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Abstract. Let A be a unital C∗-algebra with unit e and let ν ∈ [0, 1]. We introduce the concept of the
ν-weighted contraharmonic mean of two positive definite elements a and b of A by

Cν(a, b) := 2
(
(1 − ν)a + νb

)
−

(
(1 − ν)a−1 + νb−1

)−1
.

When ν ∈ (0, 1), we show that

Cν(a, b) = max
x+y=e

{
2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1 y∗by

}
,

and then apply it to present some properties of this weighted mean.

1. Introduction and Preliminaries

The theory of (weighted) means for numbers is a classical and very well developed area in mathematical
analysis (see, e.g., [6, Chapters II-III]). A mean of positive scalarsα and βmay be introduced in many different
ways. One of the most important is a concept of the Gini–Beckenbach–Lehmer mean ([2, 4, 9]):

Ms(α, β) =
αs + βs

αs−1 + βs−1 .

Notice that the harmonic mean (H), geometric mean (G), arithmetic mean (A) and contraharmonic mean
(C), which is frequently used in this paper, can be associated with this mean, respectively, by letting s = 0,
s = 1

2 , s = 1 and s = 2. That is,

H(α, β) =M0(α, β) =
2αβ
α + β

,

G(α, β) =M 1
2
(α, β) =

√
αβ,

A(α, β) =M1(α, β) =
α + β

2
,

C(α, β) =M2(α, β) =
α2 + β2

α + β
.
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Let A be a C∗-algebra. An element a of A is positive, in short 0 ≤ a, if a = b∗b for some b ∈ A . If 0 ≤ a, then
we denote by a1/2 the unique positive square root of a. If a and b are self-adjoint elements of A such that
0 ≤ a− b, we write b ≤ a. An element a of A is also said to be positive definite if a is positive and invertible.
Averaging operations are of interest in the context of von Neumann algebras and C∗-algebras as well, and
various notions of (weighted) means of positive definite elements have been studied (see [3, 7, 8, 10] and
the references therein).

Let ν ∈ [0, 1]. For two positive definite elements a and b of A the (ν-weighted) harmonic mean Hν,
(ν-weighted) geometric mean Gν and (ν-weighted) arithmetic mean Aν are defined by

Hν(a, b) =
(
(1 − ν)a−1 + νb−1

)−1
,

Gν(a, b) = a
1
2

(
a−

1
2 ba−

1
2

)ν
a

1
2 ,

Aν(a, b) = (1 − ν)a + νb.

In this note, inspired by the definition for the contraharmonic mean of matrices [1, 5], we introduce
the concept of the ν-weighted contraharmonic mean in the setting of C∗-algebras. We investigate some
properties of this weighted mean and prove inequalities involving it.

2. Results

As we have already mentioned, the contraharmonic mean of two positive scalars is defined by the
formula

C(α, β) =
α2 + β2

α + β
.

This may be rewritten as

C(α, β) = 2A(α, β) −H(α, β).

This motivates the following definition.

Definition 2.1. Let A be a unital C∗-algebra with unit e and let ν ∈ [0, 1]. The ν-weighted contraharmonic mean of
two positive definite elements a and b of A is defined by

Cν(a, b) = 2Aν(a, b) −Hν(a, b).

Remark 2.2. In the sequel, a, b, c and d denote positive definite elements of a unital C∗-algebra A with unit e. Also,
from now on, ν ∈ [0, 1], unless stated otherwise.

Remark 2.3. The following properties of the weighted contraharmonic mean are obvious:

(i) C0(a, b) = a, C1(a, b) = b and Cν(a, a) = a.

(ii) Cν(a, b) = C1−ν(b, a).

(iii) Cν(αe, βe) = Cν(α, β)e for any α, β > 0.

(iv) Cν(ra, rb) = rCν(a, b) for any r > 0.

Remark 2.4. Obviously, Cν(a, b) ≤ 2Aν(a, b). It is also easy to see that

Hν
(∥∥∥a−1

∥∥∥−1
,
∥∥∥b−1

∥∥∥−1
)

e ≤ Hν(a, b).

Thus, by Definition 2.1, we have

Cν(a, b) ≤ 2Aν(a, b) −Hν
(∥∥∥a−1

∥∥∥−1
,
∥∥∥b−1

∥∥∥−1
)

e.
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If α and β are two positive scalars, then the contraharmonic mean C(α, β) can be stated by the solution
of the following variational problem:

C(α, β) = max
s+t=1

{
α − 2αs2 + β − 2βt2

}
.

Motivated by this expression for the contraharmonic mean of scalars, we establish the following theorem.

Theorem 2.5. Let ν ∈ (0, 1). Then

Cν(a, b) = max
x+y=e

{
2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1y∗by

}
.

Proof. Note first that, by direct computations we have

a
(
νa + (1 − ν)b

)−1
b = Hν(a, b) = b

(
νa + (1 − ν)b

)−1
a (1)

and

ν−1(1 − ν)a−
1
2 ba−

1
2 −

(
e + ν(1 − ν)−1a

1
2 b−1a

1
2

)−1

=
(
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)− 1
2
(
ν−1(1 − ν)a−

1
2 ba−

1
2

)2 (
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)− 1
2 . (2)

Set z = (1 − ν)
(
νa + (1 − ν)b

)−1
b and w = ν

(
νa + (1 − ν)b

)−1
a. Then z + w = e. By (1), we have

max
x+y=e

{
2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1y∗by

}
≥ 2(1 − ν)a − (1 − ν)−1z∗az + 2νb − ν−1w∗bw

= 2(1 − ν)a − (1 − ν)b
(
νa + (1 − ν)b

)−1
a
(
νa + (1 − ν)b

)−1
b

+ 2νb − νa
(
νa + (1 − ν)b

)−1
b
(
νa + (1 − ν)b

)−1
a

= 2
(
(1 − ν)a + νb

)
− (1 − ν)b

(
νa + (1 − ν)b

)−1
Hν(a, b)

− νa
(
νa + (1 − ν)b

)−1
Hν(a, b)

= 2Aν(a, b) −
(
(1 − ν)b + νa

)(
νa + (1 − ν)b

)−1
Hν(a, b)

= 2Aν(a, b) −Hν(a, b) = Cν(a, b),

and hence

Cν(a, b) ≤ max
x+y=e

{
2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1y∗by

}
. (3)

Now, suppose x, y ∈ A with x + y = e. Let us put

h :=
(
e + ν−1(1 − ν)a−

1
2 ba−

1
2

) 1
2 a

1
2 xa−

1
2 − ν−1(1 − ν)a−

1
2 ba−

1
2

(
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)− 1
2 .
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By exploiting (2) we have

a
1
2

(
e + ν(1 − ν)−1a

1
2 b−1a

1
2

)−1
a

1
2 + a

1
2 h∗ha

1
2

= a
1
2

(
e + ν(1 − ν)−1a

1
2 b−1a

1
2

)−1
a

1
2 + x∗a

1
2

(
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)
a

1
2 x

− x∗a
1
2

(
e + ν−1(1 − ν)a−

1
2 ba−

1
2

) 1
2
(
ν−1(1 − ν)a−

1
2 ba−

1
2

) (
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)− 1
2 a

1
2

− a
1
2

(
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)− 1
2
(
ν−1(1 − ν)a−

1
2 ba−

1
2

) (
e + ν−1(1 − ν)a−

1
2 ba−

1
2

) 1
2 a

1
2 x

+ a
1
2

(
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)− 1
2
(
ν−1(1 − ν)a−

1
2 ba−

1
2

)2 (
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)− 1
2 a

1
2

= a
1
2

(
e + ν(1 − ν)−1a

1
2 b−1a

1
2

)−1
a

1
2 + x∗ax

+ a
1
2

(
e − a−

1
2 x∗a

1
2

) (
ν−1(1 − ν)a−

1
2 ba−

1
2

) (
e − a

1
2 xa−

1
2

)
a

1
2 − ν−1(1 − ν)b

+ a
1
2

(
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)− 1
2
(
ν−1(1 − ν)a−

1
2 ba−

1
2

)2 (
e + ν−1(1 − ν)a−

1
2 ba−

1
2

)− 1
2 a

1
2

= a
1
2

(
e + ν(1 − ν)−1a

1
2 b−1a

1
2

)−1
a

1
2 + x∗ax

+ a
1
2

(
a−

1
2 y∗a

1
2

) (
ν−1(1 − ν)a−

1
2 ba−

1
2

) (
a

1
2 ya−

1
2

)
a

1
2 − ν−1(1 − ν)b

+ ν−1(1 − ν)b − a
1
2

(
e + ν(1 − ν)−1a

1
2 b−1a

1
2

)−1
a

1
2

= x∗ax + ν−1(1 − ν)y∗by,

and wherefrom

a
1
2

(
e + ν(1 − ν)−1a

1
2 b−1a

1
2

)−1
a

1
2 + a

1
2 h∗ha

1
2 = x∗ax + ν−1(1 − ν)y∗by.

This implies

(1 − ν)−1a
1
2 h∗ha

1
2 = (1 − ν)−1x∗ax + ν−1y∗by − (1 − ν)−1a

1
2

(
e + ν(1 − ν)−1a

1
2 b−1a

1
2

)−1
a

1
2 . (4)

Since 0 ≤ (1 − ν)−1a
1
2 h∗ha

1
2 , by (4) we obtain

2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1y∗by

≤ 2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1y∗by + (1 − ν)−1a
1
2 h∗ha

1
2

= 2Aν(a, b) − (1 − ν)−1a
1
2

(
e + ν(1 − ν)−1a

1
2 b−1a

1
2

)−1
a

1
2

= 2Aν(a, b) −
(
(1 − ν)a−1 + νb−1

)−1

= 2Aν(a, b) −Hν(a, b) = Cν(a, b),

and so

2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1y∗by ≤ Cν(a, b) (x + y = e). (5)

It follows from (5) that

max
x+y=e

{
2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1y∗by

}
≤ Cν(a, b). (6)

Now, by (3) and (6), we deduce the desired result.

As a consequence of Theorem 2.5, we have the following result.
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Corollary 2.6. Let p be a projection in A . Then

Cν(a, b) ≤ 2Aν(a, b) − (1 − ν)−1pap − ν−1(e − p)b(e − p).

Proof. This follows immediately form Theorem 2.5 by setting x = p and y = e − p.

Remark 2.7. Setting b = a the inequality in Corollary 2.6 reduces to the familiar inequality

(1 − ν)−1pap + ν−1(e − p)a(e − p) ≤ a.

Here, we use Theorem 2.5 to obtain operator inequalities.

Corollary 2.8. Let µ ∈ [0, 1]. Then

Cν
(
Aµ(a, b),Aµ(c, d)

)
≤ Aµ

(
Cν(a, c),Cν(b, d)

)
.

Proof. We may assume that ν ∈ (0, 1) otherwise, by Remark 2.3(i), the desired inequality trivially holds. Let
x + y = e. By Theorem 2.5 we have

Aµ
(
Cν(a, c),Cν(b, d)

)
= (1 − µ)Cν(a, c) + µCν(b, d)

≥ (1 − µ)
(
2(1 − ν)a − (1 − ν)−1x∗ax + 2νc − ν−1y∗cy

)
+ µ

(
2(1 − ν)b − (1 − ν)−1x∗bx + 2νd − ν−1y∗dy

)
= 2(1 − ν)

(
(1 − µ)a + µb

)
− (1 − ν)−1x∗

(
(1 − µ)a + µb

)
x

+ 2ν
(
(1 − µ)c + µd

)
− ν−1y∗

(
(1 − µ)c + µd

)
y

and hence

2(1 − ν)Aµ(a, b) − (1 − ν)−1x∗Aµ(a, b)x + 2νAµ(c, d) − ν−1y∗Aµ(c, d)y ≤ Aµ (Cν(a, c),Cν(b, d)) .

Thus,

max
x+y=e

{
2(1 − ν)Aµ(a, b) − (1 − ν)−1x∗Aµ(a, b)x + 2νAµ(c, d) − ν−1y∗Aµ(c, d)y

}
≤ Aµ

(
Cν(a, c),Cν(b, d)

)
.

Now, from Theorem 2.5 we obtain Cν
(
Aµ(a, b),Aµ(c, d)

)
≤ Aµ

(
Cν(a, c),Cν(b, d)

)
.

Remark 2.9. Let µ ∈ [0, 1]. By Corollary 2.8 we have

Cν
(
Aµ(a, a),Aµ(a, b)

)
≤ Aµ

(
Cν(a, a),Cν(a, b)

)
. (7)

Since Aµ(a, a) = Cν(a, a) = a, from (7) it follows that

Cν
(
a,Aµ(a, b)

)
≤ Aµ

(
a,Cν(a, b)

)
.

Another consequence of Theorem 2.5 can be stated as follows.

Corollary 2.10. Let z be an invertible element of A . Then

Cν
(
z∗az, z∗bz

)
= z∗Cν(a, b)z.
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Proof. Since by Remark 2.3(i) the desired identity trivially holds when ν = 0 and ν = 1, we may assume that
ν ∈ (0, 1). Let x + y = e. Put x0 = zxz−1 and y0 = zyz−1. Then x0 + y0 = e. So, by Theorem 2.5, we have

z∗Cν(a, b)z = z∗
(
max
x+y=e

{
2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1y∗by

})
z

≥ z∗
(
2(1 − ν)a − (1 − ν)−1x∗

0
ax0 + 2νb − ν−1y∗

0
by0

)
z

= 2(1 − ν)(z∗az) − (1 − ν)−1x∗(z∗az)x + 2ν(z∗bz) − ν−1y∗(z∗bz)y,

and so

2(1 − ν)(z∗az) − (1 − ν)−1x∗(z∗az)x + 2ν(z∗bz) − ν−1y∗(z∗bz)y ≤ z∗Cν(a, b)z.

Therefore,

max
x+y=e

{
2(1 − ν)(z∗az) − (1 − ν)−1x∗(z∗az)x + 2ν(z∗bz) − ν−1y∗(z∗bz)y

}
≤ z∗Cν(a, b)z.

Now, by Theorem 2.5, we conclude that Cν
(
z∗az, z∗bz

)
≤ z∗Cν(a, b)z. By a similar argument, we get z∗Cν(a, b)z ≤

Cν
(
z∗az, z∗bz

)
and the proof is completed.

Our next assertion is interesting on its own right.

Corollary 2.11. There exists a contraction z in A such that

Aν(a, b) = z∗Cν(a, b)z.

Proof. Let ν ∈ (0, 1). Since (1 − ν)e + νe = e, by Theorem 2.5, we have

Cν(a, b) ≥ 2(1 − ν)a − (1 − ν)−1
(
(1 − ν)e

)∗
a
(
(1 − ν)e

)
+ 2νb − ν−1

(
νe

)∗
b
(
νe

)
= 2(1 − ν)a − (1 − ν)a + 2νb − νb = Aν(a, b),

and so

Aν(a, b) ≤ Cν(a, b). (8)

By Remark 2.3(i), the inequality (8) holds trivially for ν = 0 and ν = 1. Put

z := (Cν(a, b))−
1
2 (Aν(a, b))

1
2 .

From (8) it follows that

z∗z = (Aν(a, b))
1
2 (Cν(a, b))−1 (Aν(a, b))

1
2 ≤ e,

and hence z is a contraction. It is also easy to check that z∗Cν(a, b)z = Aν(a, b).

Finally, we state an inequality for non-zero positive linear functionals.

Corollary 2.12. Let φ be a non-zero positive linear functional on A . Then

Cν
(
φ(a), φ(b)

)
≤ φ

(
Cν(a, b)

)
.
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Proof. We may assume that ν ∈ (0, 1) otherwise, by Remark 2.3(i), the desired inequality trivially holds. Set
x0 =

(1−ν)φ(b)
φ(νa+(1−ν)b) e and y0 =

νφ(a)
φ(νa+(1−ν)b) e. Then x0 + y0 = e. Hence, by Theorem 2.5, we have

φ
(
Cν(a, b)

)
= φ

(
max
x+y=e

{
2(1 − ν)a − (1 − ν)−1x∗ax + 2νb − ν−1y∗by

})
≥ φ

(
2(1 − ν)a − (1 − ν)−1x∗

0
ax0 + 2νb − ν−1y∗

0
by0

)
= 2

(
(1 − ν)φ(a) + νφ(b)

)
−

(
(1 − ν)φ2(b)φ(a)
φ2 (νa + (1 − ν)b)

+
νφ2(a)φ(b)

φ2 (νa + (1 − ν)b)

)
= 2Aν

(
φ(a), φ(b)

)
−

φ(a)φ(b)
φ (νa + (1 − ν)b)

= 2Aν
(
φ(a), φ(b)

)
−Hν

(
φ(a), φ(b)

)
= Cν

(
φ(a), φ(b)

)
.
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