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Available at: http://www.pmf.ni.ac.rs/filomat

Non-commutative and polynomial multidimensional stronger central
sets theorem
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Abstract. The Central Sets Theorem and Milliken-Taylor Theorem extends the famous Hindman’s theorem
in two different directions. In [1] Beiglboeck proved a joint extension of these two theorems. In this article,
we prove the non-commutative version of Beiglboeck’s result. Then we also prove the polynomial extension
of stronger Central Sets Theorem for general commutative groups, which extents a recent result of [6].

1. Introduction

Van der Waerden’s Theorem [13] states that for any partition of the positive integers N one of the cells
of the partition contains arbitrarily length arithmetic progressions. By P f (X) we denote the set of all finite
non-empty subsets of X. For a sequence (xn)∞n=1 in N we set

FS (xn) =

∑
t∈α

xt : α ∈ P f (N)

 .
Hindman’s Theorem [8, Theorem 3.1] states that for any partition of the positive integers N one of

the cells contains all possible finite sums of some sequence. The Central Sets Theorem provided a joint
extension of this two theorems. To state the Central Sets Theorem let us formulate some notations. A set A
is called an IP-set if and only if there exists a sequence (xn)∞n=1 in N such that FS (xn) ⊂ A. (This definitions
makes perfect sense in any semigroup (S, ·) and we use it in this context. FS is an abbreviation of finite sums
and will be replaced by FP if we use multiplicative notation for the semigroup operation).

To state about the Central Sets Theorem, let us introduce some algebraic preliminaries on Stone-Čech
compactification.

Let (S, ·) be a discrete semigroup and βS be the Stone-Čech compactification of the discrete semigroup
S and · on βS (which we represent by the same symbol on S) is the extension of · on S. The points of βS
are ultrafilters and principal ultrafilters are identified by the points of S. The extension is unique extension
for which

(
βS, ·
)

is compact, right topological semigroup with S contained in its topological center. That is,
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for all p ∈ βS the function ρp : βS → βS is continuous, where ρp(q) = q · p and for all x ∈ S, the function
λx : βS → βS is continuous, where λx(q) = x · q. For p, q ∈ βS, p · q =

{
A ⊆ S :

{
x ∈ S : x−1A ∈ q

}
∈ p
}
, where

x−1A =
{
y ∈ S : x · y ∈ A

}
.

There is a famous theorem due to Ellis [10, Corollary 2.39] that if S is a compact right topological
semigroup then the set of idempotents E (S) , ∅.

A non-empty subset I of a semigroup T is called a left ideal of S if TI ⊂ I, where TI = {ts : t ∈ T and s ∈ I},
a right ideal if IT ⊂ I, where IT = {st : t ∈ T and s ∈ I} and a two sided ideal (or simply an ideal) if it is
both a left and right ideal. A minimal left ideal is the left ideal that does not contain any proper left ideal.
Similarly, we can define minimal right ideal.

Any compact Hausdorff right topological semigroup T has the smallest two sided ideal,

K(T) =
⋃
{L : L is a minimal left ideal of T}

=
⋃{

R : R is a minimal right ideal of T
}
.

Given a minimal left ideal L and a minimal right ideal R, L ∩ R is a group, and in particular contains an
idempotent. If p and q are idempotents in T we write p ≤ q if and only if pq = qp = p. An idempotent is
minimal with respect to this relation if and only if it is a member of the smallest ideal K(T) of T. See [10] for
an elementary introduction to the algebra of βS and for any unfamiliar details.

Definition 1.1. Let S be a discrete semigroup and let C be a subset of S. Then C is central if there is an idempotent p
in K
(
βS
)

such that C ∈ p.

The notion of central sets originally introduced by Furstenberg [5] using topological dynamics and latter
by Bergelson and Hindman proved this notation to be equivalent with algebraic definition using algebra of
βN.

Theorem 1.2. (Original Central Sets Theorem) Let l ∈ N and for each i ∈ {1, 2, ..., l} , let
(
yi,n
)∞

n=1be a sequence in
Z. Let C be a central subset of N. Then there exist sequences (an)∞n=1 in N and (Hn)∞n=1 in P f (N) such that

(1) for all n, max Hn < min Hn+1 and
(2) for all F ∈ P f (N) and all i ∈ {1, 2, ..., l} ,

∑
n∈F

an +
∑
t∈Hn

yi,t

 ∈ C.

K. Milliken and A. Taylor ([11],[12]) found a quite natural common extension of the Theorems of Hindman
and Ramsey: For a sequence (xn)∞n=1 in N and k ≥ 1 put

[FS (xn)] k
< :=


∑

t∈α1

xt, . . . ,
∑
t∈αk

xt

 : α1 < . . . < αk ∈ P f (N)


α < β for α, β ∈ P f (N) if and only if maxα < min β.
Let [S]k denote the k-element subsets of a set S. The Milliken-Taylor theorem says that for any finite

partition [N]k = ∪r
i=1Ai, there exist some i ∈ {1, 2, . . . , r} and a sequence (xn)∞n=1 inN such that [FS (xn)] k

< ⊆ Ai.
Define Φ =

{
f ∈NN : for each n ∈N, f (n) ≤ n

}
.

As a combine extension of Milliken-Taylor Theorem and the Central Sets Theorem, Beiglboeck estab-
lished the following result.

Theorem 1.3. [1, Theorem 1.4] Let (S, ·) be a commutative semigroup and assume that there exists a non-principal
minimal idempotent in βS. For each l ∈ N, let ⟨yl,n⟩

∞

n=0 be a sequence in S. Let k, r ≥ 1 and let [S]k = ∪r
i=1Ai. There

exist i ∈ {1, 2, . . . , r}, a sequence (xn)∞n=1 in S and a sequence α0 < α1 < . . . in P f (N) such that for each 1 ∈ Φ,FP

〈xn

∏
t∈αn

y1(n),t

〉∞
n=0




k

<

⊆ Ai.
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There are several extensions of the Central Sets Theorem [2], [3], [4], [7], [9], [6] in the literature. In
[9] authors established a version of the Central Sets Theorem for commutative semigroups considering
countable infinitely many sequences at a time and in [2] authors established the non-commutative version
of the Central Sets Theorem. We state the Theorem from [10].

For our purpose let us introduce the following notations. In a non-commutative semigroup, by
∏

t∈F xt
we mean the product taken in increasing order of indices. In the followingT is the collection of all sequences
in S.

Definition 1.4. Let m ∈N. Then we denote

Im =
{
(H1,H2, . . . ,Hm) ∈ P f (N)m : Ht < Ht+1, t ∈ {1, 2, . . . ,m − 1} ,m > 1

}
, and

Jm = {(t (1) , t (2) , . . . , t (m)) ∈Nm : t (1) < t (2) < . . . < t (m)} .

Let (S, ·) be a semigroup.
(a) Given n ∈N, a ∈ Sm+1, t ∈ Jm and f ∈ T

x
(
m, a, t, f

)
=

 m∏
j=1

a
(
j
)
· f
(
t
(
j
)) · a (m + 1) .

(b) A ⊂ S is a J-set if and only if for each F ∈ P f (T ) there exist m ∈ N, a ∈ Sm+1, and t ∈ Jm such that for each
f ∈ F , x

(
m, a, t, f

)
∈ A.

(c) J (S) =
{
p ∈ βS : for all A ∈ p, then A is a J-set

}
.

(d) A ⊂ S is a C-set if and only if there exist

m : P f (T )→N, α ∈ ×F∈P f (T )Sm(F)+1, and τ ∈ ×F∈P f (T )Im(F)

such that
(i) if F ⊊ G in P f (T ) then τ (F) (m (F)) < τ (G) (1) and
(ii) for any n ∈N, if G1 ⊊ G2 ⊊ . . . ⊊ Gn in P f (T ) and for each i ∈ {1, 2, . . . ,n}, fi ∈ Gi then

n∏
i=1

x
(
m (Gi) , α (Gi) , τ (Gi) , fi

)
∈ A.

Theorem 1.5. [10, Theorem 14.15] Let S be a semigroup, let A be a central subset of S, and for each l ∈ N, let
⟨yl,n⟩

∞

n=1 be a sequence in S. Given l,m ∈N, a ∈ Sm+1 and let H ∈ Im, let

w(a,H, l) =


 m∏

i=1

a (i) ·
∏

t∈H(t)

yl,t


 · a(m + 1).

There exist sequences ⟨m(n)⟩∞n=1, ⟨an⟩
∞

n=1 and ⟨Hn⟩
∞

n=1 such that

1. for each n ∈N, m(n) ∈N, an ∈ Sm(n)+1 and Hn ∈ Im(n) and max Hn,m(n) < min Hn+1,1 and

2. for each f ∈ Φ, FP
(〈

w(an,Hn, f (n)
〉∞

n=1

)
⊆ A.

In [3] author established the polynomial version of the original Central Sets Theorem for commutative
semigroups. In [4] authors gave a version of the Central Sets Theorem to stronger form using arbitrary
many sequences at a time known as new and Stronger Central Sets Theorem.

Theorem 1.6. [4, Theorem 2.2](Stronger Central Sets Theorem for commutative semigroup) Let (S,+) be a commu-
tative semigroup and let C be a central subset of S. Then there exist functions α : P f

(
SN
)
→ S and H : P f

(
SN
)
→

P f (N) such that
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(1) if F,G ∈ P f

(
SN
)

and F ⊊ G then max H (F) < min H (G) and

(2) if m ∈N,G1,G2, ....,Gm ∈ P f

(
SN
)
; G1 ⊊ G2 ⊊ .... ⊊ Gm; and for each

i ∈ {1, 2, ....,m} ,
(
yi,n
)∞

n=1 ∈ Gi, then

m∑
i=1

α (Gi) +
∑

t∈H(Gi)

yi,t

 ∈ C.

In the same article the authors proved the non-commutative extension of the above theorem, as well as
they found an example of a non-commutative semigroup and a set inside that semigroup which witness
the non-commutative original Central Sets Theorem but it does not witness the stronger one.

Theorem 1.7. [4, Corollary 3.10](Stronger Central Sets Theorem for non-commutative semigroup) Let (S, ·) be a
semigroup and let C be a central subset of S. Then there exist functions m : P f (T ) → N, α ∈ ×F∈P f (T )Sm(F)+1

and τ ∈ ×F∈P f (T )Im(F) such that

1. if F ⊊ G in P f (T ) then τ (F) (m (F)) < τ (G) (1) and
2. for any n ∈N, if G1 ⊊ G2 ⊊ . . . ⊊ Gn in P f (T ) and for each i ∈ {1, 2, . . . ,n}, fi ∈ Gi then

n∏
i=1

x
(
m (Gi) , α (Gi) , τ (Gi) ,

〈
yi,t
〉∞

t=1

)
∈ A.

In the second section of the article we shall establish multidimensional version of this Theorem. In the
other direction in [6] authors established polynomial version of the above Theorem. The following theorem
is the polynomial extension of the Theorem 1.6.

Theorem 1.8. (Polynomial Stronger Central Sets Theorem) Let A ⊆N be a central set and T ⊆ P f (P), P is the set
of polynomials fromN toN vanishes as 0. Then there exist functions α : P f

(
NN
)
→ S and H : P f

(
NN
)
→ P f (N)

such that
(1) if F,G ∈ P f

(
NN
)

and F ⊊ G then max H (F) < min H (G) and

(2) if m ∈N,G1,G2, ....,Gm ∈ P f

(
NN
)
; G1 ⊊ G2 ⊊ .... ⊊ Gm; and

for each i ∈ {1, 2, ....,m} , fi ∈ Gi, for all P ∈ T,

m∑
i=1

α (Gi) + P

 m∑
i=1

∑
t∈H(Gi)

fi (t)

 ∈ A.

In our work we will extend 1.3 in the context of non-commutative semigroup. In the third section of the
article we shall establish multidimensional version of Theorem 1.8.

2. Non-commutative multidimensional Central Sets Theorem

Let us recall the following technical lemma from [1].

Lemma 2.1. [1, Lemma 3.1] Let S be a set, let e ∈ βS \ S, let k, r ≥ 1 and let [S] k = ∪r
i=1Ai. For each i ∈ {1, 2, . . . , r},

each t ∈ {1, 2, . . . , k} and each E ∈ [S] t−1, define Bt (E, i) by downward induction on t:

1. for E ∈ [S] k−1, Bk (E, i) :=
{
y ∈ S \ E : E ∪

{
y
}
∈ Ai
}
.

2. for 1 ≤ t < k and E ∈ [S] t−1,

Bt (E, i) :=
{
y ∈ S \ E : Bt+1

(
E ∪
{
y
}
, i
)
∈ e
}
.

Then there exists some i ∈ {1, 2, . . . , r} such that B1 (∅, i) ∈ e.
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We need to introduce a few notations before introducing a key lemma. Let S be a set. A set of ordered
tuples T of S is said to be a tree if all of its initial segments belong to T. More formally let by S<ω, we mean
collection of all functions from {0, . . . ,n − 1} to S, where n ∈ N. Now a non empty set T ⊆ S<ω is a tree in S
if f ∈ T if and only if for any A = {0, 1, . . . ,m} ⊆ dom f , f |A∈ T.

A function f ∈ S{0,...,n−1} can be identified by
〈

f (0) , f (1) , . . . , f (n − 1)
〉
.

If s ∈ S, then f⌢s :=
〈

f (0) , f (1) , . . . , f (n − 1) , s
〉
. For f ∈ S<ω, we put T

(
f
)
=
{
s ∈ S : f⌢s ∈ T

}
.

The following is an important lemma for our purpose.

Lemma 2.2. Let (S, ·) be a semigroup such that there exists an idempotent e ∈ βS\S, let k, r ≥ 1 and let [S] k =
⋃r

i=1 Ai.
Then there exist i ∈ {1, 2, . . . , r} and a tree T ⊆ S<ω such that for all f ∈ T, and α1 < α2 < . . . < αk ⊆ dom f , α j ∈

P f (ω) , j ∈ {1, 2, . . . , k} one has:

1. T
(

f
)
∈ e.

2.
{∏

t∈α1
f (t) ,

∏
t∈α2

f (t) , . . . ,
∏

t∈αk
f (t)
}
∈ Ai.

Proof. [1, Lemma 3.2].

The following theorem is non-commutative extension of Beiglboeck theorem. In fact, we will be using the
same techniques for induction.

Theorem 2.3. Let (S, ·) be a commutative semigroup and assume that there exists a non-principal minimal idempotent
in βS. Let k, r ≥ 1 be integers and let [S] k = ∪r

l=1Al. There exist l ∈ {1, 2, . . . , r} and functions

m : P f (T )→N, α ∈ ×F∈P f (T )Sm(F)+1, and τ ∈ ×F∈P f (T )Im(F)

such that

1. if F ⊊ G in T , then τ (F) (m (F)) < τ (G) (1) and
2. for any sequence G1 ⊊ G2 ⊊ . . . ⊊ Gn in P f (T ) , fi ∈ Gi and α1 < α2 < · · · < αk ≤ {n} in P f (N), we have∏

i∈α1

x
(
m (Gi) , α (Gi) , τ (Gi) , fi

)
, . . . ,

∏
i∈αk

x
(
m (Gi) , α (Gi) , τ (Gi) , fi

) ∈ Al.

Proof. Fix a minimal idempotent e ∈ βS \ S. Let i ∈ {1, 2, . . . , r} and T ⊆ S<ω be a tree as provided by lemma
2.2. We shall inductively construct sequences G1 ⊊ G2 ⊊ . . . ⊊ Gn in P f (T ) and α1 < α2 < · · · < αk ≤ {n}.
Assume we have constructed G1 ⊊ G2 ⊊ . . . ⊊ Gn−1 and α1 < α2 < · · · < αk−1 < {n} such that〈∏

i∈α1

x
(
m (Gi) , α (Gi) , τ (Gi) , fi

)
, . . . ,

∏
i∈αk−1

x
(
m (Gi) , α (Gi) , τ (Gi) , fi

)〉
∈ T

By lemma 2.2 we have

G = T

〈∏
i∈α1

x
(
m (Gi) , α (Gi) , τ (Gi) , fi

)
, . . . ,

∏
i∈αk−1

x
(
m (Gi) , α (Gi) , τ (Gi) , fi

)〉 ∈ e.

Then G is a central set in S. Then we have fi ∈ Gi,
∏

i∈αk
x
(
m (Gi) , α (Gi) , τ (Gi) , fi

)
∈ G, where αk−1 < αk ≤ {n} .

Then 〈∏
i∈α1

x
(
m (Gi) , α (Gi) , τ (Gi) , fi

)
, . . . ,

∏
i∈αk

x
(
m (Gi) , α (Gi) , τ (Gi) , fi

)〉
∈ T.

using lemma 2.2 we get our desire result.
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3. Multidimensional polynomial Central Sets Theorem

In [6] authors proved a polynomial generalization of Stronger Central Sets Theorem followed by poly-
nomial generalization of the Central Sets Theorem in [3]. In [3] authors proved the polynomial version
of the Central sets Theorem for countable commutative group taking finitely many sequences at a time.
But in [6] authors deal with semigroup (N,+) taking all sequences at a time. Almost verbatim we get the
polynomial generalization of Stronger Central Sets Theorem for countable commutative group. First let us
recall the definition of polynomial for countable commutative group.

Definition 3.1. A map f : G → H between countable commutative groups we say that f is a polynomial map of
degree 0 if it is constant. We say that f is a polynomial map of degree d, d ∈ N, if it is not a polynomial map of
degree d − 1 and for every h ∈ H, the map x→ f (x + h) − f (x) is a polynomial of degree ≤ d − 1. Finally we denote
by P (G,H) the set of all polynomial maps f : G → H with f (0) = 0. Note that homomorphisms are elements of
P (G,H) having degree 1.

Theorem 3.2. (Polynomial CST) Let (S,+) be a countable commutative group and F ∈ P f

((
S j
)
N
)
, let T ∈ P f (P),

where P is set of all polynomials from S j to S vanishes at zero and let A be a central subset of S. Then there exist
sequences ⟨bn⟩

∞

n=1 in S and ⟨Hn⟩
∞

n=1 in P f (N) such that

1. for each n ∈N, max Hn < min Hn+1 and
2. for each f ∈ F, each P ∈ T and each K ∈ P f (N)

∑
n∈K

bn + P

∑
n∈K

∑
t∈Hn

f (t)

 ∈ A.

In [6] authors established a stronger version of the above theorem in (N,+) which we extend for
countable commutative group. First we need the following lemma.

Lemma 3.3. Let j,m ∈ N, let S be a countable commutative group and let P be a set of all polynomials from S j to S
vanishes at 0. Let A ⊂ S be a central set in S and F ∈ P f

((
S j
)
N
)
. Then for every T ∈ P f (P) there exist a ∈ S and

H ∈ P f (N) such that a + P
(∑

t∈H f (t)
)
∈ A, for all f ∈ F and P ∈ T.

Proof. [3, Corollary 2.12].

The lemma has a following stronger version.

Lemma 3.4. Let j,m ∈ N, let S be a countable commutative group and let P be a set of all polynomials from S j to S
vanishes at 0. Let A ⊂ S be a central set in S and F ∈ P f

((
S j
)
N
)
. Then for every T ∈ P f (P) there exist a ∈ S and

H ∈ P f (N) with min H > m such that a + P
(∑

t∈H f (t)
)
∈ A, for all f ∈ F and P ∈ T.

Proof. Let j,m ∈ N, T ∈ P f (P) and F ∈ P f

((
S j
)
N
)
, for each f ∈ F define 1 f ∈

(
S j
)
N by 1 f (t) = f (t +m),

t ∈N. For this K =
{
1 f : f ∈ F

}
∈ P f

((
S j
)
N
)
, there exist a ∈ S and L ∈ P f (N) such that a+P

(∑
t∈L 1 f (t)

)
∈ A,

for all f ∈ F and P ∈ T. Therefore a + P
(∑

t∈L f (t +m)
)
∈ A, for all f ∈ F and P ∈ T, i.e. a + P

(∑
t∈H f (t)

)
∈ A,

for all f ∈ F and P ∈ T, where H = L +m > m.

In the following T j is the collection of all sequences in S j.

Theorem 3.5. Let (S, ·) be a countable commutative semigroup, let T ∈ P f (P), whereP be a set of all polynomials from
S j to S vanishes at 0. Let A ⊂ S be a central set. Then there exist functions α : P f

(
T j

)
→ S, H : P f

(
T j

)
→ P f (N),

such that

1. if ∅ , F ⊊ G then H (F) < H (G) and



S. Pal / Filomat 39:6 (2025), 2091–2099 2097

2. for any n ∈N, G1 ⊊ G2 ⊊ . . . ⊊ Gn in P f

(
T j

)
, we have for each i ∈ {1, 2, ....,n} , fi ∈ Gi, and for all P ∈ T,

n∑
i=1

α (Gi) + P

 n∑
i=1

∑
t∈H(Gi)

fi (t)

 ∈ A.

Proof. Choose a minimal idempotent p ∈ βS with A ∈ p. For F ∈ P f

(
T j

)
, we shall use induction on

cardinality of F , define α (F) ∈ S and H (F) ∈ P f (N) for witnessing (1, 2).
If F =

{
f
}
, as p is minimal idempotent, the set A∗ =

{
x ∈ A : −x + A ∈ p

}
belongs to p [10, Corollary 4.14].

Hence A∗ is a central set. So by [3, Corollary 2.12], there exist a ∈ S and H ∈ P f (N) such that

∀P ∈ T, a + P

∑
t∈H

f (t)

 ∈ A∗.

By setting α
({

f
})
= a and H

({
f
})
= H, conditions (1) and (2) are satisfied.

Now assume that | F |> 1, α (G) and H (G) have been defined for all proper subsets G of F. Let
K =
⋃
{H (G) : ∅ , G ⊊ F} ∈ P f (N), m = max K and

Let

R =


∑n

i=1
∑

t∈H(Gi) fi (t) | n ∈N
∅ , G1 ⊊ G2 ⊊ · · · ⊊ Gn ⊊ F,

fi ∈ Gi,∀i = 1, 2, ..,n.


M =


∑n

i=1 α (Gi) + P
(∑n

i=1
∑

t∈H(Gi) fi (t)
)
| n ∈N

∅ , G1 ⊊ G2 ⊊ · · · ⊊ Gn ⊊ F,
fi ∈ Gi,∀i = 1, 2, ..,n, P ∈ T.


Then R is a finite subset of S j, M is a finite subset of S and by induction hypothesis , M ⊆ A∗.
Let

B = A∗ ∩

⋂
x∈M

(−x + A∗)

 ∈ p.

For P ∈ T and d ∈ R, let us define the polynomial Qp,d ∈ P
(
S j,S
)

by

Qp,d
(
y
)
= P
(
y + d

)
− P (d) .

Degree of Qp,d is one degree lesser than P.
Let D = T ∪

{
Qp,d | P ∈ T and d ∈ R

}
.

From lemma 3.4, there exist γ ∈ P f (N) with min
(
γ
)
> m and a ∈ S such that

∀Q ∈ D, f ∈ F a +Q

∑
t∈γ

f (t)

 ∈ B.

We set α (F) = a and H (F) = γ. Now we verify conditions (1) and (2).
Since min

(
γ
)
> m, (1) is satisfied.

To verify (2), let n ∈N and G1,G2, ...,Gn ∈ P f

(
T j

)
,G1 ⊊ G2 ⊊ ..... ⊊ Gn = F and fi ∈ Gi, i = 1, 2, ...,n.

For n = 1, G1 = Gn = F, α (Gn)+P
(∑

t∈H(Gn) fn (t)
)
= a+P

(∑
t∈γ f (t)

)
∈ B ⊆ A∗ for all P ∈ T ⊆ D, and f ∈ F.

If n > 1, then

CA =

n∑
i=1

α (Gi) + P

 n∑
i=1

∑
t∈H(Gi)

fi (t)
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= α (Gn) +
n−1∑
i=1

α (Gi) + P

 ∑
t∈H(Gn)

fi (t) +
n−1∑
i=1

∑
t∈H(Gi)

fi (t)


= a +

n−1∑
i=1

α (Gi) + P

∑
t∈γ

fn (t) +
n−1∑
i=1

∑
t∈H(Gi)

fi (t)


Since Gn = F and α (F) = a,H (F) = γ.

CA = a +
n−1∑
i=1

α (Gi) + P

n−1∑
i=1

∑
t∈H(Gi)

fi (t)

 + P

∑
t∈γ

fn (t) +
n−1∑
i=1

∑
t∈H(Gi)

fi (t)

 − P

n−1∑
i=1

∑
t∈H(Gi)

fi (t)


= a + y +Qp,d

∑
t∈γ

fn (t)

 ,
where y =

∑n−1
i=1 α (Gi) + P

(∑n−1
i=1
∑

t∈H(Gi) fi (t)
)
∈M, d =

∑n−1
i=1
∑

t∈H(Gi) fi (t) ∈ R and P ∈ T so Qp,d ∈ D.
So we have

a +Qp,d

∑
t∈γ

fn (t)

 ∈ B ⊆ −y + A∗.

Therefore

n∑
i=1

α (Gi) + P

 n∑
i=1

∑
t∈H(Gi)

fi (t)

 ∈ A∗.

This completes the induction argument, hence the proof.

Now we will extend Beiglboeck Multidimensional Central Sets Theorem for countable commutative group
and polynomial version of Stronger Central Sets Theorem.

Theorem 3.6. Let (S, ·) be a countable commutative group and assume that there exists a non principal minimal
idempotent in βS. Let k, r ∈ N and let [S]k = ∪r

l=1Al. There exist l ∈ {1, 2, . . . , r} and functions α : P f

(
T j

)
→ S,

H : P f

(
T j

)
→ P f (N) such that

1. if ∅ , F ⊊ G then H (F) < H (G)

2. for G1 ⊊ G2 ⊊ . . . ⊊ Gnk in P f

(
T j

)
, for every β1 < β2 < . . . < βk ≤ {nk} in P f (N) and for every

F ∈ P f

(
P
(
S j,S
))

, fi ∈ Gi we have

〈 ∑
i∈β1
α (Gi) + P

(∑
i∈β1

∑
t∈H(Gi) fi (t)

)
, . . . ,∑

i∈βk
α (Gi) + P

(∑
i∈βk

∑
t∈H(Gi) fi (t)

) 〉
∈ Al,

for all P ∈ F.

Proof. As the theorem 2.2 we fix a minimal idempotent e ∈ βS \ S. Let i ∈ {1, 2, . . . , r} and T ⊆ S<ω be a
tree as provided by lemma 2.2. We fixed F ∈ P f

(
P
(
S j,S
))

and will inductively construct the sequence

G1 ⊊ G2 ⊊ . . . ⊊ Gnk in P f

(
T j

)
and β1 < β2 < . . . < βk ≤ {nk}. Assume we have inductively constructed the

sequence G1 ⊊ G2 ⊊ . . . ⊊ Gnk−1 and β1 < β2 < . . . < βk−1 < {nk} such that



S. Pal / Filomat 39:6 (2025), 2091–2099 2099

〈 ∑
i∈β1
α (Gi) + P

(∑
i∈β1

∑
t∈H(Gi) fi (t)

)
, . . . ,∑

i∈βk−1
α (Gi) + P

(∑
i∈βk−1

∑
t∈H(Gi) fi (t)

) 〉 ∈ T.

fi ∈ Gi, for all P ∈ F.
By lemma 2.2, we have

C = T

〈 ∑i∈β1
α (Gi) + P

(∑
i∈β1

∑
t∈H(Gi) fi (t)

)
, . . . ,∑

i∈βk−1
α (Gi) + P

(∑
i∈βk−1

∑
t∈H(Gi) fi (t)

) 〉 ∈ e.

Then C is a central set in S. Then for F ∈ P f

(
P
(
S j,S
))

and Gnk−1+1 ⊊ Gnk−1+2 ⊊ . . . ⊊ Gnk , fi ∈ Gi,∑
i∈βk

(
α (Gi) + P

(∑
i∈βk

∑
t∈H(Gi) fi (t)

))
∈ C for all P ∈ F, where βk−1 < βk ≤ {nk}.

So we have,〈 ∑
i∈β1
α (Gi) + P

(∑
i∈β1

∑
t∈H(Gi) fi (t)

)
, . . . ,∑

i∈βk
α (Gi) + P

(∑
i∈βk

∑
t∈H(Gi) fi (t)

) 〉
∈ T,

as we wanted to show.
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