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Abstract. McShane integrals are generalized Riemann type integrals. In this paper, monotone convergence
of µ-McShane integrable function is discussed. Further we introduce µ-equi-integrability, and µ-uniformly
absolutely continuity on a complete metric space, endowed with a Radon measure µ and a family of
cells that satisfies the Vitali covering theorem with respect to µ. We find several convergence theorems
based on µ-equi-integrability, and µ-uniformly absolutely continuity. Finally, we establish a necessary and
sufficient condition for the sequence of µ-McShane integrable functions to be µ-equi-integrable with respect
to µ-uniformly absolutely continuity.

1. Introduction and preliminaries

For a great majority of mathematicians, the Lebesgue integral is considered the official or standard
integral in the field. To comprehend Lebesgue integral, a substantial knowledge of measure theory is
required. Lebesgue integral becomes complex due to the abstract nature of measure theory. McShane
established a Riemann-type integral in the late 1960s and showed that the McShane integral is equivalent
to the Lebesgue integral. Being a Riemann-type integral, it is more user-friendly to work with than the
Lebesgue integral. Measures and σ-algebras are also excluded from his integral. McShane integral has
undergone several extensions. Gordon [3] discussed several properties of McShane integrals. Additionally
several convergence properties are also included in his book. Gordon [4] introduced and developed the
properties of McShane integral for the case in which the function has values in a Banach space. One
can read [1] for strongly McShane integrable functions and the representation theorem. In [10], Paluga
et al. defined the McShane integral of a function with values in a topological vector space (TVS). It
is demonstrated in this study that when the space under discussion is Banach, the TVS-version and the
Banach-version of the McShane integral are equal. Kurzweil et al. [7] discussed the idea of equi-integrability,
a convergence theorem for McShane integrable sequences of functions is demonstrated to be equal to the
Vitali convergence theorem. One can see [5, 8, 9] and their references therein for different convergence
results of different integrals.
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* Corresponding author: Hemanta Kalita
Email addresses: hemanta30kalita@gmail.com (Hemanta Kalita), hemen.bharali@dbuniversity.ac.in (Hemen Bharali),

pujadeysarkar8@gmail.com (Puja Dey Sarkar)
ORCID iDs: https://orcid.org/0000-0002-9798-6608 (Hemanta Kalita), https://orcid.org/0000-0002-4800-9536 (Hemen

Bharali)



H. Kalita et al. / Filomat 39:6 (2025), 1831–1841 1832

A Henstock-Kurzweil type integral is studied by Corrao et al.[2] on a complete metric measure space
X, which is equipped with a Radon measure µ and a family of cells that satisfy the Vitali covering theorem
in relation to µ. Using a family of cells that fulfils the Vitali covering theorem with respect to Radon
measure µ, H. Kalita et al. [6] introduced a McShane type integral on a complete metric space. Certain
basic characteristics of such integrals are examined, including the Saks-Henstock type lemma in terms of
additive functions. The relationship between the Lebesgueintegrals and µ-McShane integral is established.

The work of Kurzweil et al. [7] of McShane equi-integrability and Vitali’s convergence theorem moti-
vated us to investigate: several convergence theorem of µ-McShane integrable sequences of functions based
on the concept of equi-integrability, that is equivalent to the Vitali convergence theorem.

The manuscript is organized as follows: in Section 2 the basic concepts and terminology are introduced
together with some definitions and results of µ-McShane integrals. In Section 3, we discuss monotone
convergence theorem forµ-McShane integrable functions on a complete metric space X. Several convergence
theorems are presented withµ-equi-integrability, andµ-uniformly continuity. In Section 4, for each sequence
of µ-McShane integrable functions, we provide a necessary and sufficient condition of µ-equi-integrability
with respect to µ-uniformly absolutely continuity.

2. Preliminaries

Let (X, d) be a metric space. The diameter of a non-empty subset A of X is diam(A) = sup{d(x, y) : x, y ∈ A}.
For each element x ∈ X and for each A & B non empty subsets of X, the distance from x to A and distance
between A & B are defined as

d(x,A) = inf{d(x, y) : y ∈ A} and d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Definition 2.1. A sequence (xn) of elements of X is said to be a fundamental or Cauchy sequence if for any ϵ > 0
there exists k ∈ N such that d(xm, xn) < ϵ for all m,n ≥ k. It is well known that every Cauchy sequence may not
convergent.

Example 2.2. Let X = Q be set of rational numbers and d(x, y) = |x − y| for all x, y ∈ X be the usual metric on
X. Consider a sequence (xn) represented in decimal system such that xn = 1.a1a2....an is the largest rational number
satisfying x2

n <
√

2. Then we have the following sequence of rational numbers: x1 = 1.4, x2 = 1.41, x3 = 1.414, x4 =

1.4142, .... Then d(xm, xn)→ 0 as n→∞. So (xn) is a Cauchy sequence and converges to
√

2 < Q.

Definition 2.3. A metric space (X, d) is said to be complete if and only if every Cauchy sequence of elements of X
converges to some elements of X in the space.

Throughout our work, we assume X = (X, d) to be a complete metric space. Suppose that C is an arbitrary
set of subsets of X. The smallest σ-algebra σ(C) containing C is called the σ-algebra generated by C. LetM
be a σ-algebra of subsets of a set X. Recall a positive function µ :M→ [0,+∞] is called a measure if

1. µ(∅) = 0;

2. µ(
⋃
∞

j=1 A j) =
∞∑
j=1
µ(A j) for every sequences {A j} j of pointwise disjoint sets fromM.

Then (X,M, µ) is called a measure space. We denote a family of µ-measurable functions byMµ. Suppose U
is the Borel σ-algebra of X. Recall that a measure µ is called a Radon measure if µ is a Borel measure with
the following properties:

1. µ(K) < ∞ for every compact set K ⊂ X.
2. µ(V) = sup{µ(K) : K ⊂ V, K is compact} for every open set V ⊂ X;
3. µ(A) = inf{µ(V) : A ⊂ V, V is open} for every A ⊂ X.
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Let λ be a signed measure defined on the σ-algebra of all µ-measurable subsets of X. Then λ is called
absolutely continuous with respect to µ if µ(E) = 0 implies |λ|(E) = 0 for each µ-measurable subset E of
X. It is denoted by λ << µ. In the entire work, we consider µ a non-atomic Radon measure and D is a
family of non-empty closed subsets of X. For E ⊂ X, we denote the indicator function, diameter, interior
and the boundary of E by χE, diam(E), E0 and ∂E, respectively. Throughout the article we denote d(x,E),
the distance from x to E. Recall that Q1, Q2 ∈ D are said to be non overlapping if interiors of Q1 and Q2 are

disjoint. A finite collection
{
Q1, Q2, ...,Qm

}
of pairwise non-overlapping elements of D is a division of Q if

m⋃
i=1

Qi = Q. Let G be a sub family of D, then G is called a fine cover of E ⊂ X if

inf
{
diam(Q) : Q ∈ G, x ∈ Q

}
= 0 for each x ∈ E.

Definition 2.4. [2, Definition 2.14] We say D is a µ-Vitali family if for each subset E of X and for each subfamily G
of D that is a fine cover of E, there exists a countable system

{
Q1,Q2, ..,Q j, ..

}
of pairwise non-overlapping elements

of G such that µ(E \ ∪Q j) = 0.

Definition 2.5. [2] Let F be a µ-Vitali family. We say F is a family of µ-cells if it satisfies the following conditions:

(a) Given Q ∈ F and a constant δ > 0, there exists a division
{
Q1,Q2, ...,Qm

}
of Q, such that diam(Qi) < δ, for

i = 1, 2, ..,m;

(b) Given A, Q ∈ F and A ⊂ Q, there exists a division
{
Q1,Q2, ...,Qm

}
of Q, such that A = Q1 ;

(c) µ(∂Q) = 0 for each Q ∈ F.

3. µ-McShane integral with Radon measure

In this section, we recall µ- McShane integral with respect to a Radon measure. We recall that, a gauge
on a set Q is any positive real function ν defined on Q.

Definition 3.1. [6] Let Q ∈ F, let E ⊂ Q and ν be a gauge on Q. A collection P =
{
(xi,Qi)

}m

i=1
of finite ordered pairs

of points and cells is said to be:

1. a free partition of Q if
{
Q1,Q2, ...,Qm

}
is a division of Q and xi ∈ Q for i = 1, 2, ...,m;

2. a free partial partition on Q if
{
Q1,Q2, ...,Qm

}
is a subsystem of a division of Q and xi ∈ Q for i = 1, 2, ...,m;

3. ν-fine if diam(Qi) < ν(xi) for i = 1, 2, ...,m;
4. E-tagged if the points x1, x2, x3, ..., xm belongs to E.

The following Cousin’s type lemma addresses the existence of ν-fine free partitions of a given cell Q.

Lemma 3.2. [6] If ν is a gauge on Q, then there exists a ν-fine free partition of Q.

Let f : Q→ R be a given function. If P =
{
(xi,Qi)

}m

i=1
is any partition of Q ∈ F,we define the Riemann sum

as S( f ,P) =
m∑

i=1
f (xi)µ(Qi). Next we recall the definition of µ-McShane integral on Q as follows:

Definition 3.3. [6] A function f : Q→ R is called µ-McShane integrable on a cell Q with respect to µ if there exists
a real number l such that for each ϵ > 0 there is a gauge ν on Q so that |S( f ,P) − l| < ϵ whenever P is a free tagged
partition of Q that is ν-fine.
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We write l =
∫

Q f dµ. Throughout the work, we consider Mµ(Q) to be a family of µ-McShane integrable
functions on Q. Clearly the number l is unique. Additionally, it is known that every µ-McShane integrable
function is µ-Henstock-Kurzweil integrable on a cell Q and that the integrals are equal. Few simple
properties of µ-McShane integrals are as follows.

Theorem 3.4. [6]

1. Let f , 1 are µ-McShane integrable on Q then f + 1 are µ-McShane integrable on Q, and
∫

Q( f + 1)dµ =∫
Q f dµ +

∫
Q 1dµ.

2. If f is µ-McShane integrable on Q and k ∈ R, then k f is also µ-McShane integrable on Q and
∫

Q k f dµ =

k
∫

Q f dµ.

3. If f is µ-McShane integrable on Q and f (x) ≥ 0 for each x ∈ Q, then
∫

Q f dµ ≥ 0.

Corollary 3.5. [6] Let f , 1 are µ-McShane integrable functions on Q. If f ≥ 1 for each x ∈ Q, then
∫

Q f dµ ≥
∫

Q 1dµ.

Theorem 3.6. [6] (The Cauchy Criterion) A function f : Q→ R is µ- McShane integrable on Q if and only if
for each ϵ > 0 there exists a gauge ν on Q such that |S( f ,P1) − S( f ,P2| < ϵ for each pair ν-fine free partitions
P1 and P2 of Q.

Theorem 3.7. If f is µ-McShane integrable, and if A is a subcell of Q, then
∫

A f dµ =
∫

Q fχAdµ.

Theorem 3.8. [6, Theorem 4.4] A function f : Q → R is µ-McShane integrable on Q if and only if there exists an
additive cell function π defined on the family of all subcells of Q such that for each ϵ > 0 there exists a gauge ν on Q
with ∑

(xi,Qi)∈P

|π(Qi) − f (xi)µ(Qi)| < ϵ

for each ν-fine free tagged partition P of Q. In this situation π is the indefinite µ-McShane integral of f on Q

Theorem 3.9. (Saks-Henstock Lemma) A function f : Q → R is µ-McShane integrable on Q if and only if
there exists an additive cell function π defined on the family of all subcells of Q such that for each ϵ > 0
there exists a gauge ν on Q with ∑

(xi,Qi)∈P

∣∣∣∣∣π(Qi) − f (xi)µ(Qi)
∣∣∣∣∣ < ϵ,

for each ν-fine free tagged partition P of Q.

Theorem 3.10. Let f : Q→ R be µ-McShane integrable on Q, then | f | is also µ-McShane integrable on Q.

Theorem 3.11. [6, Theorem 4.6] If f : Q→ R is µ-McShane integrable then f is Lebesgue integrable.

4. Convergence of µ-McShane Integral

We have already seen the Monotone Convergence Theorem and the Dominated Convergence Theorem
for the Lebesgue integral (see [3]). Monotone convergence theorem for McShane integral ([3, Theorem 10.10],
Convergence of McShane integrable sequences of functions based on the concept of equi-integrability is
proved and it is shown that this theorem is equivalent to the Vitali convergence theorem in [7]. In this
Section, we discuss the monotone convergence theorem of µ-McShane integral. We further discuss the
convergence theorem of µ-McShane integral based on the concept of µ-equi-integrability on Q.We start the
Section with the following theorem.



H. Kalita et al. / Filomat 39:6 (2025), 1831–1841 1835

Theorem 4.1. Let { fk} be a non-decreasing sequence of µ-McShane integrable function on a cell Q and f = lim
k

fk.

If f = lim
k→∞

(µ-M)
∫

Q fkdµ < ∞ then f is µ-McShane integrable on Q and (µ-M)
∫

Q f dµ = lim
k→∞

(µ-M)
∫

Q fkdµ.

Proof. Let { fk} be a non-decreasing sequence. Since {(µ-M)
∫

Q fkdµ}k is bounded on Q. So {(µ-M)
∫

Q fkdµ}k
converges to a real number A ∈ R. Then given ϵ > 0 there exists K ∈ N such that k ≥ K we have
0 ≤ A − (µ-M)

∫
Q fkdµ ≤ ϵ. From the Theorem 3.8 there exists an additive function π on the subcells of Q

such that for all ϵ > 0, there exists a guage ν on Q with∑
(xi,Qi)∈P

|π(Qi) − fk(xi)µ(Qi)| < ϵ
2k

for each ν-fine free tagged partition P of Q and π(Qi) = (µ-M)
∫

Q fkdµ. Since lim
k→∞

(µ-M)
∫

Q fkdµ =

(µ-M)
∫

Q f dµ, so for each x ∈ Q there exists a natural number n(x) ≥ K such that.

| f (x) − fk(x)| < ϵ

whenever k ≥ k(x) ≥ K. If ν(x) = νk(x) for x ∈ Q, then ν is the gauge of Q. Suppose P =
{(Q1, x1), (Q2, x2), ..., (Qk, xk)} be a free tagged partition in Q, Then we have

k∑
i=1

| f (xi) − fk(xi)|µ(Qi) < ϵµ(Q).

Also, ∣∣∣∣∣ k∑
i=1

fk(xi)(xi)µ(Qi) −
k∑

i=1

fk(xi)dµ
∣∣∣∣∣ ≤ k∑

i=1

∣∣∣∣∣ fk(xi)(xi)µ(Qi) − (µ-M)
∫

Q
fk(xi)dµ

∣∣∣∣∣ < ϵ.
Next from the hypothesis f = lim

k
fk. This implies that { fk} is a pointwise bounded sequence of functions.

Hence,

(µ-M)
∫

Q
fkdµ =

k∑
i=1

(µ-M)
∫

Qi

fkdµ

≤

k∑
i=1

fk(xi)dµ.

Also,

0 ≤ A −
k∑

i=1

(µ-M)
∫

Qi

fk(xi)dµ ≤ (µ-M)
∫

Q
fkdµ < ϵ.

Finally we have,

|S( f ,P) − A| ≤ |
k∑

i=1

f (xi)µ(Qi) −
k∑

i=1

fk(xi)(xi)µ(Qi)|

+ |

k∑
i=1

fk(xi)(xi)µ(Qi) −
k∑

i=1

(µ-M)
∫

Qi

fn(xi)dµ|

+ |

k∑
i=1

(µ-M)
∫

Qi

fk(xi)dµ − A|

< ϵµ(Q) + ϵ + ϵ.

Since ϵ is arbitrary, f is µ-McShane integrable on Q where A = (µ-M)
∫

Q f dµ.
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Theorem 4.2. (Egoroff’s Theorem) Let E ⊂ Q be a measurable cell. Let { fk} be a measurable sequence of µ-McShane
integrable functions in E. If { fk} converges pointwise a.e. on E to a function f , then for each ϵ > 0 there exists a
measurable subcell H ⊆ E such that µ(E \H) < ϵ and { fk} converges uniformly to f in H.

Proof. The proof is very standard. So we have ommitted the proof.

Next we define µ-equi-integrability as follows:

Definition 4.3. A family of µ-measurable cell functionMµ of f : Q→ R is called µ-equi-integrable if for f ∈ Mµ

is µ-McShane integrable and for every ϵ > 0 there is a gauge ν such that for any f ∈ Mµ,

|

∑
i

f (ti)µ(Qi) − (µ-M)
∫

Q
f dµ| < ϵ

hold for each ν-fine free tagged partition P = {(Qi, xi)}ki=1 of Q and k ∈N.

Next, we discuss a necessary and sufficient condition of µ-equi-integrability.

Theorem 4.4. A familyMµ is µ-equi-integrable if and only if for every ϵ > 0 there exists a gauge ν such that∣∣∣∣∣∑
i

f (ti)µ(Qi) −
∑

j

f (s j)µ(S j)
∣∣∣∣∣ < ϵ

for every ν-fine free tagged partitions {(Qi, ti)} and {(S j, s j)} of Q and f ∈ Mµ.

Proof. Let us consider a familyMµ of µ-equi-integrable function. Then by definition of µ-equi-integrability:
for every ϵ > 0 there is a gauge ν such that for any f ∈ Mµ,

|

∑
i

f (ti)µ(Qi) − (µ-M)
∫

Q
f dµ| <

ϵ
2

hold for each ν-fine free tagged partition P = {(Qi, xi)}ki=1 of Q and k ∈N. Let us consider another ν-fine free
tagged partition P′ = {(S j, x j)}mj=1 of Q and m ∈N. Then

∣∣∣ ∑
j

f (s j)µ(S j) − (µ-M)
∫

S f dµ
∣∣∣ < ϵ2 . So,

∣∣∣∣∣∑
i

f (ti)µ(Qi) −
∑

j

f (s j)µ(S j)
∣∣∣∣∣

=

∣∣∣∣∣∑
i

f (ti)µ(Qi) − (µ-M)
∫

Q
f dµ + (µ-M)

∫
Q

f dµ −
∑

j

f (s j)µ(S j)
∣∣∣∣∣

≤ |

∑
i

f (ti)µ(Qi) − (µ-M)
∫

Q
f dµ| +

∣∣∣∑
j

f (s j)µ(S j) − (µ-M)
∫

S
f dµ
∣∣∣

<
ϵ
2
+
ϵ
2
= ϵ.

Conversely, for each k ∈N, let νk be a gauge on Q such that∣∣∣∣∣∑
i

f (ti)µ(Qi) −
∑

j

f (s j)µ(S j)
∣∣∣∣∣ < 1

k

for every νk-fine free tagged partitions {(Qi, ti)} and {(S j, s j)} of Q and f ∈ Mµ. Let ∆k(x) =
min{ν1(x), ν2(x), ..., νk(x)} be a gauge on Q. By [6, Lemma 3.2], there exists a ∆k-fine free partition Pk of
Q, for every k ∈ N. Let ϵ > 0 be a given and choose a positive natural number N such that 1

N <
ϵ
2 . If m and

n are positive natural number (n < m) such that n ≥ N, then
∣∣∣ ∑

n
f (tn)µ(Q′n) −

∑
m

f (tm)µ(Q′m)
∣∣∣ < ϵ

2 whenever
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{(Q′n, tn)} and {(Q′m, tm)} are ∆k fine free tagged partitions of Q. Consequently
{∑

n
f (tn)µ(Q′n)

}∞
n=1

is a Cauchy

sequence of real numbers and hence A = lim
n

(
f (tn)µ(Q′n)

)
. Clearly

∣∣∣ ∑
n

f (tn)µ(Q′n) − A| < ϵ
2 for each n ≥ N.

Let P be a ∆k-fine free tagged partitions on Q, then∣∣∣∣∣∑
i

f (ti)µ(Qi) − A
∣∣∣∣∣

≤

∣∣∣∣∣∑
i

f (ti)µ(Qi) −
∑

n

f (tn)µ(Q′n)
∣∣∣∣∣ + ∣∣∣∣∣∑

n

f (tn)µ(Q′n) − A
∣∣∣∣∣ < ϵ.

So, f ∈ M is µ-McShane integrable and A = (µ-M)
∫

Q f dµ.

If the sequence fk is µ- equi-integrable on Q then the Theorem 4.1 can be stated as follows:

Theorem 4.5. Let { fk} be a µ-equi-integrable,non-decreasing sequence of µ-McShane integrable function on a cell
Q and f = lim

k
fk. If f = lim

k→∞
(µ-M)

∫
Q fkdµ < ∞ then f is µ-McShane integrable on Q and (µ-M)

∫
Q f dµ =

lim
k→∞

(µ-M)
∫

Q fkdµ

Proof. From Definition 4.3 we have that for each ϵ > 0 there exists a free tagged partition P of Q such that

|S( fk,P) − (µ-M)
∫

Q fkdµ| < ϵ

hold for each ν-fine free tagged partition P = {(Qi, xi)}ki=1 of Q and k ∈ N. If we fix P, then lim
k→∞

fk(x) = f (x),

and for u0 ∈ N we have

|S( fk,P) − S( fu,P)| < ϵ

for all k,u > u0. This implies
∣∣∣(µ-M)

∫
Q fkdµ − (µ-M)

∫
Q fudµ

∣∣∣ < ϵ. Therefore
{
(µ-M)

∫
Q fkdµ

}
is Cauchy and

lim
k→∞

(µ-M)
∫

Q fkdµ = L ∈ R exists. This implies that

|(µ-M)
∫

Q fkdµ − L| < ϵ

For u1 ∈ N with k > m1. Let any ν-fine free tagged partition P of Q be {(Q, t)}. Since lim
k→∞

fk(x) = f (x) then

there exists u2 > u1 such that |S( fu2 ,PQ) − S( f ,P)| < ϵ.
In this case |S( f ,PQ) − L| < ϵ. Proceeding this way, using mathematical induction we can find f is µ-

McShane intergal on Q and (µ-M)
∫

Q f dµ = lim
k→∞

(µ-M)
∫

Q fkdµ.

We now deduce the convergence theorem of µ-McShane integrals under the conditions of uniformly con-
tinuous, uniform convergence and pointwise boundedness. We define µ-uniformly absolutely continuous
µ-McShane integrable on Q as follows:

Definition 4.6. LetMµ be a family of µ-McShane integrable function f : Q→ R. If for every ϵ > 0 there is a δ > 0

such that for τ ⊂ Q with µ(τ) < δ and
∣∣∣∣∣(µ-M)

∫
τ

f
∣∣∣∣∣ < ϵ. ThenMµ is called µ-uniformly absolutely continuous.

Following theorems are based on µ-uniformly absolutely continuous functions.

Theorem 4.7. Let { fk} be a sequence of µ-McShane integrable functions defined on Q and let Fk(x) =
∫

E fk for each
k. Then {Fk} is µ-uniformly absolutely continuous with respect to radon measure on Q whenever E ⊂ Q.
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Proof. Let {Fk} be a µ-uniformly absolutely continuous on Q and let ϵ > 0. By hypothesis, there exists a δ > 0

such that
∣∣∣ q∑

i=1
(Fk(Qi)

∣∣∣ < ϵ for all k whenever
{
Qi : 1 ≤ i ≤ q

}
is finite collection of cells in Q with

q∑
i=1
µ(Qi) < δ.

Let E ⊂ Q with µ(E) < δ. Fix n. Choose β > 0 so that (µ-M)
∫

E | fk| < ϵ whenever E ⊂ Q with µ(E) < β. Next

an analogous to [3, Theorem 1.13], we can find a finite collection
{
Qi : 1 ≤ i ≤ q

}
of disjoint cells in Q such

that Q =
q⋃

i=1
Qi satisfies µ(Q∆E) < min

{
β, δ − µ(E)}. Since µ(Q) < δ and Q ⊆ E ∪ (Q∆E) so,

∣∣∣(µ-M)
∫

E
fn
∣∣∣ = ∣∣∣(µ-M)

∫
Q

fk + (µ-M)
∫

E\Q
fk − (µ-M)

∫
Q\E

fk
∣∣∣

≤

∣∣∣(µ-M)
∫

Q
fk
∣∣∣ + (µ-M)

∫
E\Q
| fk| + (µ-M)

∫
Q\E
| fk|

=
∣∣∣ q∑

i=1

Fk(Q)
∣∣∣ + (µ-M)

∫
Q∆E
| fk|

< ϵ + ϵ = 2ϵ.

Hence
{
(µ-M)

∫
fk
}

is µ-uniformly absolutely continuous on Q with respect to the measure µ. Hence the
complete proof.

Theorem 4.8. (Relaxed Vitali convergence ) Assume that a sequence of µ-McShane integrable functions
fk : Q → R, n ∈ N is given such that fk is µ-convergence to f . Let

{
fk : k ∈ N

}
is µ-uniformly absolutely

continuous then f is µ-McShane integrable and lim
k→∞

(µ-M)
∫

Q fk = (µ-M)
∫

Q f .

Proof. By Theorem 4.7, for ϵ > 0, there exists δ > 0 such that (µ−M)
∫

E | fk| < ϵ for all k whenever E ⊂ Q with
µ(E) < δ. If µ(E) < δ, by Fatou’s Lemma (µ-M)

∫
E | f | ≤ lim

k→∞
inf(µ-M)

∫
E | fk| ≤ ε. By Egoroff’s Theorem, there

exist a measurable cell E ⊂ Q and a positive integer N such that | fk(x) − f (x)| < ϵ ∀ n ≥ N for all x ∈ E and
µ(Q′) < δwhere Q′ = Q \ E. Consequently for each n ≥ N,∣∣∣(µ-M)

∫
Q

fk − (µ-M)
∫

Q
f
∣∣∣

≤ (µ-M)
∫

Q
| fk − f

∣∣∣
≤ (µ-M)

∫
E
| fk − f | + (µ-M)

∫
Q′
| fk| + (µ-M)

∫
Q′
| f |

< ϵµ(Q) + ϵ + ϵ.

So, (µ-M)
∫

Q f = lim
k→∞

(µ-M)
∫

Q fk.

Corollary 4.9. Let fk : Q → R, k ∈ N be a given sequence of µ-McShane integrable functions that converges to
f pointwise in Q. If the set { fk : k ∈ N} is µ-uniformly absolutely continuous then the function f is µ-McShane
integrable and lim

k→∞
(µ-M)

∫
Q fk = (µ-M)

∫
Q f .

5. Main result

In this Section, we give a necessary and sufficient condition of µ-equi-integrability of sequence of µ-
McShane integrable function with respect to µ-uniformly absolutely continuity. We start this Section with
the following Proposition.
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Proposition 5.1. Consider fk : Q→ R, k ∈N be a sequence of µ-McShane integrable functions such that

1. fk(t)→ f (t) for t ∈ Q;
2. The set { fk : k ∈N} is µ-uniformly absolutely continuous.

Then the set { fk : k ∈N} is µ-equi-integrable.

Proof. Let fk(t) → f (t) for t ∈ Q. By Egoroff’s Theorem, for every i ∈ N we can find a measurable subcell
Ei ⊂ Q such that µ(Q \ Ei) < ϵ = 1

i whenever Ei ⊂ Ei+1 and fk(t)→ f (t) uniformly for t ∈ Ei. That is for ϵ > 0,
and t ∈ Ei we can find k, K ∈Nwe have

| fk(t) − f (t)| < ϵ for k > K. (1)

Consider Q = Q \
∞⋃

i=1
Ei. Then µ(Q) ≤ µ(Q \ Ei) < 1

i gives µ(Q) = 0. Let us consider for k ∈ N and t ∈ Q,

fk(t) = f (t) = 0. Since set { fk : k ∈ N} is µ-uniformly absolutely continuous, for ϵ > 0, there is a i ∈ N such
that

(µ-M)
∫

Q\Ei

| fk| < ϵ for all k ∈N. (2)

By Eqn. (1) and Eqn. (2),

(µ-M)
∫

Q
| fk − fs| = (µ-M)

∫
Ei

| fk − fs| + (µ-M)
∫

Q\Ei

| fk − fs|

≤ (µ-M)
∫

Ei

| fk − f | + (µ-M)
∫

Ei

| f − fs|

+ (µ-M)
∫

Q\Ei

| fk| + (µ-M)
∫

Q\Ei

| fs|

< 2ϵµ(Ei) + 2ϵ

≤ 2ϵ
[
µ(Qi) + 1

]
.

So, { fk} is a Cauchy sequence of µ-McShane integrable functions and

lim
k→∞

(µ-M)
∫

Q
| fk − f | = 0 for k > K. (3)

By definition of µ-McShane integral, there exists a gauge ν1 on Q such that |
∑
i

f (ti)µ(Q) − (µ-M)
∫

Q f | < ϵ.

Further, there exists a gauge ν2 such that
∣∣∣ ∑

i
fk(ti)µ(Qi) − (µ-M)

∫
Q fk
∣∣∣ < ϵ whenever ν2 is a free tagged

partition of Q whenever k ≤ K, K given by Eqn. (3). Similarly for any j ∈ N we have a gauge ν j such that∣∣∣ ∑
i

fk(ti)µ(Qi) − (µ-M)
∫

Q fk
∣∣∣ < ϵ

2 j for every ν j fine free tagged partitions of Q and k ≤ K j.

If k > K, using Saks-Henstock type Lemma for µ-McShane integrals we can find
∣∣∣ ∑

i
fk(ti)µ(Qi) −

(µ-M)
∫

Q fk
∣∣∣ < ϵ. Combining both cases of k ≤ K and k > K, we have

∣∣∣ ∑
i

fk(ti)µ(Qi) − (µ-M)
∫

Q fk
∣∣∣ < ϵ

for all k ∈N. Hence the set { fk : k ∈N} is µ-equi-integrable.

Proposition 5.2. Let fk : Q→ R be µ-McShane integrable function such that

1. fk(t)→ f (t) for t ∈ Q;
2. The set { fk : k ∈N} is µ-equi-integrable.

Then for every ϵ > 0 there is a β > 0 such that for any finite class {Q j : j = 1, .., p} of disjoint subcells of Q with∑
j
µ(Q j) < β we

∣∣∣ ∑
j
(µ-M)

∫
Q j

fk
∣∣∣ < ϵ, k ∈N.
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Proof. The proof follows from Saks-Henstock Lemma of µ-McShane integrable functions.

Theorem 5.3. Let fk : Q→ R, k ∈N are µ-McShane integrable function such that

1. fk(t)→ f (t) for t ∈ Q;
2. The set { fk : k ∈N} is µ-equi-integrable.

Then fk.χE, k ∈N is µ-equi-integrable when E ⊂ Q.

Proof. Let ϵ > 0 be given and let β > 0. Consider E ⊂ Q. Then we can find E ⊂ Q closed, G ⊂ Q open
such that F ⊂ E ⊂ G with µ(G \ F)) < β. Let

{
(Ul,ul)

}
and
{
(Vm, vm)

}
are ν-fine free tagged partitions of Q.

If ul ∈ E then Ul ⊂ G; F ⊂ int
⋃

ul∈F

Ul and if vm ∈ E then Vm ⊂ G; F ⊂ int
⋃

vm∈F

Vm. By Thereom 4.4, we have∣∣∣∣∣ ∑
l,ui∈E

fk(ul)µ(Ul) −
∑

m,vm∈E
fk(m)µ(Vm)

∣∣∣∣∣ ≤ ϵ. Therefore,
∣∣∣∣∣ ∑

l
fk(ul)χE(ul)µ(Ul) −

∑
m

fk(vk)χE(vm)µ(Vm)
∣∣∣∣∣ ≤ ϵ.

Proposition 5.4. Assume fk : Q→ R, k ∈N are µ-McShane integrable functions such that

1. fk(t)→ f (t) for t ∈ Q;
2. The set { fk : k ∈N} is µ-equi-integrable.

Then for every ϵ > 0 there exists an β > 0 such that if E ⊂ Q with µ(E) < β then∣∣∣∣∣(µ-M)
∫

Q
fk.χE

∣∣∣∣∣ = ∣∣∣∣∣(µ-M)
∫

E
fk

∣∣∣∣∣ ≤ 3ϵ for every k ∈N.

Proof. Consider ϵ > 0 be given and β > 0. Let consider a measurable subcell E of Q with µ(E) < β. Then
we can find an open cell G ⊂ Q so that E ⊂ G and µ(G) < β. From our assumption { fk : k ∈ N} is
µ-equi-integrable. Now by the definition of µ-equi-integrability: for every ϵ > 0 there is a gauge ν such that
for anyM,∣∣∣∑

i

f (ti)µ(Qi) − (µ-M)
∫

Q
f dµ
∣∣∣ < ϵ

hold for each ν-fine free tagged partition P = {(Qi, xi)}ni=1 of Q and n ∈ N. By Proposition 5.4,
(µ-M)

∫
Q fk.χE, k ∈N exist and∣∣∣∑
m

fk(vm)χE(vm)µ(Vm) − (µ-M)
∫

Q
f .χE

∣∣∣ ≤ ϵ
whenever Vm ⊂ G ⊂ Q and {(Vm, vm)} is any ν-fine free tagged partition of Q. If vm ∈ E ⊂ G then
Vm ⊂ G and

∑
m,vm∈E

µ(Vm) ≤ β. As {(Vm, vm) : vm ∈ E} is ν-fine free tagged partition, using Saks-Henstock

Lemma of µ-McShane integral we have
∣∣∣ ∑

m,vm∈E

[
fk(vm)µ(Vm)− (µ-M)

∫
Vm

fk
]∣∣∣ ≤ ϵ. By Proposition 5.2, we have∣∣∣ ∑

m,vm∈E
(µ-M)

∫
Vm

fk
∣∣∣ ≤ ϵ. So,

∣∣∣(µ-M)
∫

E
f
∣∣∣ ≤ ϵ + ∣∣∣ ∑

m,vm∈E

fk(vm)µ(Vm)
∣∣∣

≤ ϵ +
∣∣∣ ∑

m,vm∈E

[
fk(vm)µ(Vm) − (µ-M)

∫
Vm

fk
]∣∣∣ + ∣∣∣ ∑

m,vm∈E

(µ-M)
∫

Vm

fk
∣∣∣

≤ ϵ + 2ϵ = 3ϵ.
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Finally, we state our necessary and sufficient condition of µ-equi-integrability with respect of µ-uniformly
absolutely continuous as follows:

Theorem 5.5. Let fk : Q→ R, k ∈N be µ-McShane integrable functions such that fk(t)→ f (t) for t ∈ Q. Then the
set { fk : k ∈N} forms an µ-equi-integrable sequence if and only if { fk : k ∈N} is µ-uniformly absolutely continuous.

Consequently f is µ-uniformly absolutely continuous.

Proof. Let fk : Q → R, k ∈ N be µ-McShane integrable functions such that fk(t) → f (t) for t ∈ Q. Let
{ fk : k ∈ N} forms an µ-uniformly absolutely continuous sequence of µ-McShane integrable functions. By
Proposition 5.1, the set { fk : k ∈N} is µ-equi-integrable.

Conversely, let { fk : k ∈ N} is µ-equi-integrable where fk : Q → R is µ-McShane integrable in nature
with fk → f (t) for t ∈ Q. By Proposition 5.4, for every ϵ > 0 there exists a β > 0 such that if E ⊂ Q with
µ(E) < β,we have∣∣∣∣∣(µ-M)

∫
Q

fk.χE

∣∣∣∣∣ = ∣∣∣∣∣(µ-M)
∫

E
fk

∣∣∣∣∣ ≤ ϵ for every k ∈N.

6. Conclusion

With the help of the definition and properties of µ-equi-integrability, and µ-uniformly absolutely con-
tinuity, discussed on a complete metric space, endowned with a Radon measure µ and a family of cells
that satisfies the Vitali covering theorem with respect to µ, we have explored several convergence results.
A necessary and sufficient condition of µ-equi-integrability of sequence of µ-McShane integrable function
with respect to µ-uniformly absolutely continuity has been presented.
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