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Abstract. In this paper, we apply self-adaptive methods to solve split pseudomonotone equilibrium
problems subject to fixed point problems of pseudocontractive operators in Hilbert spaces. First, we use
linear search rules to avoid the requirement of Lipschitz type conditions of bifunctions. Secondly, we just
need to assume that two pseudocontractive operators are Lipschitz continuous, without knowing the sizes
of the Lipschitz constants. We present a self-adaptive algorithm for solving the investigated split problem.
Under some standard conditions, we show that the sequence generated by the algorithm converges weakly
to a solution of the split problem.

1. Introduction

In this paper, we focus on the following equilibrium problem of finding a point x∗ ∈ E such that

1(x∗, x) ≥ 0, ∀x ∈ E, (1)

where E is a nonempty, closed, and convex subset of a real Hilbert space H and 1 : E×E→ R is a bifunction.
Throughout, we use Ep(E, 1) to denote the solution set of (1).

Equilibrium problem becomes a topic of general interest in the fields of science and engineering. Es-
pecially, it includes several important fields, such as fixed point problems, optimization problems, inverse
problems, the Kirszbraun problem, Browder variational inclusions and variational inequality problems as
special cases ([4, 9, 12, 14, 16, 19, 24, 25, 28, 30, 31, 33, 35, 38, 39]). Several methods have been proposed to
solve equilibrium problem ([4, 13, 15, 17, 20, 22, 23, 27, 34]).

We introduce now the problem to be studied. Let H1 and H2 be two real Hilbert spaces. Let C and Q be
two nonempty, closed, and convex subsets of H1 and H2, respectively. Letϕ1 : C×C→ R andϕ2 : Q×Q→ R
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be two bifunctions, and A : H1 → H2 be a bounded linear operator. In this article, our purpose is to solve
the following split problem which is to find a point q∗ ∈ C such that

q∗ ∈ Ep(C, ϕ1) ∩ Fix(φ) and Aq∗ ∈ Ep(Q, ϕ2) ∩ Fix(ψ), (2)

where Fix(φ) and Fix(ψ) are the fixed point sets of two nonlinear operators φ : C → C and ψ : Q → Q,
respectively.

A way for solving (2) is the gap function method presented by Zhu and Marcotte [37] which converts
the original problem into an optimization problem. A technique to solve (2) is based on auxiliary problem
principle by involving a strongly monotone bifunction and satisfying a certain Lipschitz-type condition, see
Rockafellar [20]. An approach for solving (2) is the proximal point method ([23]) in which the subsequent
problems needed to be solved are related to strongly monotone equilibrium. Another remarkable way to
solve (2) is the extragradient method of Korpelevich [15], based on auxiliary problem principle of Flam and
Antipin [11], which generates a sequence {xn} defined byyn = arg minx∈E{λ1(xn, x) + Φ(xn, x)},

xn+1 = arg minx∈E{λ1(yn, x) + Φ(xn, x)}, n ≥ 0

where Φ(x, y) is the Bregman distance function ([10]), and x0 is given.
Note that the prototype of (2) is the split feasibility problem arising from signal processing and image

restoration [5]. Meanwhile, the split problem (2) includes the split equilibrium problem studied by Yao et
al. [32] and the split fixed point problem of Censor and Segal [7] as special cases. There has been growing
interest in the split problems due to their powerful applications. Iterative algorithms for finding the solution
of the split problems have been investigated extensively, see, e.g., [1, 2, 6, 8, 16–18, 26, 29, 33, 38, 39]).
Especially, Yao, Li and Postolache [32] provided a unified framework for solving (2) where the involved
equilibrium bifunctions ϕ1 and ϕ2 are pseudomonotone and monotone, respectively, and the operators φ
and ψ are Lipschitz pseudocontractive.

In this paper, we continue to investigate the split problem (2). We have two objectives: the first one is
to extend the bifunction ϕ2 from monotone to pseudomonotone and the second one is to use self-adaptive
techniques to relax the restrictions of Lipschitz constants of pseudocontractive operators φ and ψ. We just
need to assume that the operators φ and ψ are Lipschitz continuous, without knowing the sizes of the
Lipschitz constants. At the same time, we use linear search rules to avoid the requirement of Lipschitz
type conditions of bifunctions ϕ1 and ϕ2. We present a self-adaptive algorithm for solving (2). Under some
adequate conditions, we show that the sequence {xn} generated by the algorithm weakly converges to a
solution of (2).

2. Preliminaries

In this section, we enumerate the related nations and lemmas which will be used in the third section.
In the following, H is a real Hilbert space and C is a nonempty, closed, and convex subset of H.
The normal cone of C at u ∈ C is defined by

NC(u) = {x ∈ H : ⟨x, y − u⟩ ≤ 0,∀y ∈ C}. (3)

Let f : C→ (−∞,+∞] be a function. f is said to be

- proper if {x ∈ C : f (x) < +∞} , ∅.

- lower semicontinuous if {x ∈ C : f (x) ≤ r} is closed for each r ∈ R.

- convex if f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y), for any t ∈ [0, 1], and x, y ∈ C.
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If f : C→ (−∞,+∞] is a proper, lower semicontinuous and convex function, then the subdifferential ∂ f
of f at the point p ∈ C, is defined by

∂ f (p) := {x ∈ H : f (y) − f (p) ≥ ⟨x, y − p⟩,∀y ∈ C}. (4)

It is well known that

u† = arg min
u∈C

f (u)⇔ 0 ∈ ∂ f (u†) +NC(u†). (5)

Let T : C→ C be an operator. Recall that T is said to be

- L-Lipschitz if there is L > 0 such that

∥T(x) − T(y)∥ ≤ L∥x − y∥, ∀x, y ∈ C.

- pseudocontractive if

∥T(x) − T(y)∥2 ≤ ∥x − y∥2 + ∥(I − T)x − (I − T)y∥2, ∀x, y ∈ C. (6)

For every point x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such that, for every
y ∈ C,

∥x − PC(x)∥ ≤ ∥x − y∥.

It is known that PC is 1-Lipschitz.
Let h : C × C→ R be a bifunction. Recall that h is said to be

- monotone if

h(x, y) + h(y, x) ≤ 0, ∀x, y ∈ C.

- pseudomonotone if

h(x, y) ≥ 0 implies h(y, x) ≤ 0, ∀x, y ∈ C.

Let {xn} be a sequence in C. Let ωw(xn) be the set of weak cluster points of {xn}, i.e.,

ωw(xn) = {u : ∃{xni } ⊂ {xn} such that xni ⇀ u as i→∞},

where “⇀” and “→” denote weak convergence and strong convergence, respectively.
A bifunction h : C × C→ R is said to be jointly sequently weakly continuous, if

xn ⇀ x† and yn ⇀ y† ⇒ h(xn, yn)→ h(x†, y†).

Let h : C × C→ R be a bifunction. It is said that h satisfies Cond(C, h) if

(i) h(x, x) = 0, ∀x ∈ C;

(ii) h is pseudomonotone;

(iii) h is jointly sequently weakly continuous;

(iv) ∀x ∈ C, h(x, ·) is convex and subdifferentiable (that is ∂h(x, p) is not void, for any p ∈ C).
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Lemma 2.1 ([22]). Let h : C × C→ R be a bifunction satisfying Cond(C, h). For bn ∈ C, set

an = arg min
x∈C

{
h(bn, x) +

1
2κn
∥bn − x∥2

}
, κn ∈ [t1, t2] ⊂ (0, 1].

If {bn} is bounded, then {an} is bounded.

Lemma 2.2 ([27]). Let h : C × C → R be a bifunction satisfying Cond(C, h). Suppose there are two sequences
{cn} ⊂ C and {dn} ⊂ C, so that cn ⇀ x∗ ∈ C and dn ⇀ y∗ ∈ C, respectively. Then, for any ϵ > 0, there exist ϵ1 > 0
and Nϵ ∈N such that

∂2h(cn, dn) ⊂ ∂2h(x∗, y∗) +
ϵ
ϵ1

D,

for every n ≥ Nϵ, where ∂2 designates the subdifferential with respect to the second variable, and D := {x ∈ H : ∥x∥ ≤
1}.

Lemma 2.3 ([36]). Let T : C → C be a continuous pseudocontractive operator. Then, T is demiclosed, that is if
{xn} ⊆ C is a sequence which converges weakly to x, and limn→∞ ∥Txn − v∥ = 0, then x ∈ C, and Tx = v.

Lemma 2.4 ([3]). Let Ω be a nonempty, closed, and convex subset of a real Hilbert space H, and {qn} ⊂ H be a
sequence. Suppose that the following conditions are satisfied

(i) For each q ∈ Ω, limn→∞ ∥qn − q∥ exists;

(ii) wω(qn) ⊂ Ω.

Then {qn} converges weakly to a point in Ω.

3. Main results

In this section, we will propose our algorithm for solving the split problem (2), and prove its convergence.
Let H1 and H2 be two real Hilbert spaces, and C, Q be two nonempty, closed, and convex subsets of H1 and
H2, respectively. Let A : H1 → H2 be a bounded linear operator with its adjoint A∗, and ϕ1 : C × C → R,
ϕ2 : Q×Q→ R be two bifunctions satisfying Cond(C, ϕ1) and Cond(Q, ϕ2), respectively. Let φ : C→ C and
ψ : Q→ Q be two pseudocontractive operators with Lipschitz constants L1 and L2, respectively.

Suppose the following restrictions are satisfied:

(r1): σ1 ∈ (0, 1), σ2 ∈ (0, 1), η ∈
(
0,

1−σ2
1

2

)
, ζ ∈

(
0,

1−σ2
2

2

)
, β1 ∈ (0, 1), β2 ∈ (0, 1),ϖ ∈ (0, 1), δ ∈ (0, 1), ϑ1 ∈ (0, 1),ϑ2 ∈

(0, 1) and α ∈ (0, 1/∥A∥2),

(r2): For all n ≥ 0, λn ∈ [c1, d1] ⊂ (0, 1], τn ∈ [c2, d2] ⊂ (0, 1], γn ∈ [c3, d3] ⊂ (0, 2) and ϵn ∈ [c4, d4] ⊂ (0, 2),

(r3): Γ := {p|p ∈ Ep(C, ϕ1) ∩ Fix(φ),Ap ∈ Ep(Q, ϕ2) ∩ Fix(ψ)} , ∅.

Next, we present an iterative algorithm for solving (2).

Algorithm 3.1. Let x0 ∈ C be an initial guess.
Step 1. Let xn be given. Calculate

vn =
(
1 −

ρn

2

)
xn +

ρn

2
φ(pn), (7)

where

pn = (1 − ρn)xn + ρnφ(xn), (8)

in which ρn = ηβi
1 and i = min{0, 1, 2, · · · } such that

ρn∥φ(pn) − φ(xn)∥ ≤ σ1∥pn − xn∥. (9)
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Step 2. Compute

yn = arg min
u∈C

{
ϕ1(vn,u) +

1
2λn
∥vn − u∥2

}
. (10)

If yn = vn, then set un = vn and go to Step 5. Otherwise, continue to the next step.
Step 3. Set zn,k = (1 − ϖk)vn + ϖkyn, where k = min{1, 2, · · · } such that

2λn(ϕ1(zn, vn) − ϕ1(zn, yn)) ≥ ϑ1∥vn − yn∥
2. (11)

Write ϖn = ϖk and zn = zn,k, i.e., zn = (1 − ϖn)vn + ϖnyn.
Step 4. Compute

un = PC(vn − γnιnνn), (12)

where νn ∈ ∂2ϕ1(zn, vn) and ιn =
ϕ1(zn, vn)
∥νn∥

2 .

Step 5. Compute

wn = arg min
v∈Q

{
ϕ2(PQ(Aun), v) +

1
2τn
∥PQ(Aun) − v∥2

}
. (13)

If wn = PQ(Aun), then set tn = wn and go to Step 8. Otherwise, continue to the next step.
Step 6. Set dn,l = (1 − δl)PQ(Aun) + δlwn, where l = min{1, 2, · · · } such that

2τn(ϕ2(dn,PQ(Aun)) − ϕ2(dn,wn)) ≥ ϑ2∥PQ(Aun) − wn∥
2. (14)

Write δn = δl and dn = dn,l, i.e., dn = (1 − δn)PQ(Aun) + δnwn.
Step 7. Compute

tn = PQ(PQ(Aun) − ϵnµnςn), (15)

where ςn ∈ ∂2ϕ2(dn,PQ(Aun)) and µn =
ϕ2(dn,PQ(Aun))

∥ςn∥
2 .

Step 8. Compute

qn = (1 −
ϱn

2
)tn +

ϱn

2
ψ(rn), (16)

where

rn = (1 − ϱn)tn + ϱnψ(tn), (17)

in which ϱn = ζβ
j
2 and j = min{0, 1, 2, · · · } such that

ϱn∥ψ(rn) − ψ(tn)∥ ≤ σ2∥rn − tn∥. (18)

Step 9. Compute

xn+1 = PC(un + αA∗(qn − Aun)), (19)

set n := n + 1, and return to Step 1.

The next properties are to be mentioned in the context of Algorithm 3.1.

Proposition 3.2. We have the following statements:

(p1): yn = vn ⇒ yn ∈ Ep(C, ϕ1) and yn , vn ⇒ 0 < ∂2ϕ1(zn, vn), in this case νn , 0.

(p2): wn = PQ(Aun)⇒ wn ∈ Ep(Q, ϕ2) and wn , PQ(Aun)⇒ 0 < ∂2ϕ2(dn,PQ(Aun)), in this case ςn , 0.
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(p3): There are i and j satisfying (9) and (18), respectively and

min
{
η,
β1σ1

L1

}
≤ ρn ≤ η, min

{
ζ,
β2σ2

L2

}
≤ ϱn ≤ ζ, n ≥ 0.

(p4): There exist k and l such that (11) and (14) hold, respectively.

Proof. For a proof of items (p1), (p2), and (p4), please see [21].
(p3) In fact, if pn = xn, we can choose i = 0. Next, we consider the case of pn , xn. In this situation,

suppose that (9) does not hold for any i ∈ min{0, 1, 2, · · · }, namely,

ηβi
1∥φ(pn) − φ(xn)∥ > σ1∥pn − xn∥, for all i ≥ 0. (20)

By (8), we have

∥pn − xn∥ = ρn∥φ(xn) − xn∥ = ηβ
i
1∥φ(xn) − xn∥, (21)

which, together with pn , xn, implies that

∥φ(xn) − xn∥ > 0. (22)

Combining (20) and (21), we obtain

ηβi
1∥φ(pn) − φ(xn)∥ > σ1∥pn − xn∥ = σ1ηβ

i
1∥φ(xn) − xn∥, for all i ≥ 0,

which yields that

∥φ(pn) − φ(xn)∥ > σ1∥φ(xn) − xn∥, for all i ≥ 0. (23)

Noting that β1 ∈ (0, 1) and φ is L1-Lipschitz, we have

lim
i→+∞

∥φ(xn) − φ(pn)∥ = lim
i→+∞

∥φ(xn) − φ(xn + ηβ
i
1(φ(xn) − xn))∥

= lim
i→+∞

∥φ(xn) − φ(xn)∥ = 0,

which together with (23) implies that ∥φ(xn) − xn∥ ≤ 0. This is a contradiction with (22). Hence, there is i
such that inequality (9) holds.

Since φ is L1-Lipschitz, we have

ρn∥φ(pn) − φ(xn)∥ ≤ ρnL1∥pn − xn∥. (24)

At the same time,
ρn

β1
∥φ(pn) − φ(xn)∥ > σ1∥pn − xn∥. (25)

From (24) and (25), we have

β1σ1∥pn − xn∥ < ρnL1∥pn − xn∥.

If pn = xn, then i = 0 and ρn = η. If pn , xn, then ρn >
β1σ1

L1
. So, there is i satisfying (9) and

min
{
η,

β1σ1

L1

}
≤ ρn ≤ η,n ≥ 0.

Similarly, we can show that there is j satisfying (18) and min
{
ζ,

β2σ2

L2

}
≤ ϱn ≤ ζ, n ≥ 0.

The next properties will be useful in the development of our study.

Proposition 3.3 ([13, 21, 22]). Suppose that Ep(C, ϕ1) , ∅ and Ep(Q, ϕ2) , ∅. Then, we have

(i) ϕ1(zn, vn) > 0 and ϕ2(dn,PQ(Aun)) > 0,

(ii) ∥un − x∗∥2 ≤ ∥vn − x∗∥2 − γn(2 − γn)(ιn∥νn∥)2, ∀x∗ ∈ Ep(C, ϕ1),
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(iii) ∥tn − y∗∥2 ≤ ∥PQ(Aun) − y∗∥2 − ϵn(2 − ϵn)(µn∥ςn∥)2, ∀y∗ ∈ Ep(Q, ϕ2).

For a proof, we address the reader to [21].
To prove our main theorem, we first prove several lemmas. In the sequel, let x∗ be a point in Γ.

Lemma 3.4. Let {xn} be the sequence generated by Algorithm 3.1. Then, we have the following estimates:

(a1): ∥vn − x∗∥2 ≤ ∥xn − x∗∥2 − ρ2
n

4 ∥φ(pn) − xn∥
2,

(a2): ∥qn − Ax∗∥2 ≤ ∥tn − Ax∗∥2 − ϱ2
n

4 ∥tn − ψ(rn)∥2.

Proof. Proof of (a1). Since x∗ ∈ Fix(φ) ∩ Ep(C, ϕ1) and Ax∗ ∈ Fix(ψ) ∩ Ep(Q, ϕ2), from (7) and (8), we have

∥vn − x∗∥2 = (1 −
ρn

2
)∥xn − x∗∥2 +

ρn

2
∥φ(pn) − x∗∥2

− (1 −
ρn

2
)
ρn

2
∥φ(pn) − xn∥

2,
(26)

∥pn − x∗∥2 = (1 − ρn)∥xn − x∗∥2 + ρn∥φ(xn) − x∗∥2

− ρn(1 − ρn)∥φ(xn) − xn∥
2,

(27)

and

∥pn − φ(pn)∥2 = (1 − ρn)∥xn − φ(pn)∥2 + ρn∥φ(xn) − φ(pn)∥2

− ρn(1 − ρn)∥φ(xn) − xn∥
2.

(28)

Since φ is pseudocontractive, we get

∥φ(xn) − x∗∥2 ≤ ∥xn − x∗∥2 + ∥xn − φ(xn)∥2, (29)

and

∥φ(pn) − x∗∥2 ≤ ∥pn − x∗∥2 + ∥pn − φ(pn)∥2. (30)

Combining with (27) and (29), we have

∥pn − x∗∥2 ≤ ∥xn − x∗∥2 + ρ2
n∥xn − φ(xn)∥2.

By (8), pn−xn = ρn(φ(xn)−xn) which together with (9) implies that ρn∥φ(pn)−φ(xn)∥2 ≤ σ2
1ρn∥φ(xn)−xn∥

2.
Submitting it into (28) to deduce

∥pn − φ(pn)∥2 ≤ (1 − ρn)∥xn − φ(pn)∥2

− ρn(1 − σ2
1 − ρn)∥φ(xn) − xn∥

2,

which together with (30) yields

∥φ(pn) − x∗∥2 ≤ ∥xn − x∗∥2 + (1 − ρn)∥xn − φ(pn)∥2

− ρn(1 − σ2
1 − 2ρn)∥φ(xn) − xn∥

2.
(31)

Since ρn ≤ η <
1−σ2

1
2 , 1 − σ2

1 − 2ρn > 0. It follows from (31) that

∥φ(pn) − x∗∥2 ≤ ∥xn − x∗∥2 + (1 − ρn)∥xn − φ(pn)∥2,

which combines with (26) to get (a1).

Proof of (a2). From (16) and (17), we have

∥qn − Ax∗∥2 = (1 −
ϱn

2
)∥tn − Ax∗∥2 +

ϱn

2
∥ψ(rn) − Ax∗∥2

−
ϱn

2
(1 −

ϱn

2
)∥tn − ψ(rn)∥2,

(32)
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∥rn − Ax∗∥2 = (1 − ϱn)∥tn − Ax∗∥2 + ϱn∥ψ(tn) − Ax∗∥2

− ϱn(1 − ϱn)∥tn − ψ(tn)∥2,
(33)

and

∥rn − ψ(rn)∥2 = (1 − ϱn)∥tn − ψ(rn)∥2 + ϱn∥ψ(tn) − ψ(rn)∥2

− ϱn(1 − ϱn)∥tn − ψ(tn)∥2.
(34)

Owing to the pseudocontractiveness of ψ, we obtain

∥ψ(tn) − Ax∗∥2 ≤ ∥tn − Ax∗∥2 + ∥tn − ψ(tn)∥2, (35)

and

∥ψ(rn) − Ax∗∥2 ≤ ∥rn − Ax∗∥2 + ∥rn − ψ(rn)∥2. (36)

Substituting (35) into (33) to deduce

∥rn − Ax∗∥2 ≤ ∥tn − Ax∗∥2 + ϱ2
n∥tn − ψ(tn)∥2.

We can rewrite (17) as rn − tn = ϱn(ψ(tn) − tn). Then,

ϱn∥ψ(rn) − ψ(tn)∥2 ≤ σ2
2ϱn∥ψ(tn) − tn∥

2.

Hence, by (34), we have

∥rn − ψ(rn)∥2 ≤ (1 − ϱn)∥tn − ψ(rn)∥2

− ϱn(1 − σ2
2 − ϱn)∥tn − ψ(tn)∥2,

which combines with (36) to obtain

∥ψ(rn) − Ax∗∥2 ≤ ∥tn − Ax∗∥2 + (1 − ϱn)∥tn − ψ(rn)∥2

− ϱn(1 − σ2
2 − 2ϱn)∥tn − ψ(tn)∥2.

(37)

Since ϱn ≤ ζ <
1−σ2

2
2 , 1 − σ2

2 − 2ϱn > 0, it follows from (32) and (37) that

∥qn − Ax∗∥2 ≤ (1 −
ϱn

2
)∥tn − Ax∗∥2 +

ϱn

2
(∥tn − Ax∗∥2 + (1 − ϱn)∥tn − ψ(rn)∥2)

−
ϱn

2
(1 −

ϱn

2
)∥tn − ψ(rn)∥2

≤ ∥tn − Ax∗∥2 −
ϱ2

n

4
∥tn − ψ(rn)∥2,

which is exactly (a2).

Lemma 3.5. Let the sequence {xn} be generated by Algorithm 3.1. Then, limn→∞ ∥xn−x∗∥ exists and {xn} is bounded.

Proof. Note that Ax∗ ∈ Ep(Q, ϕ2) ∩ Fix(ψ) ⊂ Q. Since PQ is firmly nonexpansive, we have

∥PQ(Aun) − Ax∗∥2 = ∥PQ(Aun) − PQ(Ax∗)∥2

≤ ⟨PQ(Aun) − PQ(Ax∗),Aun − Ax∗⟩

=
1
2

[∥PQ(Aun) − Ax∗∥2 + ∥Aun − Ax∗∥2 − ∥PQ(Aun) − Aun∥
2],

and hence

∥PQ(Aun) − Ax∗∥2 ≤ ∥Aun − Ax∗∥2 − ∥PQ(Aun) − Aun∥
2.
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This together with Proposition 3.3 and Lemma 3.4 (a2) imply that

∥qn − Ax∗∥2 ≤ ∥PQ(Aun) − Ax∗∥2 − ϵn(2 − ϵn)(µn∥ςn∥)2

−
ϱ2

n

4
∥tn − ψ(rn)∥2

≤ ∥Aun − Ax∗∥2 − ∥PQ(Aun) − Aun∥
2
− ϵn(2 − ϵn)(µn∥ςn∥)2

−
ϱ2

n

4
∥tn − ψ(rn)∥2.

Thus,

2⟨un − x∗,A∗(qn − Aun)⟩ = 2⟨qn − Aun,Aun − Ax∗⟩

= ∥qn − Ax∗∥2 − ∥Aun − Ax∗∥2 − ∥qn − Aun∥
2

≤ −ϵn(2 − ϵn)(µn∥ςn∥)2
−
ϱ2

n

4
∥tn − ψ(rn)∥2

− ∥qn − Aun∥
2
− ∥PQ(Aun) − Aun∥

2.

(38)

By Proposition 3.3 and Lemma 3.4 (a1), we have

∥un − x∗∥2 ≤ ∥vn − x∗∥2 − γn(2 − γn)(ιn∥νn∥)2

≤ ∥xn − x∗∥2 −
ρ2

n

4
∥φ(pn) − xn∥

2

− γn(2 − γn)(ιn∥νn∥)2.

(39)

Taking into advantage relation (19), we have

∥xn+1 − x∗∥2 = ∥PC(un + αA∗(qn − Aun)) − PC(x∗)∥2

≤ ∥un − x∗ + αA∗(qn − Aun)∥2

= ∥un − x∗∥2 + 2α⟨A∗(qn − Aun),un − x∗⟩

+ ∥αA∗(qn − Aun)∥2.

(40)

Based on (38)-(40), we obtain

∥xn+1 − x∗∥2 ≤ ∥un − x∗∥2 − α(1 − α∥A∥2)∥qn − Aun∥
2

− αϵn(2 − ϵn)(µn∥ςn∥)2

≤ ∥xn − x∗∥2 − α(1 − α∥A∥2)∥qn − Aun∥
2

− αϵn(2 − ϵn)(µn∥ςn∥)2
− α∥PQ(Aun) − Aun∥

2

≤ ∥xn − x∗∥2,

(41)

which implies that limn→∞ ∥xn − x∗∥ exists and so {xn} is bounded.

Lemma 3.6. Let the sequence {xn} be generated by Algorithm 3.1. Then,

(a3): limn→∞ ∥xn − φ(xn)∥ = 0,

(a4): limn→∞ ∥Aun − ψ(Aun)∥ = 0,

(a5): limn→∞ ∥vn − xn∥ = limn→∞ ∥un − xn∥ = 0.
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Proof. Proof of (a3). Since limn→∞ ∥xn − x∗∥ exists, ∥xn+1 − x∗∥ − ∥xn − x∗∥ → 0. By virtue of (41), we derive

α(1 − α∥A∥2)∥qn − Aun∥
2 + αϵn(2 − ϵn)(µn∥ςn∥)2 + α∥PQ(Aun) − Aun∥

2

≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 → 0,

which results in the equality

lim
n→∞
∥qn − Aun∥ = 0, (42)

lim
n→∞

µn∥ςn∥ = 0. (43)

and

lim
n→∞
∥PQ(Aun) − Aun∥ = 0. (44)

By Lemmas 3.4 and 3.5, we have

∥xn+1 − x∗∥ ≤ ∥un − x∗∥ ≤ ∥vn − x∗∥ ≤ ∥xn − x∗∥.

Therefore,

lim
n→∞
∥un − x∗∥ = lim

n→∞
∥vn − x∗∥ = lim

n→∞
∥xn − x∗∥,

which also indicates that the sequences {un} and {vn} are all bounded.
By (15), we have ∥tn − PQ(Aun)∥ ≤ ϵnµn∥ςn∥. It follows from (43) that limn→∞ ∥tn − PQ(Aun)∥ = 0, which

together with (44) implies that

lim
n→∞
∥tn − Aun∥ = 0, (45)

Thanks to (39), we obtain

ρ2
n

4
∥φ(pn) − xn∥

2 + γn(2 − γn)(ιn∥νn∥)2
≤ ∥vn − x∗∥2 − ∥un − x∗∥2 → 0.

Thus,

lim
n→∞
∥φ(pn) − xn∥ = 0, (46)

and

lim
n→∞

ιn∥νn∥ = 0. (47)

Due to (8) and (9), we have

∥φ(xn) − xn∥ ≤ ∥φ(xn) − φ(pn)∥ + ∥φ(pn) − xn∥

≤ σ1∥φ(xn) − xn∥ + ∥φ(pn) − xn∥.

It follows that ∥φ(xn) − xn∥ ≤
1

1−σ1
∥φ(pn) − xn∥. It combines with (46) to conclude (a3).

Proof of (a4). Taking into account (42) and (45), we have ∥qn − tn∥ → 0. This together with (16) implies
that

lim
n→∞
∥ψ(rn) − tn∥ = 0. (48)

According to (17) and (18), we obtain

∥tn − ψ(tn)∥ ≤ ∥tn − ψ(rn)∥ + ∥ψ(rn) − ψ(tn)∥
≤ ∥tn − ψ(rn)∥ + σ2∥tn − ψ(tn)∥,
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which leads to ∥tn − ψ(tn)∥ ≤ 1
1−σ2
∥tn − ψ(rn)∥. It follows from (48) that

lim
n→∞
∥tn − ψ(tn)∥ = 0,

which combines with (45) to reach (a4).

Proof of (a5). Since ∥vn − xn∥ ≤
ρn

2 ∥φ(pn) − xn∥, it follows from (46) that

lim
n→∞
∥vn − xn∥ = 0. (49)

Taking into account equality (12), we have

∥un − xn∥ ≤ ∥un − vn∥ + ∥vn − xn∥ ≤ γnιn∥νn∥ + ∥vn − xn∥.

Hence, by (47) and (49), we get limn→∞ ∥un − xn∥ = 0.

Lemma 3.7. Let {xn} be the sequence generated by Algorithm 3.1. Then, ωw(xn) ⊂ Γ.

Proof. Pick up any z∗ ∈ ωw(xn), i.e., there exists {xni } ⊂ {xn} such that xni ⇀ z∗ ∈ C. Utilizing Lemma 3.6, we
deduce that uni ⇀ z∗, vni ⇀ z∗, Auni ⇀ Az∗, Avni ⇀ Az∗ and tni ⇀ Az∗.

Step 1. z∗ ∈ Fix(φ).
From (a3), we have limi→∞ ∥xni − φ(xni )∥ = 0. According to Lemma 2.3, we deduce z∗ ∈ Fix(φ), as φ is

Lipschitz pseudocontractive.
Step 2. z∗ ∈ Ep(C, ϕ1).
Applying Lemma 2.1 and Lemma 2.2, we can deduce that the sequences {un}, {yn}, {zn}, {νn}, {Aun}, {wn},

{qn}, {dn} and {ςn} are all bounded. According to (47), we have

lim
i→∞

ϕ1(zni , vni ) = lim
i→∞

(ιni∥νni∥)∥νni∥ = 0. (50)

By using the convexity of ϕ1(zni , ·), we have

0 = ϕ1(zni , zni ) = ϕ1(zni , (1 − ϖni )vni + ϖni yni )
≤ (1 − ϖni )ϕ1(zni , vni ) + ϖniϕ1(zni , yni ).

So, from (11), we obtain that

ϕ1(zni , vni ) ≥ ϖni (ϕ1(zni , vni ) − ϕ1(zni , yni )) ≥
ϑ1ϖni

2λni

∥vni − yni∥
2,

which combines with (50) to get

lim
i→∞

ϖni∥vni − yni∥
2 = 0. (51)

Applying the equivalent relation (5) to (10) we obtain

0 ∈ ∂2ϕ1(vni , yni ) +
1
λni

(yni − vni ) +NC(yni ). (52)

From relation (3) related to the normal cone NC and inclusion (52), there exists ν̂ni ∈ ∂2ϕ1(vni , yni ) such
that

⟨ν̂ni , y − yni⟩ +
1
λni

⟨yni − vni , y − yni⟩ ≥ 0, ∀y ∈ C. (53)

Owing to the fact that ν̂ni ∈ ∂2ϕ1(vni , yni ), by the subdifferential inequality (4), we get

ϕ1(vni , y) − ϕ1(vni , yni ) ≥ ⟨ν̂ni , y − yni⟩, ∀y ∈ C. (54)

Combining (53) and (54) to conclude

ϕ1(vni , y) − ϕ1(vni , yni ) +
1
λni

⟨yni − vni , y − yni⟩ ≥ 0, ∀y ∈ C. (55)
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It follows that

ϕ1(vni , y) − ϕ1(vni , yni ) +
1
λni

∥yni − vni∥∥y − yni∥ ≥ 0, ∀y ∈ C. (56)

Next, we consider two cases:
Case 1: lim supi→∞ ϖni > 0 and Case 2: limi→∞ ϖni = 0.
Case 1: In this situation, there is a subsequence of {ϖni }, still denoted by {ϖni } such that ϖni > a > 0 when

i ≥ N1 for some positive integer N1. So, by (51), we deduce

lim
i→∞
∥vni − yni∥ = 0, (57)

which implies that yni ⇀ z∗. Letting i→∞ in (56), we have

ϕ1(z∗, y) ≥ ϕ1(z∗, z∗) = 0, ∀y ∈ C,

which yields that z∗ ∈ Ep(C, ϕ1).
Case 2: Here, we may assume without loss of generality that yni ⇀ z† as i → ∞ because of the

boundedness of {yni }. Since vni ∈ C, replacing y by vni in (55), we get

ϕ1(vni , yni ) ≤ −
1
λni

∥yni − vni∥
2. (58)

From (11), for kni − 1, we have

ϕ1(zni,kni−1, vni ) − ϕ1(zni,kni−1, yni ) <
ϑ1

2λni

∥yni − vni∥
2. (59)

Combining (58) and (59) to attain

ϕ1(vni , yni ) ≤
2
ϑ1

(ϕ1(zni,kni−1, yni ) − ϕ1(zni,kni−1, vni )). (60)

Since vni ⇀ z∗, zni,kni−1 ⇀ z∗ and yni ⇀ z†, letting i → ∞ in (60), we have ϕ1(z∗, z†) ≤ 2
ϑ1
ϕ1(z∗, z†), which

yields that ϕ1(z∗, z†) ≥ 0. This together with relations (56) and (58) implies that limi→∞ ∥yni − vni∥ = 0.
Therefore, z∗ ∈ Ep(C, ϕ1).

Step 3. Az∗ ∈ Fix(ψ). In fact, by (a4), we have limi→∞ ∥Auni − ψ(Auni )∥ = 0. Since Auni ⇀ Az∗, utilizing
Lemma 2.3, we conclude the desired result.

Step 4. Az∗ ∈ Ep(Q, ϕ2).
Since ϕ2(dni ,PQ(Auni )) = µni∥ςni∥

2, from (43), we have

lim
i→∞

ϕ2(dni ,PQ(Auni )) = 0. (61)

Thus, from the convexity of ϕ2(dni , ·), we receive

0 = ϕ2(dni , dni ) = ϕ2(dni , (1 − δni )PQ(Auni ) + δni wni )
≤ (1 − δni )ϕ2(dni ,PQ(Auni ) + δniϕ2(dni ,wni ).

This together with (14) leads to

ϕ2(dni ,PQ(Auni ) ≥ δni (ϕ2(dni ,PQ(Auni ) − ϕ2(dni ,wni )) ≥
ϑ2

2τni

δni∥PQ(Auni ) − wni∥
2.

Due to (61), we deduce

lim
i→∞

δni∥PQ(Auni ) − wni∥
2 = 0. (62)

Applying the equivalent relation (5) to (13) to acquire

0 ∈ ∂2ϕ2(PQ(Auni ),wni ) +
1
τni

(wni − PQ(Auni ) +NQ(wni ).
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Consequently, in view of the definition of the normal cone NQ(wni ), we have

ϕ2(PQ(Auni ), x) − ϕ2(PQ(Auni ),wni ) +
1
τni

⟨wni − PQ(Auni ), x − wni⟩ ≥ 0, ∀x ∈ Q. (63)

It follows that

ϕ2(PQ(Auni ), x) − ϕ2(PQ(Auni ),wni ) +
1
τni

∥wni − PQ(Auni )∥∥x − wni∥ ≥ 0, ∀x ∈ Q. (64)

Next, we have to take into consideration two cases:
Case (i): lim supi→∞ δni > 0 and Case (ii): limi→∞ δni = 0.
For Case (i), there exists a subsequence of {δni }, still denoted by {δni } such that δni > b > 0 when i ≥ N2

for some positive integer N2. By virtue of (62), we obtain

lim
i→∞
∥PQ(Auni ) − wni∥ = 0, (65)

which results in wni ⇀ Az∗ because Auni ⇀ Az∗ ∈ Q.
Taking the limit in (64) as i→∞, we have

ϕ2(Az∗, x) ≥ ϕ2(Az∗,Az∗) = 0, ∀x ∈ Q,

which yields that Az∗ ∈ Ep(Q, ϕ2).
In Case (ii), without loss of generality, we may assume that wni ⇀ ẑ as i→ ∞. Replacing x by PQ(Auni )

in (63), we get

ϕ2(PQ(Auni ),wni ) ≤ −
1
τni

∥wni − PQ(Auni )∥
2. (66)

By (14), for lni − 1, we have

ϕ2(dni,lni−1,PQ(Auni ) − ϕ2(dni,lni−1,wni ) <
ϑ2

2τni

∥wni − PQ(Auni )∥
2. (67)

Combining (66) and (67) to obtain

ϕ2(PQ(Auni ),wni ) ≤
2
ϑ2

(ϕ2(dni,lni−1,wni ) − ϕ2(dni,lni−1,PQ(Auni ))). (68)

Taking the limit in (68) as i → ∞, we obtain ϕ2(Az∗, ẑ) ≤ 2
ϑ2
ϕ2(Az∗, ẑ). Therefore, ϕ2(Az∗, ẑ) ≥ 0 and

limi→∞ ∥wni − PQ(Auni )∥ = 0 by (66). Similarly, we can deduce that Az∗ ∈ Ep(Q, ϕ2).
To this end, we have z∗ ∈ Fix(φ)∩Ep(C, ϕ1) and Az∗ ∈ Fix(ψ)∩Ep(Q, ϕ2), i.e., z∗ ∈ Γ and soωw(xn) ⊂ Γ.

Theorem 3.8. The sequence {xn} generated by Algorithm 3.1 converges weakly to some point in Γ.

Proof. We have proved that limn→∞ ∥xn − x∗∥(∀x∗ ∈ Γ) exists and ωw(xn) ⊂ Γ. Finally, using Lemma 2.4, we
can conclude that {xn} converges weakly to some point in Γ. This completes the proof.

According to Algorithm 3.1 and Theorem 3.8, we obtain the following algorithms and corollaries, by
taking precise values for ϕ1, ϕ2, φ, and ψ.

Algorithm 3.9. Let x0 ∈ C be an initial guess.
Step 1. Let xn be given. Calculate

vn = (1 −
ρn

2
)xn +

ρn

2
φ(pn),

where

pn = (1 − ρn)xn + ρnφ(xn),
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in which ρn = ηβi
1 and i = min{0, 1, 2, · · · } such that

ρn∥φ(pn) − φ(xn)∥ ≤ σ1∥pn − xn∥.

Step 2. Compute

qn = (1 −
ϱn

2
)vn +

ϱn

2
ψ(rn),

where

rn = (1 − ϱn)vn + ϱnψ(vn),

in which ϱn = ζβ
j
2 and j = min{0, 1, 2, · · · } such that

ϱn∥ψ(rn) − ψ(vn)∥ ≤ σ2∥rn − vn∥.

Step 3. Compute

xn+1 = PC(xn + αA∗(qn − Axn)),

and set n := n + 1 and return to Step 1.

Corollary 3.10. Suppose that Γ1 := {x∗ ∈ Fix(φ),Ax∗ ∈ Fix(ψ)} , ∅. Then, the sequence {xn} generated by
Algorithm 3.9 converges weakly to some point in Γ1.

Algorithm 3.11. Let x0 ∈ C be an initial guess.
Step 1. Let xn be given. Compute

yn = arg min
u∈C

{
ϕ1(xn,u) +

1
2λn
∥xn − u∥2

}
.

If yn = xn, then set un = xn and go to Step 4. Otherwise, continue to the next step.
Step 2. Set zn,k = (1 − ϖk)xn + ϖkyn, where k = min{1, 2, · · · } such that

2λn(ϕ1(zn, xn) − ϕ1(zn, yn)) ≥ ϑ1∥xn − yn∥
2

Write ϖn = ϖk and zn = zn,k, i.e., zn = (1 − ϖn)xn + ϖnyn.
Step 3. Compute

un = PC(xn − γnιnνn),

where νn ∈ ∂2ϕ1(zn, xn) and ιn =
ϕ1(zn, xn)
∥νn∥

2 .

Step 4. Compute

wn = arg min
v∈Q

{
ϕ2(PQ(Aun), v) +

1
2τn
∥PQ(Aun) − v∥2

}
.

If wn = PQ(Aun), then set tn = wn and go to Step 7. Otherwise, continue to the next step.
Step 5. Set dn,l = (1 − δl)PQ(Aun) + δlwn, where l = min{1, 2, · · · } such that

2τn(ϕ2(dn,PQ(Aun)) − ϕ2(dn,wn)) ≥ ϑ2∥PQ(Aun) − wn∥
2.

Write δn = δl and dn = dn,l, i.e., dn = (1 − δn)PQ(Aun) + δnwn.
Step 6. Compute

tn = PQ(PQ(Aun) − ϵnµnςn),

where ςn ∈ ∂2ϕ2(dn,PQ(Aun)) and µn =
ϕ2(dn,PQ(Aun))

∥ςn∥
2 .

Step 7. Compute

xn+1 = PC(un + αA∗(tn − Aun)),

and set n := n + 1 and return to Step 1.

Corollary 3.12. Suppose that Γ2 := {x∗ ∈ Ep(C, ϕ1),Ax∗ ∈ Ep(Q, ϕ2)} , ∅. Then, the sequence {xn} generated by
Algorithm 3.11 converges weakly to some point in Γ2.
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4. Conclusions

The paper presents a study on split pseudomonotone equilibrium problems along sets of fixed points
of two nonlinear operators with pseudocontractive properties. The results are obtained without the use of
the size of the Lipschits constants of the two operators. A self-adaptive algorithm is designed to solve this
problem, and its convergence is proved. Some known results in literature are also obtained as consequences
of these outcomes.
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