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Available at: http://www.pmf.ni.ac.rs/filomat

Mild solutions for conformable fractional order functional evolution
equations via Meir-Keeler type fixed point theorem

Fatma Berrighia, Imene Medjadja,b, Erdal Karapınarc,d,∗

aDepartment of Mathematics, University of Science and Technology-Mohamed Boudiaf (USTO MB) El Mnaouar,
BP 1505, Bir El Djir, 31000, Oran, Algeria

bLaboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1,
Ahmed Ben Bella, B.P. 1524, El Mnaouar, 31000, Oran, Algeria

cDepartment of Mathematics, Atılım University, 06830, Incek, Ankara, Turkey
dDepartment of Medical Research, China Medical University Hospital, China Medical University, 40402, Taichung, Taiwan

Abstract. In this study, we delve into the realm of mild solutions for conformable fractional order func-
tional evolution equations, focusing on cases where the fractional order is strictly greater than 1 and less
than 2 within a separable Banach space. We demonstrate the existence, uniqueness, attractivity, and con-
trollability of these solutions under local conditions. Our approach involves leveraging a contribution of
Meir-Keeler’s fixed point theorem alongside the principle of measures of noncompactness. To demon-
strate the practical ramifications of our theoretical finds, we provide a specific example that underscores
the relevance and applications of the established results.

1. Introduction

Fractional calculus extends classical differentiation and integration to non-integer orders, thereby uni-
fying discrete and continuous domains. It commonly employs definitions like the Riemann-Liouville and
Caputo formulations (see eg. [40, 44]). Khalil et al. [39] proposed the conformable derivative, which shares
important properties with the integer-order derivative. The conformable derivative has been applied to
many sciences such as physics (see eg. [16, 41, 46]), biology (see eg. [15, 49]), chemistry (see eg. [45]), and
medicine (see eg. [11, 13]).

Jaiswal et al. [34] studied a conformable fractional abstract initial value problem in Banach spaces, find-
ing moderate solutions using the contraction principle. Kataria et al. [37] embarked on an exploration of
mild solutions for impulsive integro-differential equations, harnessing the power of conformable differen-
tial operators and fixed-point theorems. Among all we may count some of the contributions to conformable
fractional evolution equations have also been made by Bouaouid et al. [26, 28] and Boukenkoul et al. [29].
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This work leverages measures of noncompactness (see eg. [12, 21, 35]) to address solution existence issues
and illuminate nonlinear differential equations (see eg. [1, 9, 10, 22, 23, 24, 25, 47]).

Additionally, Baghli et al. [20] utilized the nonlinear Leray-Schauder alternative [32] for controllability
within bounded intervals, while Agarwal et al. [6] addressed controllability over semi-infinite intervals
using the nonlinear alternative of Avramescu [19] for equations with infinite delay.

In their study [50], Zou et al. established four uniqueness criteria for the initial value problem of dif-
ferential equations incorporating the conformable fractional derivative. Their work extends Nagumo-type
uniqueness theory and Lipschitz conditional theory. To bolster these theoretical advancements, they pro-
vide four practical examples, showcasing the efficacy of their approach in proving fractional differential
equations.

Bouaouid et al. [27] applied Krasnoselskii’s fixed point theorem to obtain mild solutions for an ab-
stract class of conformable fractional differential equations. Building on this foundation, Atraoui et al. [17]
ventured further by utilizing the Darbo-Sadovskii fixed point theorem.

Moreover, Atraoui et al. [18] ventured into the intricate realm of controllability, exploring mild solutions
for a nonlocal fractional conformable Cauchy problem with keen insight by using second-order differential
equations. They used the Banach contraction principle and the cosine linear operator family to arrive at
their conclusions.

This work examines conformable fractional order evolutionary equations with local conditions:

Dc[Dcψ(s)] = Pψ(s) + Ψ(s, ψs), a.e. s ∈ I := [0,+∞); (1)

ψ(s) = η(s), s ∈ H := [−a, 0], where 0 < a < +∞, Dcψ(0) = ϑ ∈ F ; (2)

such that, Ψ : I × C([−a, 0],F ) → F denotes a specified function, η : [−a, 0] → F is continuous, and
P : D(P) ⊂ F → F serves as the infinitesimal generator of a trongly continuous cosine function composed
of bounded linear operators {C(s)}s∈R such that S(s) =

∫ s
0 C(x)dx, and F denotes real separable Banach

space generates by the norm | · |. Furthermore, Dc is a fractional conformable derivative, where 0 < c ≤ 1.
We define ψs for s ≥ 0 as a continuous function from H to F given by: ψs(x) = ψ(s + x), where ψs(·)

represents the state’s history from s − a to the present moment s.
Subsection 3.3 investigates the attractivity of mild solutions under these settings. Subsection 3.4 delves

into how mild solutions can be controlled across the interval I = [0,+∞), providing a thorough exploration
of their behavior, so we consider the following problem:

Dc[Dcψ(s)] = Pψ(s) + Ψ(s, ψs) + BU (s), a.e. s ∈ I := [0,+∞); (3)

ψ(s) = η(s), s ∈ H := [−a, 0], where 0 < a < +∞, Dcψ(0) = ϑ ∈ F ; (4)

whereP, Ψ, η and ϑ are as in problem (1)− (2), the control function U (·) finds its place within L2(I,F ),
the Banach space housing admissible control functions, while B represents a bounded linear operator map-
ping from F to F .

Ultimately, we provide an illustrative example demonstrating the abstract theory expounded in the
preceding sections.

2. Preliminary Concepts

In this section, we present symbols, explanations, and fundamental principles drawn from multival-
ued analysis. These elements will be incorporated consistently in the subsequent sections of this paper.

Let C(H,F ) be the Banach space of continuous functions with the norm

∥x∥ = sup{ |x(s)| : s ∈ H}.

BC(I,F ) denotes the Banach space comprising all functions from I to F that are both bounded and
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continuous, endowed with the norm

∥x∥BC = sup{ |x(s)| : s ∈ I}.

Consider the space BC∞ defined as {x : [−a,+∞) → F , x|[0,b] is bounded and continuous for b > 0},
with the norm

∥x∥BC∞ = sup{ |x(s)| : s ∈ [0, T]},

where T = sup{b > 0 : x|[0,b] is bounded and continuous}.

Definition 2.1. (Khalil et al. [39])
The conformable fractional derivative of order 0 < c ≤ 1 for a function x(·) is expressed as

Dcx(s) = lim
τ→0

x(s + τs1−c)− x(s)
τ

, s > 0;

Dcx(0) = lim
τ→0

Dcx(τ).

Additionally, the conformable fractional integral of order c of a function x is given by

Icx(s) =
∫ s

0
tc−1x(t)dt

provided that the limits and integrals are well defined.

Definition 2.2. A map f : J × E −→ E is said to be Carathéodory if it satisfies :

(i) y 7→ f (t, y) is continuous for almost all t ∈ J;

(ii) t 7→ f (t, y) is measurable for each y ∈ E.

Let us now review some key aspects of the Kuratowski noncompactness measure.

Definition 2.3. (see eg. [12, 21, 35]) Let DF be the bounded subsets of F . The map H : DF → [0,+∞) is called
Kuratowski’s non-compactness measure and is de ned as follows:

H(E) = inf{α > 0 : E ⊆
k⋃

j+1

Ej and diam(Ej) ≤ α}, here E ∈ DF .

For properties and more details about the Kuratowski measure of noncompactness (see eg. [12, 21, 35]).

In this paper, we shall solve our problem by using the method of fixed point theory (see e.g. [7, 36, 8])
It belongs to us, inspired by [8], we define the following improved form of the Meir-Keeler condensing
operator.

Definition 2.4. Let E be a nonempty subset of the Banach space F . Define H as an arbitrary measure of noncom-
pactness on F . We introduce N : E → F as Meir-Keeler condensing operator if it meets the following criteria: N is
both continuous and bounded, and for every β > 0, there exists µ > 0 such that whenever β < H(R) < β + µ, it
follows that H(N(R)) ≤ β is true for any subset R which is bounded of E .

Lemma 2.5. (see [33]) Consider F as a Banach space, and let E ⊂ C(I,F ) that is both bounded and equicontinuous.
Consequently, the map H(E(s)) remains continuous over the interval I, and HI(E) equals the supremum value of
H(E(s)) for s in I.

Theorem 2.6. (Meir-Keeler’s theorem see [8]) Let E be a nonempty, bounded, closed, and convex subset of a Banach
space F . If N : E → E is a continuous Meir-Keeler condensing operator, then N guarantees at least one fixed point,
and the collection of all such fixed points within E forms a compact set.
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Definition 2.7. (see [43]) A function T : R+ → R+ is called an L-function if T(0) = 0, T(s) > 0 for s ∈ R∗
+ and

for every s ∈ R∗
+ there exists δ > 0 such that T(t) ≤ s for all t ∈ [s, s + δ].

Corollary 2.8. Let E be a nonempty, bounded, closed, and convex subset of a Banach space F . If N : E → E is a
continuous operator such that

H(N(R)) ≤ T(H(R)).

For every subset R of E , where H is an arbitrary measure of noncompactness and T is an L−function, it follows that
N has at least one fixed point. Furthermore, the collection of all fixed points of N in E is compact.

Proof. To prove Corollary 2.7, it is sufficient to demonstrate that the operator N is a Meir-Keeler con-
densing operator, following steps similar to those used in Theorem 2.10 [8]. We will then conclude the
proof by applying Theorem 2.5.

Definition 2.9. (see [30]) We characterize solutions of equations (1)− (2) as locally attractive if there exists a closed
ball B(ψ∗, σ) in the space BC, centered at ψ∗ and with radius σ, such that for any solutions ψ and ψ̃ of Equations
(1)− (2) within this ball, the following convergence condition holds:

lim
s→+∞

(ψ(s)− ψ̃(s)) = 0.

3. Main Results

3.1. Existence results

In this section, we outline our main result concerning the existence of solutions for problem (1)− (2).
Before delving into the details and proof of this result, we first introduce the concept of a mild solution.

Definition 3.1. We define the mild solution ψ ∈ C([−a,+∞),F ) of the problem (1)− (2) as follows

ψ(s) =


η(s), if s ∈ H;

C

(
sc

c

)
η(0) +S

(
sc

c

)
ϑ +

∫ s
0 xc−1S

(
sc−xc

c

)
Ψ(x, ψx) dx, if s ∈ I;

We must introduce the following hypotheses, which will be utilized later:

(i) The function Ψ : I × C(H,F ) → F is carathéodory and there exists a continuous function O : I → I
that satisfies:

|Ψ(s, u)| ≤ O(s)∥u∥,

H(Ψ(s,D)) ≤ O(s)H(D),

and O∗ := sups∈I
∫ s

0 xc−1O(x)dx < ∞, for all s ∈ I, u ∈ C(H,F ), bounded set D ⊂ C(H,F ) and 0 <
c ≤ 1 ;

(ii) The cosine operator C(s)s∈R is uniformly continuous and there exist constants MC
c , MS

c both greater
than zero, such that

sup
s∈I

∥C
( sc

c

)
∥ ≤ MC

c and sup
s∈I

∥S
( sc

c

)
∥ ≤ MS

c .

Theorem 3.2. Under the assumptions (i) − (ii) and if MS
c O∗ < 1, then the system (1) − (2) is guaranteed to

have a mild solution within the space BC([−a,+∞),F ).
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Proof. We reformulate the problem (1) − (2) as fixed-point issue. Let us define the operator N :
BC([−a,+∞),F ) → BC([−a,+∞),F ) as follows:

N(ψ)(s) =


η(s), if s ∈ H;

C

(
sc

c

)
η(0) +S

(
sc

c

)
ϑ +

∫ s
0 xc−1S

(
sc−xc

c

)
Ψ(x, ψx) dx, if s ∈ [0,+∞).

The operator N maps BC([−a,+∞),F ) into BC([−a,+∞),F ). Specifically, for ψ ∈ BC([−a,+∞),F ) and
for any s ∈ I we have:

|N(ψ)(s)| ≤ ∥C
( sc

c

)
∥|η(0)|+ ∥S

( sc

c

)
∥|ϑ|+

∫ s

0
xc−1∥S

( sc − xc

c

)
∥ |Ψ(x, ψx)|dx

≤ MC
c ∥η∥+MS

c ∥ϑ∥+MS
c

∫ s

0
xc−1O(x)∥ψx∥dx

≤ MC
c ∥η∥+MS

c ∥ϑ∥+MS
c O∗∥ψ∥BC.

So, N ∈ BC([−a,+∞),F ). Furthermore, suppose l ≥ MC
c ∥η∥+MS

c ∥ϑ∥
1−MS

c O∗ , and let Bl denote the closed ball in

BC([−a,+∞),F ) centered at the origin with radius l. consider ψ ∈ Bl and s ∈ I, we get

|N(ψ)(s)| ≤ MC
c ∥η∥+MS

c ∥ϑ∥+MS
c O∗l.

Thus, we get that
∥N(ψ)∥BC ≤ l.

We embark on the validation process to ensure that N : Bl → Bl satisfies the criteria outlined in Meir
Keeler’s fixed-point Theorem 2.6.
Firstly, we ascertain the continuity of N within Bl . Let {ψn} be a sequence such that ψn → ψ in Bl . We
observe that:

|N(ψn)(s)−N(ψ)(s)| ≤ MS
c

∫ s

0
xc−1|Ψ(x, (ψx)n)− Ψ(x, ψx)|dx.

According to (i), we have Ψ(x, (ψx)n) → Ψ(x, ψx) as n → +∞ for almost every s ∈ I. Application of the
Theorem of convergence dominated by Lebesgue yields:

∥N(ψn)−N(ψ)∥BC → 0, as n → ∞.

Consequently, N exhibits continuity.

So, by the previous steps we can thus infer that N(Bl) ⊂ Bl .

Next, we confirm the equicontinuity of N(Bl) over every compact interval J of [0,+∞). Let x1, x2 ∈ J
with x2 > x1, we have

|N(ψ)(x1)−N(ψ)(x2)| ≤ ∥C
( xc

2
c

)
− C

( xc
1

c

)
∥B(F ) ∥η∥

+ ∥S
( xc

2
c

)
−S

( xc
1

c

)
∥B(F ) ∥ϑ∥

+
∫ x1

0
xc−1∥S

( xc
2 − xc

c

)
−S

( xc
1 − xc

c

)
∥B(F ) |Ψ(x, ψx)|dx

+
∫ x2

x1

xc−1∥S
( xc

2 − xc

c

)
∥B(F ) |Ψ(x, ψx)|dx

≤ ∥C
( xc

2
c

)
− C

( xc
1

c

)
∥B(F ) ∥η∥
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+ ∥S
( xc

2
c

)
−S

( xc
1

c

)
∥B(F ) ∥ϑ∥

+
∫ x1

0
xc−1∥S

( xc
2 − xc

c

)
−S

( xc
1 − xc

c

)
∥B(F ) |Ψ(x, ψx)|dx

+MS
c

∫ x2

x1

xc−1|Ψ(x, ψx)|dx.

As x1 → x2, the uniformly continuity property of the operators C(s) and S(s) indicate that the right part
of the previous enequality converges to zero. This confirms the equicontinuity of N.

Additionally, we establish the equiconvergence of N(Bl). For s ∈ I and ψ ∈ Bl , we find

|N(ψ)(s)| ≤ MC
c ∥η∥+MS

c ∥ϑ∥+MS
c l

∫ s

0
xc−1O(x)dx.

Consequently,
|N(ψ)(s)| → l′, as s → +∞,

where l′ ≤ MC
c ∥η∥+MS

c ∥ϑ∥+MS
c l O∗. Here O∗ := sups∈I

∫ s
0 xc−1O(x)dx. Therefore,

|N(ψ)(s)−N(ψ)(+∞)| → 0, s → +∞.

Lastly, we prove that the condition of Meir-Keeler’s theorem is satisfied. For any given β > 0, we
demonstrate the existence of a µ > 0 such that:

β < HI(∆) < β + µ ⇒ HI(N(∆)) ≤ β, for any ∆ ⊂ Bl ,

where HI(∆) = sups∈I H(∆(s)).
By using the characteristics of the measure of noncompactness (see eg. [12, 21, 35]) and the associated
Lemma 2.5 [33], we get

H(N(∆)(s)) ≤ MS
c

∫ s

0
xc−1O(x)H(∆(x))dx

≤ MS
c

∫ s

0
xc−1O(x)dxHI(∆)

≤ MS
c O∗HI(∆).

Since N(∆) is bounded and equicontinuous for all ∆ ⊂ Bl then:

HI(N(∆)) = sup
s∈I
H(N(∆)(s)).

Therefore, HI(N(∆)) ≤ MS
c O∗HI(∆) ≤ β ⇒ HI(∆) ≤ β

MS
c O∗ . Then, for given β > 0 and taking µ =(

1−MS
c O∗

MS
c O∗

)
β − ϵ such that ϵ > 0, we obtain:

β < HI(∆) < β + µ ⇒ HI(N(∆)) ≤ β, for any ∆ ⊂ Bl .

We conclude that N is a Meir-Keeler operator with condensing properties.
Through these steps, we ensure that the conditions required for Meir-Keeler’s fixed-point Theorem 2.6 are
satisfied by N : Bl → Bl . Therefore, we may conclude that N has a fixed point ψ that provides a mild
solution to the problem (1)− (2).
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3.2. Uniqueness results
We now introduce our primary result on the existence and uniqueness of solutions for problem (1)−

(2). Before demonstrating this result, we first present the following condition.

(iii) The given function Ψ : I × C(H,F ) → F is carathéodory function and there exist a continuous
function O : I → I that satisfies

|Ψ(s, u)− Ψ(s, v)| ≤ O(s)∥u − v∥,

Ψ∗ = sup
s∈I

∫ s

0
xc−1Ψ(x, 0)dx < ∞,

H(Ψ(s,D)) ≤ O(s)H(D),

and O∗ := sups∈I
∫ s

0 xc−1O(x)dx < ∞, for all s ∈ I, u, v ∈ C(H,F ), bounded
set D ⊂ C([−a,+∞),F ) and 0 < c ≤ 1.

Theorem 3.3. Under the conditions (ii) and (iii) being satisfied, if the product MS
c O∗ < 1, then the system defined

by equations (1)− (2) possesses a unique mild solution over the space BC([−a,+∞),F ).

Proof: We observe that following analogous steps to those in the proof of Theorem 3.2, we establish the

existence of a mild solution with the modified radius estimate l ≥ MC
c ∥η∥+MS

c ∥ϑ∥+MS
c Ψ∗

1−MS
c O∗ .

Next, we establish uniqueness: Assume ψ1 and ψ2 are two mild solutions to problem (1)− (2). Then,

|ψ1(s)− ψ2(s)| = |Nψ1(s)−Nψ2(s)|

≤ MS
c

∫ s

0
xc−1|Ψ(x, ψ1x)− Ψ(x, ψ2x)|dx

≤ MS
c

∫ s

0
xc−1O(x)|ψ1x − ψ2x|dx

≤ MS
c O∗∥ψ1 − ψ2∥BC.

This implies (1 −MS
c O∗)∥ψ1 − ψ2∥BC ≤ 0, and consequently ψ1 = ψ2. Thus, we have established the

uniqueness of the mild solution.

3.3. Attractiveness of Mild Solutions
In this section, we explore the local attractiveness of solutions to problem (1)-(2).

Theorem 3.4. Assuming conditions (ii) and (iii) are satisfied, and if MS
c O∗ < 1, let ψ∗ be a solution of (1)− (2),

and B(ψ∗, τ) be the closed ball in BC such that

τ ≥ MC
c ∥η∥+MS

c ∥ϑ∥+MS
c Ψ∗

1 −MS
c O∗ .

Then, the problem (1)-(2) exhibits attractiveness.

Proof.Considering ψ ∈ B(ψ∗, τ), utilizing (ii) and (iii), we obtain:

|N(ψ)(s)− ψ∗(s)| = |N(ψ)(s)−N(ψ∗)(s)|

≤ MS
c

∫ s

0
xc−1|Ψ(x, ψ∗

x)− Ψ(x, ψx)|dx

≤ MS
c

∫ s

0
xc−1O(x)∥ψ∗

x − ψx∥dx
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≤ MS
c O∗∥ψ∗ − ψ∥BC

≤ MS
c O∗τ

≤ τ.

Consequently, N(B(ψ∗, τ)) ⊂ B(ψ∗, τ) Thus, for any solutions ψ, ψ̃ ∈ B(ψ∗, τ) of (1)− (2) and s ∈ I, we
have

|ψ(s)− ψ̃(s)| ≤ MS
c O∗ ∥ψ̃ − ψ∥BC,

then
(1 −MS

c O∗)∥ψ̃ − ψ∥BC ≤ 0.

Hence
∥ψ̃ − ψ∥BC = 0.

As a result, the problem solutions (1)− (2) are locally attractive.

3.4. Controllability results
In this section, we present a controllability result for the system (3)-(4). Prior to that, we introduce a

specific type of solutions for problem (3)-(4).

Definition 3.5. We define the mild solution ψ ∈ C([−a,+∞),F ) of the problem (3)− (4) as follows

ψ(s) =


η(s), if s ∈ H;

C

(
sc

c

)
η(0) +S

(
sc

c

)
ϑ +

∫ s
0 xc−1S

(
sc−xc

c

)
BU (x)dx

+
∫ s

0 xc−1S
(

sc−xc

c

)
Ψ(x, ψx) dx, if s ∈ I.

Definition 3.6. The system (3) − (4) is considered controllable if, for every initial function η ∈ C(H,F ) and
ψ̂ ∈ F , there exists some n ∈ N and some control U ∈ L2([0, n],F ) such that the mild solution ψ(·) of this problem
satisfies the terminal condition ψ(n) = ψ̂.

We will consider the assumptions (i) − (ii) from Section 3, and we introduce the following additional
assumptions:

(iv) For all n integer, the linear operator V : L2([0, n],F ) → F defined by

VU =
∫ n

0
xc−1S

(nc − xc

c

)
BU (x)dx,

possesses a pseudo-invertible operator Ṽ−1, which maps functions from L2([0,
n],F ) to the space L2([0, n],F ) excluding the kernel ofV, and is bounded. Additionally, B is bounded,
satisfying:

∥B∥ ≤ Ñ and ∥Ṽ−1∥ ≤ Ñ1.

(v) There exists a continuous function function KV : [0, n] → R+ such that: for any bounded subset
D ⊂ F , we have : H(Ṽ−1(D)(s)) ≤ KV(s)H(D), s ∈ I and K′ := sups∈I

∫ s
0 xc−1KV(x)dx < ∞ for all

0 < c ≤ 1 .

Theorem 3.7. Assuming that (i)− (ii) and (iv)− (v) hold. If

max{MS
c [O∗ + Ñ Ñ1

nc

c
(1 +MS

c O∗)], MS
c O∗(1 +MS

c Ñ K′)} < 1,

then the problem (3)− (4) is controllable on [−a,+∞).



F. Berrighi et al. / Filomat 39:6 (2025), 1989–2002 1997

Proof. We reformulate the problem (3)− (4) into a fixed-point issue. Define the operator N : BC∞ →
BC∞ as follows:

N(ψ)(s) =


η(s), if s ∈ H;

C

(
sc

c

)
η(0) +S

(
sc

c

)
ϑ +

∫ s
0 xc−1S

(
sc−xc

c

)
BU (x)dx

+
∫ s

0 xc−1S
(

sc−xc

c

)
Ψ(x, ψx) dx, if s ∈ [0,+∞).

Utilizing assumption (iv), we can define the control for any arbitrary function ψ(·):

Uψ(s) = Ṽ−1
[

ψ̂ − C
(nc

c

)
η(0)−S

(nc

c

)
ϑ −

∫ n

0
xc−1S

(nc − xc

c

)
Ψ(x, ψx) dx

]
(s).

Such that, we have

|Uψ(s)| ≤ ∥Ṽ−1∥
[
|ψ̂|+MC

c |η(0)|+MS
c |ϑ|+MS

c

∫ n

0
xc−1O(x) |ψx|dx

]
≤ Ñ1

[
|ψ̂|+MC

c ∥η∥+MS
c ∥ϑ∥+MS

c O∗ ∥ψ∥BC∞

]
The operator N maps BC∞ into BC∞. Specifically, the mapping N(ψ) is continuous on [−a, n] for any
ψ ∈ BC∞ we have:

|N(ψ)(s)| ≤ ∥C
( sc

c

)
∥|η(0)|+ ∥S

( sc

c

)
∥|ϑ(0)|+

∫ s

0
xc−1∥S

( sc − xc

c

)
∥|Ψ(x, ψx)|dx

+
∫ s

0
xc−1∥S

( sc − xc

c

)
∥∥B∥ |Uψ(x)|dx

≤ MC
c ∥η∥+MS

c ∥ϑ∥+MS
c

∫ s

0
xc−1O(x)∥ψx∥dx

+MS
c

∫ s

0
xc−1Ñ Ñ1

[
|ψ̂|+MC

c ∥η∥+MS
c ∥ϑ∥+MS

c O∗ ∥ψ∥BC∞

]
dx

≤ MC
c ∥η∥+MS

c ∥ϑ∥+MS
c O∗∥ψ∥BC∞ +MS

c Ñ Ñ1
nc

c

[
|ψ̂|+MC

c ∥η∥

+MS
c ∥ϑ∥+MS

c O∗ ∥ψ∥BC∞

]
≤ (MC

c ∥η∥+MS
c ∥ϑ∥)(1 +MS

c Ñ Ñ1
nc

c
) +MS

c ∥ψ∥BC∞

[
O∗ + Ñ Ñ1

nc

c
(1 +MS

c O∗)
]
.

So, N ∈ BC∞.

Furthermore, suppose l ≥ (MC
c ∥η∥+MS

c ∥ϑ∥)(1+MS
c Ñ Ñ1

nc
c )

1−MS
c

[
O∗+Ñ Ñ1

nc
c (1+MS

c O∗)

] , and let Bl denote the closed ball in BC∞ centered

at the origin with radius l. Let ψ ∈ Bl and s ∈ I, we get

|N(ψ)(s)| ≤ (MC
c ∥η∥+MS

c ∥ϑ∥)(1 +MS
c Ñ Ñ1

nc

c
) +MS

c l
[
O∗ + Ñ Ñ1

nc

c
(1 +MS

c O∗)
]
.

Thus, we get that
∥N(ψ)∥BC∞ ≤ l.

We embark on the validation process to ensure that N : Bl → Bl satisfies the criteria outlined in Meir
Keeler’s fixed-point Theorem 2.6.
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Firstly, we ascertain the continuity of N within Bl . Let {ψk} be a sequence such that ψk → ψ in Bl . We
observe that:

|N(ψk)(s)−N(ψ)(s)| ≤ MS
c

∫ s

0
xc−1|Ψ(x, (ψx)k)− Ψ(x, ψx)|dx

+MS
c Ñ

∫ s

0
xc−1|Uψk (x)−Uψ(x)|dx

≤ MS
c

∫ s

0
xc−1|Ψ(x, (ψx)k)− Ψ(x, ψx)|dx

+MS
c Ñ Ñ1

∫ s

0
xc−1

[
|ψ̂k − ψ̂|

+MS
c

∫ n

0
τc−1|Ψ(τ, (ψτ)k)− Ψ(τ, ψτ)|dτ

]
dx

≤ MS
c

(
1 +MS

c Ñ Ñ1
nc

c

) ∫ n

0
xc−1|Ψ(x, (ψx)k)− Ψ(x, ψx)|dx

+MS
c Ñ Ñ1

nc

c
|ψ̂k − ψ̂|.

According to (i), we have Ψ(x, (ψx)k) → Ψ(x, ψx) as k → +∞ for almost every x ∈ [0, n]. Application of
the Lebesgue dominated convergence Theorem yields:

∥N(ψk)−N(ψ)∥BC∞ → 0, as k → ∞.

Consequently, N exhibits continuity.
So by the previous steps we can conclude that N(Bl) ⊂ Bl .
Next, we confirm the equicontinuity of N(Bl) over every compact interval J = [0, n]. let x1, x2 ∈ J with

x2 > x1 we have

|N(ψ)(x1)−N(ψ)(x2)| ≤ ∥C
( xc

2
c

)
− C

( xc
1

c

)
∥B(F ) ∥η∥+ ∥S

( xc
2

c

)
−S

( xc
1

c

)
∥B(F ) ∥ϑ∥

+
∫ x1

0
xc−1∥S

( xc
2 − xc

c

)
−S

( xc
1 − xc

c

)
∥B(F ) |Ψ(x, ψx)|dx

+
∫ x2

x1

xc−1∥S
( xc

2 − xc

c

)
∥B(F ) |Ψ(x, ψx)|dx

+
∫ x1

0
xc−1∥S

( xc
2 − xc

c

)
−S

( xc
1 − xc

c

)
∥B(F ) ∥B∥∥Uψ(x)∥dx

+
∫ x2

x1

xc−1∥S
( xc

2 − xc

c

)
∥B(F ) ∥B∥∥Uψ(x)∥dx

≤ ∥C
( xc

2
c

)
− C

( xc
1

c

)
∥B(F ) ∥η∥+ ∥S

( xc
2

c

)
−S

( xc
1

c

)
∥B(F ) ∥ϑ∥

+
∫ x1

0
xc−1∥S

( xc
2 − xc

c

)
−S

( xc
1 − xc

c

)
∥B(F ) |Ψ(x, ψx)|dx

+MS
c

∫ x2

x1

xc−1 |Ψ(x, ψx)|dx

+
∫ x1

0
xc−1∥S

( xc
2 − xc

c

)
−S

( xc
1 − xc

c

)
∥B(F ) ∥B∥∥Uψ(x)∥dx

+MS
c Ñ

∫ x2

x1

xc−1 ∥Uψ(x)∥dx.

As x1 → x2, the uniformly continuity property of C(s) and S(s) indicate that the right part of the



F. Berrighi et al. / Filomat 39:6 (2025), 1989–2002 1999

previous inequality converges to zero. This confirms the equicontinuity of N.

Additionally, we establish the equiconvergence of N(Bl). For s ∈ J and ψ ∈ Bl , we find

|N(ψ)(s)| ≤ (MC
c ∥η∥+MS

c ∥ϑ∥)(1 +MS
c Ñ Ñ1

nc

c
) +MS

c l
[ ∫ s

0
xc−1O(x)dx

+ Ñ Ñ1
nc

c
(1 +MS

c

∫ s

0
xc−1O(x)dx)

]
.

Consequently,
|N(ψ)(s)| → l′, as s → +∞.

where l′ ≤ (MC
c ∥η∥+MS

c ∥ϑ∥)(1 +MS
c Ñ Ñ1

nc

c ) +MS
c l
[
O∗ + Ñ Ñ1

nc

c (1 +MS
c O∗)

]
. Here

O∗ := sups∈I
∫ s

0 xc−1O(x)dx. Therefore,

|N(ψ)(s)−N(ψ)(+∞)| → 0, s → +∞.

Lastly, we validate the satisfaction of the Meir-Keeler’s type condition. For all β > 0 given. we prove
that there exists µ > 0 such that:

β < HI(∆) < β + µ ⇒ HI(N(∆)) ≤ β, for any ∆ ⊂ Bl ,

where
HI(∆) = sup

s∈I
H(∆(s)).

By using the properties of the measure of noncompactness (see eg. [12, 21, 35]) and Lemma 2.5 [33], we get

H(N(∆)(s)) ≤ MS
c

∫ s

0
xc−1O(x)H(∆(x))dx +MS

c Ñ
∫ s

0
xc−1H(U∆(x))dx.

We have,

H(U∆(x)) ≤ KV(x)MS
c

∫ n

0
τc−1H(Ψ(τ, ∆(τ)))dτ

≤ KV(x)MS
c

∫ n

0
τc−1O(τ)H(∆(τ))dτ

≤ KV(x)MS
c O∗HI(∆),

which implies

H(N(∆)(s)) ≤ MS
c

∫ s

0
xc−1O(x)dxHI(∆) +MS

c Ñ
∫ s

0
xc−1KV(x)MS

c O∗HI(∆)ds

≤ MS
c O∗HI(∆) +MS

c
2ÑO∗ K′ HI(∆)

≤ (MS
c O∗ +MS

c
2ÑO∗ K′ )HI(∆).

Since N(∆) is bounded and equicontinuous for all ∆ ⊂ Bl then:

HI(N(∆)) = sup
s∈I
H(N(∆)(s)).

Therefore, HI(N(∆)) ≤ (MS
c O∗ +MS

c
2ÑO∗ K′ )HI(∆) ≤ β ⇒ HI(∆) ≤ β

MS
c O∗+MS

c
2ÑO∗ K′

. Then, for
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given β > 0 and taking µ =
(

1−(MS
c O∗+MS

c
2ÑO∗ K′ )

MS
c O∗+MS

c
2ÑO∗ K′

)
β − ϵ such that ϵ > 0, we obtain:

β < HI(∆) < β + µ ⇒ HI(N(∆)) ≤ β, for any ∆ ⊂ Bl .

Hence N is a Meir-Keeler condensing operator.
Through these steps, we ensure that the conditions required for Meir-Keeler’s fixed-point Theorem 2.6 are
satisfied by N : Bl → Bl . Therefore, we may conclude that N has a fixed point ψ that provides a mild
solution to the problem (3)− (4).

4. Examples

Example 4.1. To showcase the practical application of our results, let E denote a nonempty bounded open set in R2.
We explore the following conformable fractional differential equation:

D
1
3
s [D

1
3
s ψ(s, x)] = D2

xψ(s, x) + Ψ(s, ψ(s − a, x)), x ∈ E , s ∈ [0,+∞); (5)

ψ(s, x) = 0, s ∈ [0,+∞), x ∈ ∂E ; (6)

ψ(s, x) = η(s, x); D
1
3
s [ψ(0, x)] = ϑ, s ∈ [−a, 0], x ∈ E . (7)

Here, a > 0 and we have
Ψ(s, ψ(s − a, x)) =

exp−s
7

sin ψ(s − a, x).

Taking F = L2(E) and defining P as follows:

D(P) = {ψ ∈ H(F ), ψ(x)|x∈∂E = 0},

Pψ = D2
xψ, ψ ∈ D(P).

It is well know the operator P generates a cosine family ((C(s))s∈R, (S(s))s∈R). Additionally, it follows that

∥C(s)∥ ≤ 1 and ∥S(s)∥ ≤ 1, f or all s ∈ [0,+∞).

Thus, to apply our theorems on existence and attractivity, we require O∗ < 1.
The function Ψ(s, ψ(s − a, x)) = exp−s

7 sin ψ(s − a, x) is Carathéodory and

|Ψ(s, ψ1(s − a, x))− Ψ(s, ψ2(s − a, x))| ≤ exp−s
7

|ψ1(s − a, x)− ψ2(s − a, x)|,

thus O(s) = exp−s
7 . Moreover, we have

O∗ = sup{
∫ s

0
x−

2
3

exp−x
7

dx, s ∈ [0,+∞)} =
Γ( 1

3 )

7
⋍ 0.3827 < 1, Ψ0 = 0.

Then, by [21, 31], the problem (1)-(3) is an abstract formulation of the problem (5)-(7), and conditions (i)− (iii)
are satisfied. Theorem 3.3 implies that the problem (5)-(7) has a unique mild solution on BC, which is attractive by
Theorem 3.4.

Example 4.2. To showcase the practical application of our results, let E denote a nonempty bounded open set in R2.
We explore the following conformable fractional differential equation:

D
1
3
s [D

1
3
s ψ(s, x)] = D2

xψ(s, x) + Ψ(s, ψ(s − a, x)) + g(x)U (s), x ∈ E , s ∈ [0,+∞); (8)
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ψ(s, x) = 0, s ∈ [0,+∞), x ∈ ∂E ; (9)

ψ(s, x) = η(s, x); D
1
3
s [ψ(0, x)] = ϑ, s ∈ [−a, 0], x ∈ E . (10)

Here, P, Ψ Y and η are as in problem (5)− (6), g : E → F is a continuous function and U : I → F is a given
control.
Then, by [21, 31], the problem (3)-(4) is an abstract formulation of the problem (8)-(10), and conditions (i)− (iii)
are satisfied. Theorem 3.7 implies that the problem (8)-(10) is controllable on [−a,+∞).
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