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Abstract. In this paper, we have introduced the Prabhakar fractional q-integral and q-differential operators.
We first study the semigroup property of the Prabhakar fractional q-integral operator, which allowed us
to introduce the corresponding q-differential operator. Formulas for compositions of q-integral and q-
differential operators are also presented. We show the boundedness of the Prabhakar fractional q-integral
operator in the class of q-integrable functions.

1. Introduction

Fractional calculus is the area of mathematical analysis that deals with the study and application of
integrals and derivatives of arbitrary order. In recent decades, fractional calculus has become of increasing
significance because of its applications in many fields of science and engineering. For example, it has many
applications in viscoelasticity, signal processing, electromagnetics, fluid mechanics, and optics. For more
information on this research we refer the readers to [25], [23], [22], [20], [16], [21], [2], [17], [37] and the
references therein. On application of the Prabhakar derivative in diffusion and diffusion-wave processes,
we refer the readers to [19], [34].

An interesting and distinctive feature of the Fractional Calculus is that it is possible to present different
definitions of fractional-order integrals and derivatives; furthermore, many instances of those definitions
are being applied and discussed to analyze specific processes [33]. As an example, we can take the
Riemann-Liouville and Caputo fractional-order integral-differential operators which have been used widely
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to describe mathematical models of many natural phenomena (see the references [36], [28]). Recently,
researchers have focused on generalizing fractional-order operators. On the one hand, it can be explained
by the fact that in mathematical modeling of some real-life processes we get such a type of generalization
of fractional operators. On the other hand, it is an inner need of the theory of the Fractional Calculus. We
wish to focus on the Prabhakar fractional q-differential and differential operators among these operators.

First, we would like to explain the classical Prabhakar fractional calculus in brief. The theory of
Prabhakar fractional calculus [14] has been studied more intensively in recent years, and as a result, certain
differential equations involving Prabhakar operators became an intensive target, which is interesting both
for their pure mathematical properties [31],[10], [12], and for their real-world applications in topics such as
viscoelasticity, anomalous dielectrics, and option pricing [8], [13], [35], [27].

We should note that Prabhakar fractional operators can be considered a broad category that includes
various named operators within fractional calculus, covering both singular and non-singular types[11].
Moreover, Prabhakar’s function is crucial in empirical laws for anomalous dielectrics such as Davidson–Cole
[9] and Havriliak–Negami [15] models.

The origin of the q-difference calculus can be traced back to the works [18] and [6]. Recently, W.
Alsalam [3] and R.P.Agarwal [1] proposed the fractional q difference calculus. In [29] the Caputo q-
differential operators and Riemann-Liuvill q-differential operators are considered and their properties are
studied. Nowadays new developments in the theory of fractional q-difference calculus have been addressed
extensively by several researchers (see [30], [32] and the references therein ).

These advancements in the field raise the question: Is it possible to introduce Prabhakar fractional
q-integral and differential operators, and do they possess the same properties as in the classical case? Our
approach shows that in some cases the answer is yes; however, there are nuances specific to fractional q
cases.

In the present work, our aim is to introduce and study some properties of Prabhakar fractional q-integral
and differential operators.

We note that the short note of this investigation was announced in [24].

2. Preliminaries

First, we recall some elements of the q-calculus for the sequel. For more information, we note the works
[7], [4], and the references therein. From now on, we assume that 0 < q < 1 and 0 ≤ a < b < ∞.

Let α ∈ R. A q-real number [α]q is defined by

[α]q =
1 − qα

1 − q
.

And also, the q-shifted factorial is defined by

(
a; q
)

n =

 1, n = 0;

(1 − a)
(
1 − aq

)
...
(
1 − aqn−1

)
, n ∈N.

The q-analogue of the factorial is

[n]q! = [1]q[2]q[3]q...[n]q =
(q; q)n

(1 − q)n ,n ∈N, [0]q! = 1. (1)

For q-binomial coefficients we have the following formula[
n
k

]
q

=
(1 − qn)(1 − qn−1)...(1 − q)n−k+1

(q; q)k
=

[n]q!
[n − k]q![k]q!

. (2)

Also, the q-analogue of the power (a − b)k
q is defined by

(a − b)0
q = 1, (a − b)k

q =

k−1∏
i=0

(
a − bqi

)
, k ∈N.
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There is the following relationship between them:

(a − b)0
q = 1; (a − b)k

q = ak(b/a; q)k, a , 0, k ∈N,

as well as

(a − b)αq = aα
(b/a; q)∞

(qαb/a; q)∞
,
(
a; q
)
α =

(
a; q
)
∞(

aqα; q
)
∞

, (a; q)∞ =
∞∏

i=0

(
1 − aqi

)
.

For x > 0 the q-analogue of the Gamma function is defined by

Γq (x) =
(
q; q
)
∞(

qx; q
)
∞

(
1 − q

)1−x. (3)

It has the following property

Γq(x + 1) = [x]qΓq(x). (4)

The (Jackson) q-derivative of a function f (x) is defined by(
Dq f
)

(x) =
f (x) − f

(
qx
)

x
(
1 − q

) , (x , 0)

and q-derivatives Dn
q f of higher-order is defined inductively as follows:

D0
q f = f , Dn

q f = Dq

(
Dn−1

q f
)

(n = 1, 2, 3, ...).

Moreover,

Dq[(x − b)αq ] = [α]q(x − b)α−1
q , (5)

Dq[(a − x)αq ] = −[α]q(a − qx)α−1
q . (6)

The q-integral (Jackson integral) is defined by

(
Iq,0+ f

)
(x) =

x∫
0

f (t) dqt = x
(
1 − q

) ∞∑
k=0

f
(
xqk
)

qk

and

(
Iq,a+ f

)
(x) =

x∫
a

f (t) dqt =

x∫
0

f (t) dqt −

a∫
0

f (t) dqt.

For the n-th order integral operator In
q,a we have

(I0
q,a+ f )(x) = f (x), (In

q,a+ f )(x) = Iq,a+

(
In−1
q,a+ f
)

(x) (n = 0, 1, 2, · · · ) .

And also between q-integral and q-derivative operators, we have the following relations:(
DqIq,a+ f

)
(x) = f (x) ,

(
Iq,a+Dq f

)
(x) = f (x) − f (a) .

For α, β > 0 and z ∈ R, a q-analogue of the Mittag–Leffler function is defined as follows ([4]):

eα,β
(
z; q
)
=

∞∑
n=0

zn

Γq
(
αn + β

) , (∣∣∣z(1 − q
)α∣∣∣ < 1

)
. (7)
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Definition 2.1. [26] Let α, β, γ, z ∈ R such that α, β > 0. Then the q-Prabhakar function eγα,β
(
z; q
)

is defined by

eγα,β
(
z; q
)
=

∞∑
n=0

(γ)n,qzn

Γq
(
αn + β

) , |z(1 − q)α| < 1, (8)

where

(γ)n,q :=
(
qγ; q
)

n(
q; q
)

n
. (9)

Lemma 2.2. [4] Let α and β be two complex numbers. Then

(qα+β; q)n =

n∑
k=0

[
n
k

]
q

qkβ(qα; q)k(qβ; q)n−k, (n = 0, 1, 2, · · · ) . (10)

Proposition 2.3. Let γ, σ ∈ C. Then the following equality is valid

n∑
k=0

(
γ
)

n−k,q qγk (σ)k,q =
(
γ + σ

)
n,q , (n = 0, 1, 2, · · · ) . (11)

Proof. Taking (9) into account, we rewrite (11) in the form

n∑
k=0

qkγ

(
qγ; q
)

n−k(
q; q
)

n−k

(
qσ; q
)

k(
q; q
)

k
=

(
qγ+σ; q

)
n(

q; q
)

n
.

To prove Proposition 2.3 it is sufficient to show the validity of the last equality. For this aim, we multiply
both sides of the last equality by (q; q)n and considering (1) and (2), we obtain

(
qγ+σ; q

)
n =

n∑
k=0

(
q; q
)

n(
q; q
)

n−k (q; q)k
qkγ(qσ; q

)
k
(
qγ; q
)

n−k =

n∑
k=0

(q;q)n
(1−q)n

(q;q)n−k
(1−q)n−k

(q;q)k

(1−q)k

qkγ(qσ; q
)

k
(
qγ; q
)

n−k

=

n∑
k=0

[n]q!
[n − k]q![k]q!

qkγ(qσ; q
)

k
(
qγ; q
)

n−k =

n∑
k=0

[
n
k

]
q

qkγ(qσ; q)k(qγ; q)n−k.

Using the result of Lemma 2.2 when α = σ and β = γ, we get the proof of Proposition 2.3.

Now, we introduce a generalized q-Prabhakar function, which will be used further.

Definition 2.4. Let α, β, γ, ω, δ, z, s ∈ R be such that α, β > 0 and s < z. Then the generalized q-Prabhakar function
eγα,β is defined by

eγα,β
[
ω(z − s)δq; q

]
:=

∞∑
n=0

(γ)n,qωn(z − s)δn
q

Γq
(
αn + β

) , (12)

where |ω(z − s)δq | < (1 − q)−α.

We note that (12) can be considered a generalization of some known functions. For example, if δ = ω =
1, s = 0 then from (12) we get Definition 2.1 of the q-Prabhakar function. And also when γ = 0 and δ = ω = 1
then from (12) we get formula (7) for the q-Mittag-Leffler function.

Now, we give basic concepts of the q-fractional calculus.
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Definition 2.5. [30] The Riemann-Liouville q-fractional integral Iαq,a+ of order α > 0 is defined by

(
Iαq,a+ f

)
(x) =

1
Γq (α)

x∫
a

(
x − qt

)α−1
q f (t) dqt. (13)

Definition 2.6. [30] The Riemann-Liouville q-fractional differential operator Dα
q,a+ f of order α > 0 is defined by(

Dα
q,a+ f
)

(x) =
(
D⌈α⌉q,a+I⌈α⌉−αq,a+ f

)
(x) , (14)

where ⌈α⌉ denotes the smallest integer greater than or equal to α.

Notice that for λ ∈ (−1,+∞), we have

Iαq,a+
(
(x − a)λq

)
=
Γq (λ + 1)
Γq (α + λ + 1)

(x − a)α+λq . (15)

For 1 ≤ p < ∞ the space Lp
q [a, b] is defined by [32]

Lp
q [a, b] =

 f : [a, b]→ C :


b∫

a

∣∣∣ f (x)
∣∣∣p dqx


1/p

< ∞

 .
Definition 2.7. [4] A function f : [a, b]→ R is called q-absolutely continuous if ∃φ ∈ L1

q[a, b] such that

f (x) = f (a) +

x∫
a

φ(t)dqt

for all x ∈ [a, b].

The set of all q-absolutely continuous functions defined in [a, b] is denoted by ACq[a, b]. Moreover,
ACn

q [a, b] (n ∈ N) is the space of real-valued functions f (x) which have q-derivatives up to order n − 1 on
[a, b] such that Dn−1

q f ∈ ACq[a, b], i.e.

ACn
q [a, b] =

{
f : [a, b]→ R; (Dn−1

q f )(x) ∈ ACq[a, b]
}
.

Lemma 2.8. [32] a) Let α > 0, β > 0 and 1 ≤ p < ∞. Then the q-fractional integral has the following
semi-group property(

Iαq,a+Iβq,a+ f
)

(x) =
(
Iα+βq,a+ f

)
(x)

for all x ∈ [a, b] and f ∈ Lp
q [a, b].

b) Let α > β > 0, 1 ≤ p < ∞ and f ∈ Lp
q [a, b]. Then the following equalities(

Dα
q,a+Iαq,a+

)
(x) = f (x) ,

(
Dβ

q,a+Iαq,a+ f
)

(x) =
(
Iα−βq,a+ f

)
(x)

hold for all x ∈ [a, b].

Lemma 2.9. [32] Let α > 0 and 1 ≤ p < ∞. Then the q-fractional integral operator Iαq,a+ is bounded in Lp
q[a, b]:∥∥∥Iαq,a+ f

∥∥∥
Lp

q[a,b]
≤ K
∥∥∥ f
∥∥∥

Lp
q[a,b]

, (16)

where K =
(b−qa)αq
Γq(α+1) .
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3. The definitions and the main properties of the Prabhakar fractional q- integral and q-differential
operators

In this section, using Definition 2.4 of the generalized q-Prabhakar function, we introduce Prabhakar
fractional q-integral and q-differential operators.

Definition 3.1. Let f ∈ L1
q [a, b] and α, β, γ, ω ∈ R be such that α, β > 0. Then the Prabhakar fractional q-integral

operator is defined by

(
PIα,β,γ,ωq,a+ f

)
(x) :=

x∫
a

(
x − qt

)β−1
q eγα,β

[
ω
(
x − qβt

)α
q

; q
]

f (t)dqt. (17)

From this and for the rest of the paper we denote ω′ = qγω.

Proposition 3.2. Let α, β, γ, µ, σ, ω ∈ R be such that α, β, µ > 0 and x, s ∈ R+, x > s. Then

PIα,β,γ,ωq,qs+

{
1
α,µ
σ,ω′ (x, s)

}
= 1

α,µ+β
σ+γ,ω(x, s), (18)

where

1
α,µ
σ,ω′ (x, s) :=

(
x − qs

)µ−1
q eσα,µ

[
ω′
(
x − qµs

)α
q ; q
]
. (19)

Proof. By using (17), we have

PIα,β,γ,ωq,qs+

{
1
α,µ
σ,ω′ (x, s)

}
=

x∫
qs

1
α,β
γ,ω(x, t)1α,µσ,ω′ (x, s)dqt.

Considering (12) and using Definition 2.5, we have

PIα,β,γ,ωq,qs+

{
1
α,µ
σ,ω′ (x, s)

}
=

∞∑
n=0

(
γ
)

n,qω
n
∞∑

k=0

qγkωk (σ)k,q

Γq
(
αk + µ

) Iαn+β
q,qs+
(
x − qs

)αk+µ−1
q .

Hence, applying (15) we obtain

PIα,β,γ,ωq,qs+

{
1
α,µ
σ,ω′ (x, s)

}
=

∞∑
n=0

(
γ
)

n,qω
n
∞∑

k=0

(σ)k,qqγkωk

(
x − qs

)αk+αn+β+µ−1
q

Γq
(
αn + αk + β + µ

) .
Using the Cauchy product formula [5] and then considering (11), and also the expansion (12) of the

generalized q-Prabhakar function, we derive

PIα,β,γ,ωq,qs+

{
1
α,µ
σ,ω′ (x, s)

}
=

∞∑
n=0

(
x − qs

)αn+β+µ−1
q ωn

Γq
(
αn + β + µ

) n∑
k=0

(
γ
)

n−k,qqγk(σ)k,q =

∞∑
n=0

(
γ + σ

)
n,qω

n

Γq
(
αn + β + µ

) (x − qs
)αn+β+µ−1

q

=
(
x − qs

)β+µ−1
q eγ+σα,β+µ

[
ω
(
x − qβ+µs

)α
q

; q
]
= 1

α,µ+β
σ+γ,ω(x, s),

which completes the proof of the statement.

Lemma 3.3. Let f ∈ Lp
q[a, b] and α, β, γ, ω, µ , σ ∈ R be such that α, β, µ > 0. Then the following relation(

PIα,β,γ,ωq,a+
PIα,µ,σ,ω

′

q,a+ f
)

(x) =
(

PIα,β+µ,γ+σ,ωq,a+ f
)

(x) (20)

holds for all x ∈ [a, b].
In particular(

PIα,β,γ,ωq,a+
PIα,µ,−γ,ω

′

q,a+ f
)

(x) =
(
Iβ+µq,a+ f

)
(x). (21)
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Proof. By Definition 3.1 of the Prabhakar fractional q-integral operator and taking the notation (19) into
account, we have

(
PIα,β,γ,ωq,a+

PIα,µ,σ,ω
′

q,a+ f
)

(x) =

x∫
a

1
α,β
γ,ω(x, t)

t∫
a

1
α,µ
σ,ω′ (x, s) f (s)dqsdqt.

Hence, by changing the order of integration and using Definition 3.1, we get

(
PIα,β,γ,ωq,a+

PIα,µ,σ,ω
′

q,a+ f
)

(x) =

x∫
a

f (s)dqs

x∫
qs

1
α,β
γ,ω(x, t)1α,µσ,ω′ (x, s)dqt =

x∫
a

PIα,β,γ,ωq,qs+ [1α,µσ,ω′ (x, s)] f (s)dqs.

Applying Proposition 3.2 and considering Definition 3.1, we obtain

(
PIα,β,γ,ωq,a+

PIα,µ,σ,ω
′

q,a+ f
)

(x) =

x∫
a

1
α,β+µ
γ+σ,ω(x, s) f (s)dqs =

(
PIα,β+µ,γ+σ,ωq,a+ f

)
(x).

By putting σ = −γ and taking e0
α,β(z) = 1/Γq(β) into account from the last equality one can easily obtain

(21).
The proof of Lemma 3.3 is complete.

Proposition 3.4. Let α, β, γ, ω ∈ R be such that α, β > 0 |γ| < 1, |ω(b − qβ+1a)αq | < (1 − q)α and 1 ≤ p < ∞. Then

the Prabhakar fractional q-integral operator PIα,β,γ,ωq,a+ is bounded in Lp
q[a, b]:∥∥∥∥PIα,β,γ,ωq,a+ f

∥∥∥∥
Lp

q[a,b]
≤M

∥∥∥ f
∥∥∥

Lp
q[a,b]

, (22)

where

M = (b − qa)βqeα,β+1[(b − qβ+1a)αq ; q]. (23)

Proof. Taking Definition 3.1 and notation (19) into account, we have

∥∥∥∥PIα,β,γ,ωq,a+ f
∥∥∥∥p

Lp
q[a,b]
=

b∫
a

∣∣∣∣∣∣∣∣
x∫

a

1
α,β
γ,ω(x, t) f (t)dqt

∣∣∣∣∣∣∣∣
p

dqx ≤

b∫
a

J2(x)dqx, (24)

where

J2(x) :=


x∫

a

1
α,β
γ,|ω|

(x, t)| f (t)|dqt


p

.

For p > 1, we will define p′ from the equality 1
p +

1
p′ = 1. Applying the Hölder-Rogers inequality to J2(x),

we get

J2(x) ≤


x∫

a

1
α,β
γ,|ω|

(x, t)dqt


p/p′ x∫

a

1
α,β
γ,|ω|

(x, t)| f (t)|pdqt = Jp/p′

21 (x) × J22(x),

where

J21(x) :=

x∫
a

1
α,β
γ,|ω|

(x, t)dqt, J22(x) :=

x∫
a

1
α,β
γ,|ω|

(x, t)| f (t)|pdqt.
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Let us now consider J21(x). We show that the following inequality is true:

J21(x) ≤M, (25)

where M is a constant defined by (23). Indeed, considering (19) and (12) and using formulas (4), (6), we
have

J21(x) =

∞∑
n=0

(γ)n,q|ω|n

Γq(αn + β + 1)
(x − a)αn+β

q .

Since |γ| < 1, we have (γ)n,q < 1. Taking this into account and using

(b − a)δq < (b − aq)δq (δ > 0),

we obtain

J21(x) ≤

∞∑
n=0

|ω|n

Γq(αn + β + 1)
(b − a)αn+β

q ≤

∞∑
n=0

|ω|n

Γq(αn + β + 1)
(b − aq)αn+β

q

= (b − aq)β
∞∑

n=0

|ω|n(b − aβ+1q)αn
q

Γq(αn + β + 1)
= (b − qa)βqeα,β+1[ω(b − qβ+1a)αq ; q] =M.

We note that the conditions α, β > 0 and |ω(b − qβ+1a)αq | < (1 − q)α justify the convergence of series of the
function eα,β+1[ω(b − qβ+1a)αq ; q].

Then, by virtue of (25) , we obtain the following inequality

J2(x) ≤M
p
p′ J22(x).

Taking the last inequality into account from (24), we get

∥∥∥∥PIα,β,γ,ωq,a+ f
∥∥∥∥p

Lp
q[a,b]

≤ M
p
p′

b∫
a

J22(x)dqx. (26)

Substituting the expression of J22(x) into (26), changing the order of integration, and using (19),(12) and
(5), we get

Jq( f ) ≤ M
p
p′

b∫
a

| f (t)|pdqt

b∫
qt

1
α,β
γ,|ω|

(x, t)dqx =M
p
p′

b∫
a

| f (t)|pdqt
∞∑

n=0

(γ)n,q|ω|n

Γq(αn + β)

b∫
qt

(x − t)αn+β−1
q dqx

= M
p
p′

∞∑
n=0

(γ)n,q|ω|n

Γq(αn + β + 1)

b∫
a

| f (t)|p(b − qt)αn+β
q dqt ≤M

p
p′

∞∑
n=0

(γ)n,q|ω|n(b − qa)αn+β
q

Γq(αn + β + 1)

b∫
a

| f (t)|pdqt

= M
p
p′ +1

b∫
a

| f (t)|pdqt =Mp
∥∥∥ f
∥∥∥p

Lp
q[a,b]

.

Proposition 3.4 is proved.

Now, we present the definition of the Prabhakar fractional q-differential operator.

Definition 3.5. Let f ∈ L1
q[a, b] , PIα,n−β,−γ,ωq,a+ f ∈ ACn

q [a, b] and α, β, γ, δ ∈ R with α > 0 and β > 0. Then the

Prabhakar fractional q-differential operator PDα,β,γ,ω
a,a+ is defined by(

PDα,β,γ,ω
q,a+ f

)
(x) :=

(
Dn

q,a+
PIα,n−β,−γ,ωq,a+ f

)
(x) , (27)

where n = ⌈β⌉.
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Theorem 3.6. Let α, β, γ, ω ∈ R with α > 0 and β > 0. Then for any function f ∈ L1
q[a, b] the following equality is

valid: (
PDα,β,γ,ω

q,a+
PIα,β,γ,ω

′

q,a+ f
)

(x) = f (x). (28)

Proof. Using Definition 3.5 and formula (20) and also Lemma 2.8, we have

PDα,β,γ,ω
q,a+

(
PIα,β,γ,ω

′

q,a+ f
)

(x) = Dn
q,a+

(
PIα,n−β,−γ,ωq,a+

PIα,β,γ,ω
′

q,a+ f
)

(x) = Dn
q,a+

(
In
q,a+ f
)

(x) = f (x) .

The proof is complete.

In the classical case, the Prabhakar fractional integral operators’ semigroup property is commutative,
but this property is non-commutative in the q-calculus case. To deal with this problem we need to introduce
the following operator which affects only one parameter of the Prabhakar fractional q-operators.

We introduce the operator Λnγ,ω
q defined by setting

Λ
nγ,ω
q ω := qnγω, n ∈N.

For example, Λnγ,ω
q f (δ, ω) = f (δ, qnγω).

Using this operator we present some other properties of q-Prabhakar operators.

Theorem 3.7. Let f ∈ L1
q[a, b], PIα,1−β,−γ,ωq,a+ f ∈ ACq[a, b] and α, β, γ, ω ∈ R with α > 0, 0 < β ≤ 1. Then(

PIα,β,γ,ω
′

q,a+
PDα,β,γ,ω

q,a+ f
)

(x) = f (x) − 1α,βγ,ω′ (x, a/q)
(

PIα,1−β,−γ,ωq,a+ f
)

(a+). (29)

Proof. Let

φ(x) :=
(

PIα,β,γ,ω
′

q,a+
PDα,β,γ,ω

q,a+ f
)

(x). (30)

Applying the Prabhakar fractional q-derivative P
q Dα,β,γ,ω

x,a+ to the both sides of (30) and using Theorem 3.6, we
obtain

PDα,β,γ,ω
q,a+ φ = PDα,β,γ,ω

q,a+ f . (31)

We apply Λ2γ,ω
q operator to the equality (31). Then, taking into account w′ = qγω, we get

PDα,β,γ,qγω′
q,a+ φ = PDα,β,γ,qγω′

q,a+ f . (32)

From the last equality, we conclude that f − φ is an element of the kernel of the Prabhakar fractional
q-differential operator, i.e.,

f − φ ∈ ker(PDα,β,γ,qγω′
q,a+ ).

Introducing notation ψ := f − φ and considering (27) and 0 < β ≤ 1, we have(
PDα,β,γ,qγω′

q,a+ ψ
)

(x) = 0⇔ Dq

(
PIα,1−β,−γ,q

γω′

q,a+ ψ
)

(x) = 0.

By the standard properties of the q-differential operator the last equality means that
(

PIα,1−β,−γ,q
γω′

q,a+ ψ
)

(x)
must be a constant:(

PIα,1−β,−γ,q
γω′

q,a+ ψ
)

(x) = a0, (33)

where a0 is an arbitrary constant.
Hence, applying the Prabhakar q-fractional differential operator PDα,1−β,−γ,ω′

q,a+ to the last equality and
using Theorem 3.6, we find

ψ(x) = PDα,1−β,−γ,ω′
q,a+ (a0).
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By Definitions 3.1 and 3.5 of the Prabhakar fractional q-differential and q-integral operators and also (12)
expansion of the generalized q-Prabhakar function, we have

ψ(x) = a0Dq

x∫
a

(
x − qt

)β−1
q

+∞∑
n=0

(
γ
)

n,q(ω′)n

Γq
(
αn + β

) (x − qβt
)αn

q
dqt

= a0

+∞∑
n=0

(
γ
)

n,q(ω′)nDq

 1
Γq
(
αn + β

) x∫
a

(
x − qt

)αn+β−1
q dqt

 .
Hence, using formulas (6), (5) and taking (12) and (19) into account, we find

ψ(x) = a01
α,β
γ,ω′ (x, a/q).

Since ψ = f − φ, we obtain

f (x) = φ(x) + a01
α,β
γ,ω′ (x, a/q). (34)

Hence, applying the Prabhakar fractional q-integral operator PIα,1−β,−γ,ωq,a+ to the last equality, we find

(PIα,1−β,−γ,ωq,a+ f )(x) = (PIα,1−β,−γ,ωq,a+ φ)(x) + a0
PIα,1−β,−γ,ωq,a+ 1

α,β
γ,ω′ (x, a/q). (35)

Applying formula (18), where β is replaced with 1− β, γwith −γ, σwith γ, µwith β, and s with a/q, and
considering that e0

α,β(x) = 1, it is easy to show that

PIα,1−β,−γ,ωq,a+ 1
α,β
γ,ω′ (x, a/q) = 1α,10,ω′ (x, a/q) = e0

α,β[ω
′(x − a)α] = 1. (36)

Then from (35), we obtain(
PIα,1−β,−γ,ωq,a+ f

)
(x) =

(
PIα,1−β,−γ,ωq,a+ φ

)
(x) + a0. (37)

Considering the notation (30) and using (20) and Definition 3.5, we have(
PIα,1−β,−γ,ωq,a+ φ

)
(x) =

(
PIα,1−β,−γ,ωq,a+

PIα,β,γ,ω
′

q,a+
PDα,β,γ,ω

q,a+ f
)

(x) =
(

PIα,1,0,ωq,a+
PDα,β,γ,ω

q,a+ f
)

(x).

Hence, applying fundamental theorem of q-calculus [7], we find(
PIα,1−β,−γ,ωq,a+ φ

)
(x) =

(
PIα,1−β,−γ,ωq,a+ f

)
(x) −

(
PIα,1−β,−γ,ωq,a+ f

)
(a).

Comparing this with (37), we conclude that

a0 =
(

PIα,1−β,−γ,ωq,a+ f
)

(a).

Substituting the expression obtained from a0 into (34) and considering the notation (30), we get (29).
The proof of Theorem 3.7 is complete.
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4. The Cauchy-type problem associated with q-Prabhakar differential operator

Let us consider the following Cauchy-type problem with Prabhakar fractional q-differential operator:(
PDα,β,γ,ω

q,a+ y
)

(x) = f (x, y), (38)

(
PIα,1−β,−γ,ωq,a+ y

)
(a+) = ξ0, (39)

where α, β, γ, ω, ξ0 ∈ R are such that α > 0, 0 < β ≤ 1, ξ0 , 0.
We prove the existence and uniqueness of the solution to the problem (38)-(39).

Theorem 4.1. Let f (·, ·) : [a, b] ×R→ R be a function such that f (·, y(·)) ∈ L1
q[a, b] for all y ∈ L1

q[a, b].
Then y satisfies the relations (38) and (39), if and only if, y satisfies the following q-Volterra integral equation:

y(x) = PIα,β,γ,ω
′

q,a+ f (x, y) + ξ01
α,β
γ,ω′ (x, a/q). (40)

Proof. First, we prove the necessity. We assume that y ∈ L1
q[a, b] satisfies (38)-(39). Since f (x, y) ∈ L1

q[a, b],

(38) means that there exists a Prabhakar fractional q-differential PDα,β,γ,ω
q,a+ y ∈ L1

q[a, b]. on [a, b] so we can apply

the operator PIα,β,γ,ω
′

q,a+ to the equation (38). Then, considering the formula (29) and the condition (39), we get
the integral equation (40).

Now, we prove the sufficiency. Let y ∈ L1
q[a, b] satisfy equation (40). Applying the operator PDα,β,γ,ω

q,a+ to
both sides of (40) and using (28), we get(

PDα,β,γ,ω
q,a+ y

)
(x) − f (x, y) = ξ0

PDα,β,γ,ω
q,a+ 1

α,β
γ,ω′ (x, a/q). (41)

We show that the right-hand side of (41) is equal to zero. Using (27) and (36), we find

PDα,β,γ,ω
q,a+ 1

α,β
γ,ω′ (x, a/q) = Dq

PIα,1−β,−γ,ωq,a+ 1
α,β
γ,ω′ (x, a/q) = Dq(1) = 0.

Now, we show that the relation in (39) is also held. For this, we apply the operator PIα,1−β,−γ,ωq,a+ to both
sides of (40). Considering (20) and (36), we get

(
PIα,1−β,−γ,ωq,a+ y

)
(x) −

x∫
a

f (t, y(t))dqt = ξ0. (42)

By putting x = +a in (42) we obtain the relation in (39).
Theorem 4.1 is proved.

5. Existence and uniqueness of the solution to the Cauchy-type problem

In this section, we prove the existence and uniqueness of the solution to the problem (38)-(39). The
result is obtained under the conditions of Theorem 4.1 and Lemma 3.4.

Theorem 5.1. Let G be an open set in R. Let f (·, ·) : [a, b] × G→ R be a function such that f (·, y(·)) ∈ L1
q[a, b] for

all y ∈ G, and for all x ∈ (a, b] and for all y1, y2 ∈ G, it satisfies∣∣∣ f (x, y1) − f (x, y2)
∣∣∣ ≤ A

∣∣∣y1 − y2

∣∣∣ , (43)

where A > 0 does not depend on x ∈ [a, b] and y1, y2 ∈ L1
q[a, b].

Then there exists a unique solution y ∈ L1
q[a, b] to the problem (38)-(39).



S. Shaimardan et al. / Filomat 39:6 (2025), 2003–2016 2014

Proof. According to Theorem 4.1, the problem (38)-(39) is equivalent to the integral equation (40). So, to
prove the existence and uniqueness of the solution to the problem (38)-(39) it is sufficient to show the
existence and uniqueness of the solution to the integral equation (40). To do this we rewrite the integral
equation (39) in the following operator form

y(x) = (Ty)(x), (44)

where

(Ty)(x) := y0(x) +

x∫
a

(x − qt)β−1
q eγα,β

[
ω′(x − qβt)αq

]
f [t, y(t)]dqt (45)

and

y0(x) := ξ0(x − a)β−1
q eγα,β

[
ω′(x − qβ−1a)αq ; q

]
.

First, we prove the existence of a unique solution y(x) in the space L1
q[a, b]. Our proof is based on the

Banach fixed point theorem. We should note that L1
q[a, b] is a complete metric space [4].

Select h ∈ (a, b] such that

δ1 = A(h − qa)βqeα,β+1[ω′(h − qβ+1a)αq ; q] < 1, (46)

where A > 0 is the Lipschitz constant in (43). Clearly y0 ∈ L1
q[a, h]. Also, by Lemma 3.4 (Ty)(x) ∈ L1

q[a, h].
Therefore, T maps L1

q[a, h] to itself. Moreover, from (43),(45) and Proposition 3.4, for any y1, y2 ∈ L1
q[a, h], we

have ∥∥∥Ty1 − Ty2

∥∥∥
L1

q[a,h]
≤

∥∥∥∥Pq Iα,β,γ,ωx,a+ f (x, y1(x)) − P
q Iα,β,γ,ωx,a+ f (x, y2(x))

∥∥∥∥
L1

q[a,h]

≤ (h − qa)βqeα,β+1[ω′(h − qβ+1a)αq ; q] ×
∥∥∥ f (x, y1(x)) − f (x, y2(x))

∥∥∥
L1

q[a,h]

≤ A(h − qa)βqeα,β+1[ω′(h − qβ+1a)αq ; q] ×
∥∥∥y1(x) − y2(x)

∥∥∥
L1

q[a,h]
≤ δ1

∥∥∥y1(x) − y2(x)
∥∥∥

L1
q[a,h]

.

Our assumption (46) allows us to apply the Banach’s fixed point theorem to obtain a unique solution
y∗ ∈ L1

q[a, h] to equation (44) in the interval (a, h]. According to this theorem, y∗ will be obtained as a limit
of a convergent sequence (Tmy0)(x):

lim
m→∞

∥∥∥Tmy(x) − y∗
∥∥∥

L1
q[a,h]
= 0

in the space L1
q[a, h], where y(x) is an arbitrary function in L1

q[a, h].
Since ξ0 , 0 and y0 ∈ L1

q[a, h] we can take y0(x) as y(x):

y(x) := y0(x).

Consequently, the sequence Tmy0(x) for m ∈N is defined by the following recurrence relation

Tmy0(x) = y0(x) +

x∫
a

(x − qt)β−1
q eγα,β

[
ω′(x − qβt)αq

]
f [t,Tm−1y0(t)]dqt.

If we denote ym(x) = (Tmy0)(x), then the last relation takes the form

ym(x) = y0(x) +

x∫
a

(x − qt)β−1
q eγα,β

[
ω′(x − qβt)αq

]
f [t, ym−1(t)]dqt, m ∈N.

This means that the successive approximation method can be used to find a unique solution of
(38)–(39).
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Conclusion

Introducing the Prabhakar fractional q-integral and q-differential operators, and exploring their prop-
erties and potential applications have been targeted. Prabhakar fractional q-integral and q-differential
operators are comparatively less studied and hence, first, we have introduced the definitions of these op-
erators, showed some new aspects of q-cases, and studied the existence and uniqueness of the solution of
the Cauchy-type problem involving the Prabhakar fractional q-differential operator.
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