particular, Ind(

∏
1) = 0. (2) If (R, τA) is homeomorphic to S, then the product∏

2 = (R, τA) × (R, τA) is also homeomorphic to S × S, which is not normal. In particular, Ind(
∏

2) = ∞.

However, the following question is still open for us.

Question 3.8. Let A be a subset of R such that R \ A is dense in (R, τE), and let κ be a cardinal. Is the Tychonoff
product (R, τA)κ strongly zero-dimensional?

Moreover, the following question is in a more general form.

Question 3.9. Let I be a non-empty index set. For each α ∈ I, let Aα be a subset of R such that R \ Aα is dense in
(R, τE). Is the Tychonoff product

∏
α∈I(R, τAα ) strongly zero-dimensional?
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Next we prove the second main result of this paper, which shows that the local compactness is equivalent
to the kω-property in (R, τA). Indeed, A. Bouziad and E. Sukhacheva in [1] have proved that, for an arbitrary
subset A of R, the H-space (R, τA) is locally compact if and only if R \ A is closed in R and discrete in S.

Theorem 3.10. For an arbitrary subset A of R, the following conditions are equivalent:

(1) (R, τA) is locally compact;

(2) (R, τA) is a kω-space;

(3) R \ A is discrete and closed in (R, τA).

Proof. From [1], we have (1)⇔ (3). The implications (1)⇒ (2) and (2)⇒ (1) are followed by [8, Theorem
10] and [8, Theorem 20] respectively.

From Theorem 3.10, it is natural to pose the following question.

Question 3.11. For what subsets A of R are (R, τA) σ-compact?

Next we give a partial answer to this question. First, we give some lemmas.

Proposition 3.12. For an arbitrary subspace B of (R, τS), we have nw(B) ≥ |B|. In particular, w(B) ≥ |B|.

Proof. Let P be an arbitrary network of the subspace B with |P | = nw(B). For each x ∈ B, let

Bx = {P ∈P : x ∈ P and P ⊂ [x, x +
1
n

) ∩ B for some n ∈N}.

Then
⋃

x∈B Bx is contained in P and is a network of the subspace B. However, for any x, y ∈ B with x , y,
we have Bx∩By = ∅. Indeed, assume Bx∩By , ∅, then take any P ∈ Bx∩By, hence x ∈ P, y ∈ P and there
exist n,m ∈ N such that P ⊂ [x, x + 1

n ) and P ⊂ [y, y + 1
m ). Thus, x = y, which is a contradiction. Therefore,

nw(B) ≥ |B|.

By Proposition 3.12 and the hereditary separability of (R, τS), we have the following corollary.

Corollary 3.13. ([6, Proposition 2.3]) For any subspace X of (R, τS), X is metrizable if and only if it is countable.

A topological space X is called submetrizable if X has a weaker metrizable topology.

Lemma 3.14. For an arbitrary subset A of R, (R, τA) is submetrizable.

Proof. Since (R, τA) and τE ⊂ τA, it follows that (R, τA) is submetrizable.

Lemma 3.15. If K is a compact subset of (R, τA), then K ∩ (R \ A) is countable.

Proof. By Lemma 3.14, K is metrizable. Put X = K ∩ (R \A). Then X is metrizable. Moreover, X is subspace
of (R, τS). By Corollary 3.13, X is countable. Therefore, K ∩ (R \ A) is countable.

Lemma 3.16. For an arbitrary subset A of R, if the closure of R \ A under the topology (R, τA) is countable then
(R, τA) is σ-compact.

Proof. Put U = R \ R \ A, where R \ A denote the closure of R \ A under the topology (R, τA). Then U is
open in (R, τA) and U ⊂ A, hence U is open in (R, τE), which implies that U is σ-compact. From U ⊂ A, it
follows that U is σ-compact in (R, τA). By the countability of R \ A, (R, τA) is σ-compact.

Now we have the following two results.
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Theorem 3.17. For an arbitrary subset A of R, if (R, τA) is σ-compact, then R \ A is countable and nowhere dense
in (R, τA).

Proof. By Lemma 3.15, it is easy to see that R \ A is countable. It suffices to prove that R \ A is nowhere
dense.

Assume that R \ A is not nowhere dense. Then there exists an open subset V being contained in the
closure of R \ A under the topology (R, τA). Hence there exist a, b ∈ R \ A such that [a, b) ⊂ V. Then [a, b) is
σ-compact since [a, b) is open and closed in (R, τA), hence there exists a sequence of compact subsets {Kn}

of (R, τA) such that [a, b) =
⋃

n∈N Kn. By Corollary 3.3, one can easily note that [a, b) is a Baire space, then
there exists n ∈ N such that Kn contains a non-empty open subset W in (R, τA). Since W ⊂ [a, b) ⊂ V, there
exist c, d ∈ R \ A such that [c, d) ⊂ [a, b). Since [c, d) is closed and [c, d) ⊂ Kn, it follows that [c, d) is compact,
which is a contradiction. Therefore, R \ A is nowhere dense.

Theorem 3.18. For an arbitrary subset A of R, if R \ A is countable and scattered in (R, τE), then (R, τA) is
σ-compact.

Proof. Assume that R \ A is countable and scattered in the real line. Then it follows from [12, Corollary 3]
that R \ A is homeomorphic to a subspace of [0, ω1). Hence one can easily check that the closure of R \ A
under the topology (R, τA) is countable. By Lemma 3.16, (R, τA) is σ-compact.

Remark 3.19. The condition for R \ A, in Theorem 3.18, to be scattered in (R, τE) is essential. By [4,
Proposition 2.11] there exists a space (R, τA) such that R \ A is countable, scattered in (R, τA) and (R, τA) is
not σ-compact.

The following example shows that the property ofσ-compact in (R, τA) does not imply local compactness.

Example 3.20. There exists a subset A such that (R, τA) is σ-compact but not locally compact.

Proof. Let A = R \ ({0} ∪ { 1
n : n ∈ N}). Then R \ A = {0} ∪ { 1

n : n ∈ N} is closed, countable scattered and
non-discrete. By Theorem 3.18, (R, τA) is σ-compact. However, it follows from Theorem 3.10 that (R, τA) is
not locally compact and not a kω-space.

Next we prove that
∏
∞

i=1(R, τAi ) is perfectly subparacompact for arbitrary sequence {Ai : i ∈N} of subsets
of R. Indeed, Lemma 2.3 of [11] asserts that, for every n ∈ N, the product (R, τS)n is perfect. Theorem 3.21
is a natural generalization of [11, Lemma 2.3], and the proof of Theorem 3.21 is a very minor modification
of the proof of [11, Lemma 2.3]. However, for the convenience of readers, we give the proof.

Theorem 3.21. For each i ∈N, let Ai be an arbitrary subset of R. Then
∏n

i=1(R, τAi ) is perfect for every n ∈N.

Proof. By induction. The theorem is clear for n = 1 since (R, τA1 ) is a Lindelöf space. Therefore let us
suppose the theorem for n and let us prove it for n + 1.

Let Z =
∏n+1

i=1 Zi with Zi = (R, τAi ) for all i ≤ n + 1. For every m ≤ n + 1, put Z(m) =
∏n+1

i=1 Zi(m), where
Zm(m) = (R, τE) and Zi(m) = (R, τAi ) if i , m.

Now it suffices to prove that an arbitrary open subset U of Z is an Fσ in Z. For every m ≤ n + 1, let
U(m) be the interior of U as a subset of Z(m), and let U⋆ =

⋃n+1
m=1 U(m). It follows from [11, Lemma 2.2] and

our assumption that each Z(m) is perfect, hence U(m) is an Fσ in Z(m) and thus also in Z. Therefore, U⋆

is also an Fσ in Z. Put U′ = U \ U⋆. Thus it only remains to prove that U′ is an Fσ in Z. Clearly, for each
x = (x1, . . . , xn+1) ∈ U′, it has xi ∈ R \ Ai for each i ≤ n + 1.

For each z ∈ Z, let {W j(z) : j ∈N} denote the base of neighborhoods of z in Z defined by

W j(z) = {y ∈ Z : yi ∈ [zi, zi +
1
j
) for each i ≤ n + 1}.

For every j ∈N, let
U′j = {z ∈ U′ : W j(z) ⊂ U}.
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One can easily check that U′ =
⋃
∞

j=1 U′j. Next we shall prove that each U′j is closed in Z. Taking an arbitrary
j ∈N and assuming z < U′j, it suffices to prove that z is not in the closure of U′j in Z.

For each F ⊂ {1, · · · ,n + 1}, let

U′j,F(z) = {y ∈ U′j : zi = yi iff i ∈ F}.

Clearly, U′j =
⋃
{U′j,F(z) : F ⊂ {1, · · · ,n + 1}}. Then it suffices to prove that for each F ⊂ {1, · · · ,n + 1} there

exists a neighborhood of z in Z disjoint from U′j,F(z). Indeed, suppose that W j(z) ∩U′j,F(z) , ∅. Then we can
choose a point x ∈W j(z) ∩U′j,F(z). Then the set

V =W j(z) ∩ {y ∈ Z : yi < xi if i < F}

is a neighborhood of z in Z, and it will suffice to prove that V ∩U′j,F(z) = ∅.
Suppose not, then there exists some y ∈ V∩U′j,F(z). Clearly, y ∈W j(z) and y , z, thus there is an m ≤ n+1

such that ym > zm. Then m < F. Put

W =W j(y) ∩ {u ∈ Z : ym < um}.

Clearly, W is open in Z(m) and W ⊂W j(y) ⊂ U. It follows from the definition of U(m) that W ⊂ U(m) ⊂ U⋆.
Moreover, it easily check that x ∈ W. Therefore, x ∈ U⋆, which is a contradiction. That completes the
proof.

For every n ∈ N, Proposition 3.1 of [15] asserts that the product (R, τS)n is perfectly subparacompact.
Our Theorem 3.22 is a simple generalization of [15, Proposition 3.1]. By mimicking and lightly modifying
the proof of [15, Proposition 3.1], one can obtain the proof of Theorem 3.22.

Theorem 3.22. For each i ∈ N, let Ai be an arbitrary subset of R. Then
∏n

i=1(R, τAi ) is perfectly subparacompact
for each n ∈N.

Proof. By Theorem 3.21,
∏n

i=1(R, τAi ) is perfect. It suffices to prove that
∏n

i=1(R, τAi ) is subparacompact.
By induction. The result is certainly true for n = 1. Let us assume that

∏n
i=1(R, τAi ) is subparacompact.

Next, we will prove that
∏n+1

i=1 (R, τAi ) is subparacompact. By [15, Proposition 2.9], it suffices to prove that∏n+1
i=1 (R, τAi ) is weakly θ-refinable. Put Z =

∏n+1
i=1 (R, τAi ). Let

W = {W(α1, . . . , αn+1) : αi ∈ Ai, i ≤ n + 1}

be a basic open cover of the space Z, where W(α1, . . . , αn+1) = U(1, α1) × · · · × U(n + 1, αn+1) such that
U(k, αk) = (a(k, αk), b(k, αk)) if a(k, αk) ∈ Ak and U(k, αk) = [a(k, αk), b(k, αk)) if a(k, αk) < Ak. By the same
notations in the proof of Theorem 3.21, let W(α1, . . . , αn+1,m) be the interior of the set W(α1, . . . , αn+1) in Z(m)
for each m ≤ n + 1, thus W(α1, . . . , αn+1,m) is open in Z(m), hence also open in Z. For each m ≤ n + 1, put

G (m) = {W(α1, . . . , αn+1,m) : αi ∈ Ai, i ≤ n + 1}.

By [15, Corollary 2.6] and our assumption, each Z(m) is perfect subparacompact. Then it follows from [15,
Porposition 2.9] that G (m) has a weakly θ-refinement H (m) which covers

⋃
H (m) and which consists of

open subsets of Z(m). Clearly, H (m) is also a collection of open subsets of Z. Let

Y = Z \
⋃
{

⋃
H (m) : 1 ≤ m ≤ n + 1}.

Then for each y ∈ Y it has yi ∈ R \ Ai for each i ≤ n + 1, hence there exists αi ∈ A such that yi = a(i, αi) for
each i ≤ n + 1. For each y ∈ Y, pick αi(y) ∈ Ai for each i ≤ n + 1 such that y ∈W(α1(y), . . . , αn+1(y)). Put

H (0) = {W(α1(y), . . . , αn+1(y)) : y ∈ Y}.

One can easily check that if x and y are distinct elements of Y, then y < W(α1(x), . . . , αn+1(x)). Therefore,
H (0) is a collection of open subsets of Z which covers Y in such a way that each point of Y belongs to
exactly one member of H (0). Hence H = {H (m) : m ∈ ω} is a weak θ-refinement of W . Therefore, Z is
weakly θ-refinable.
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By Theorem 3.22 and [15, Proposition 2.7], we have the following theorem.

Theorem 3.23. For each i ∈N, let Ai be an arbitrary subset of R. Then
∏
∞

i=1(R, τAi ) is perfectly subparacompact.

Corollary 3.24. ([15, Theorem 3.2]) The space (R, τS)ℵ0 is perfectly subparacompact.

Finally, we consider the quasi-metrizability of H-spaces. It is well-known that (R, τE) and (R, τS) are all
quasi-metrizable, it natural to pose the following question.

Question 3.25. For an arbitrary A ⊂ R, is (R, τA) quasi-metrizable?

We give a negative answer to Question 3.25 in Example 3.28. Indeed, from the definition of generalized
ordered space, we have the following proposition.

Proposition 3.26. For an arbitrary subset A ⊂ R, the H-space (R, τA) is a generalized ordered space.

By [13, Theorem 10], we can easily give a characterization of subset A of R such that (R, τA) is quasi-
metrizable, see Theorem 3.27.

Theorem 3.27. For any subset A ⊂ R, the H-space (R, τA) is quasi-metrizable if and only if R \ A is a Fσ-set in
(R, τS− ), where (R, τS− ) is the set of real numbers with the topology generated by the base {(a, b] : a, b ∈ R, a < b}.

Now, we can give a negative answer to Question 3.25.

Example 3.28. There exists a subset A of R such that (R, τA) is not quasi-metrizable.

Proof. Indeed, let A = Q be the set of all rational numbers. By Theorem 3.27, assume R \ A is a Fσ-set in
(R, τS− ), then Q is a Gδ-set in (R, τS− ). However, it follows from [3, Theorem 3.4] that (R, τS− ) does not have
a dense metrizable Gδ-space, which is a contradiction.

Obviously, if R \A is an Fσ-set in (R, τA), then R \A is an Fσ-set in (R, τS− ), hence we have the following
corollary.

Corollary 3.29. If R \ A is an Fσ-set in (R, τA), then (R, τA) is quasi-metrizable.

We now close this section with a result about generalized metric property of H-space.

Theorem 3.30. For an arbitrary A ⊂ R, then the following statements are equivalent:

(1) (R, τA) is metrizable;

(2) (R, τA) is a β-space;

(3) R \ A is countable.

Proof. Obviously, it suffices to prove (2) ⇒ (3). Assume that (R, τA) is a β-space. Since (R, τA) is a
paracompact submetrizable space, it follows from [9, Theorem 7.8 (ii)] that (R, τA) is semi-stratifiable. By
Proposition 3.26 and [9, Theorems 5.16 and 5.21], (R, τA) is a stratifiable space, hence (R, τA) is a σ-space
by [9, Theorem 5.9]. Then (R, τA) has a countable network since (R, τA) is separable, hence R \ A has a
countable network. Therefore, it follows from Proposition 3.12 that R \ A must be countable.
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4. Open questions

It is well known that (R, τE) × (R, τE) is Lindelöf, and (R, τS) × (R, τS) is not Lindelöf, hence it is natural
to pose the following question.

Question 4.1. For an arbitrary subset A of R, are the following statements equivalent?

(1) (R, τA) × (R, τA) is Lindelöf;

(2) (R, τA) × (R, τA) is normal;

(3) (R, τA) is metrizable.

The following example gives a negative answer to Question 4.1 under the assumption of CH.

Example 4.2. Under the assumption of CH, there exists a subspace A ⊂ R such that R \ A is uncountable
and (R, τA) × (R, τA) is Lindelöf.

Proof. By [2, Theorem 3.4], there exists an uncountable subset Y ⊂ S such that Y2 is Lindelöf. Put A = R \Y.
Then (R, τA) × (R, τA) is Lindelöf. Indeed, it is obvious that

(R, τA) × (R, τA) = (A × A) ∪ (A × Y) ∪ (Y × A) ∪ (Y × Y).

Since A is a separable metrizabale space (see also [16, Proposition 5]), the subspace A ×A, A × Y and Y ×A
are Lindelöf. Therefore, (R, τA) × (R, τA) is Lindelöf.

By Theorem 3.18, we have the following question.

Question 4.3. If (R, τA) is σ-compact, is A a scattered subspace?

The following question was posed by Boaz Tsaban.

Question 4.4. When is the space (R, τA) Menger (Hurewicz) for any A ⊂ R?
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