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Periodic solutions of impulsive differential systems with relativistic
acceleration operator
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Abstract. This paper aims to investigate the second-order singular differential systems generated by
instantaneous and non-instantaneous impulses. By proposing a new energy functional and solving the
difficulties brought by impulsive effects, the existence of periodic solutions to the second-order singular
differential systems is obtained via the variational method, which extends and enriches some previous
results.

1. Introduction

In this paper, we study the following second-order singular differential systems with instantaneous and
non-instantaneous impulses:

−(P(t)u′(t))′ +H(t)u(t) = λiKi(t)Ψ(u(t)), a.e. t ∈ (si, ti+1], i = 0, 1, 2, ...,N,
∆(P(ti)u′(ti)) = ∇Ii(u(ti)), i = 1, 2, ...,N,
P(t)u′(t) = P(t+i )u′(t+i ), t ∈ (ti, si], i = 1, 2, ...,N,
u′(s+i ) = u′(s−i ), i = 1, 2, ...,N,
u(0) = u(T), u′(0) = u′(T),

(1)

whereΨ is a relativistic acceleration operator that comes from classical theory of relativity defined by

Ψ(u) =
u√

1 − |u|2
, u ∈ B(1),

T > 0, λi > 0, s0 = 0 < t1 < s1 < t2 < · · · < sN < tN+1 = T, ti+N+1 = ti + T, si+N = si + T, P ∈ C([0,T];R+)
with P(t + T) = P(t), Ki ∈ L∞([0,T];R+) with Ki(t + T) = Ki(t), R+ = (0,+∞), Ii ∈ C1(Rn;R), Ii(0) = 0,
∇Ii+N+1(u) = ∇Ii(u), ∆(P(ti)u′(ti)) = P(t+i )u′(t+i ) − P(t−i )u′(t−i ), P(t±i )u′(t±i ) = limt→t±i

P(t)u′(t), H is a n × n
symmetric matrix, H(t + T) = H(t) and (H(t)u,u) ≥ µ|u|2 in which H(t) = (hi j(t))n×n with hi j ∈ L∞([0,T];R)
and µ > 0.

As is known to all, the impulsive differential equation is an important theoretical tool to describe the
discontinuous state of the development of things, which has some important applications in many fields

2020 Mathematics Subject Classification. Primary 34C25; Secondary 34B15, 34B37.
Keywords. Singular differential system; Non-instantaneous impulse; Instantaneous impulse; Periodic solution; Existence.
Received: 19 October 2024; Accepted: 21 October 2024
Communicated by Maria Alessandra Ragusa
Research supported by the Natural Science Research Project of Anhui Educational Committee (No.2024AH051679).
Email address: stfcool@126.com (Tengfei Shen)
ORCID iD: https://orcid.org/0000-0002-9016-3473 (Tengfei Shen)



T. Shen / Filomat 39:7 (2025), 2221–2228 2222

such as biological model, control theory, economics, aerospace, etc. So, it is very meaningful to study the
qualitative theory of impulsive differential equations. As its branches, boundary value problems (BVPs
for short) of impulsive differential equations have been studied by many scholars (see [1-5] and references
therein). In the recent years, the variational methods have been naturally applied to study the existence
and multiplicity of solutions for BVPs of differential equations with instantaneous impulsive effects. In
[6], Sun, Chen and Nieto considered the following second-order n-dimensional Hamiltonian system with
instantaneous impulsive effects

−u′′(t) + A(t)u(t) = ∇F(t,u(t)), a.e. t ∈ J = [0,T] \ {t1, t2, · · ·, tm},
∆(u′(t j)) = Ii j(ui(t j)), i = 1, 2, ...,n, j = 1, 2, ...,m,
u(0) = u(T),u′(0) = u′(T)

(2)

and proved the existence of infinitely many periodic solutions by the variant fountain theorems. If A(t)
is equal to the unit matrix, it was investigated by Zhou and Li [7]. Moreover, for scalar case, it has been
considered by Sun, Chen and Liu [8]. Furthermore, for the problems of periodic solutions to second-order
Hamiltonian system without impulsive effects, one can read [9-13] and references therein.

On the other hand, in 2013, the non-instantaneous impulsive problem was firstly introduced by
Hernández and O’Regan [14]. Its impulsive effects keep active on a finite time interval rather than some
certain moments. From then on, it attracts more and more scholars’ attention (see [15,16] and references
therein). Recently, based on the Lax-Milgram Theorem, Bai and Nieto [17] got the existence of solutions to
Dirichlet BVPs of second-order differential equations with non-instantaneous impulsive effects by establish-
ing a new variational structure. Tian and Zhang [18] made further research on the existence of solutions for
Dirichlet BVPs of second-order differential equations with non-instantaneous and instantaneous impulses
via the Ekeland’s variational principle as follows.

−u′′(t) = 1i(t,u(t)), t ∈ (si, ti+1], i = 0, 1, 2, ...,N
∆(u′(ti)) = Ii(u(ti)), i = 1, 2, ...,N,
u′(t) = u(t+i ), t ∈ (ti, si], i = 1, 2, ...,N,
u′(s+i ) = u′(s−i ), i = 1, 2, ...,N,
u(0) = u(T) = 0.

(3)

Moreover, Khaliq and ur Rehman [19] and Zhang and Liu [20] considered Dirichlet BVPs of fractional
differential equations with non-instantaneous impulses via the variational methods. For further papers on
this subject, please refer to [22-27].

Then a natural question is raised: Can we deal with the existence of the periodic solutions for second-
order singular differential systems generated by instantaneous and non-instantaneous impulses (1.1)? In
this paper, an affirmative answer will be given. Let us present the innovations of this paper: First, under the
influence of non-instantaneous and instantaneous impulsive effects, a new energy functional is established
for the periodic boundary conditions of the second-order singular differential systems via the truncation
technique. Second, the relativistic acceleration operatorΨ is a singular operator, which make this problem
become more interesting and difficult. Third, there are few papers dealing with periodic solutions of
second-order differential systems with non-instantaneous impulsive effects.

Let λmin = min{λ0, λ1, ..., λN}. For stating our main results, the following conditions are given:

(I1) For any u ∈ Rn, (∇Ii(u),u) ≥ 0 and Ii(u) ≥ 0, i = 1, 2, ...,N.

(I2) There exist constants d > 0, αi > 0 and γi ∈ [2,+∞), i = 1, 2, ...,N such that

|Ii(u)| ≤ αi |u|γi for any |u| ≤ d.

Theorem 1.1. Assuming that the conditions (I1) and (I2) are satisfied, there exists a constant λ∗ > 0 such that
if λmin > λ∗, the singular differential system (1) admits at least one nontrivial ground state weak solutions.

Remark 1.2. In the condition (I2), the impulsive terms can be local square growth or supersquare growth.
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2. Preliminaries

Let C := C([0,T];Rn) with norm ∥u∥∞ = maxt∈[0,T] |u(t)|, L2 := L2([0,T];Rn) with norm ∥u∥L2 = (
∫ T

0 |u(t)|2dt)
1
2 ,

and L∞ := L∞([0,T];Rn) with norm ∥u∥L∞ = esssupt∈[0,T]|u(t)|. Let (·, ·) represent the inner product in Rn.
Consider the following classical Sobolev space

W1,2
T = {u : [0,T]→ Rn

|u is absolutely continuous, u′ ∈ L2, u(0) = u(T)},

whose inner product is

< u, v >0=

∫ T

0
(u(t), v(t)) + (u′(t), v′(t))dt, ∀u, v ∈W1,2

T

and the norm is ∥u∥0 =< u,u >
1
2 . In Sobolev space W1,2

T , define the following inner

< u, v >=
∫ T

0
(P(t)u(t), v(t)) + (H(t)u′(t), v′(t))dt, ∀u, v ∈W1,2

T

with the norm ∥u∥ =< u,u >
1
2 . For any u ∈ W1,2

T , it follows that there exists a positive constant ξ ≤
n∑

i=1

n∑
j=1
∥hi j∥L∞ such that (H(t)u,u) ≤ ξ|u|2, which together with (H(t)u,u) ≥ µ|u|2 yield that β∗∥u∥20 ≤ ∥u∥

2
≤

β∗∥u∥20 where

β∗ = min{Pmin, µ}, β
∗ = max{Pmax, ξ},

Pmax = max
t∈[0,T]

P(t), Pmin = min
t∈[0,T]

P(t).

Thus, the norm ∥u∥0 and ∥u∥ are equivalent. From [12], it follows that the embedding W1,2
T ↪→ C is

compact. Thus, we can find a constant c > 0 such that ∥u∥∞ ≤ c ∥u∥ for any u ∈W1,2
T . It should be mentioned

that for each u ∈ W1,2
T , u is absolutely continuous and u′ ∈ L2, which lead to the occurrence of impulsive

effects.
Lemma 2.1. If a function u ∈W1,2

T with ∥u∥∞ < 1 is a solution of the problem (1), then the following identity∫ T

0
(P(t)u′(t), v′(t))dt +

N∑
i=0

∫ ti+1

si

(H(t)u(t), v(t))dt +
N∑

i=1

(∇Ii(u(ti)), v(ti))

=

N∑
i=0

∫ ti+1

si

(λiKi(t)Ψ(u(t)), v(t))dt (4)

holds for any v ∈W1,2
T .

Proof. Since P ∈ C([0,T];R+) with P(t + T) = P(t), for any v ∈W1,2
T , it follows that∫ T

0
(P(t)u′(t), v′(t))dt

=

N∑
i=0

∫ ti+1

si

(P(t)u′(t), v′(t))dt +
N∑

i=1

∫ si

ti

(P(t)u′(t), v′(t))dt

=

N∑
i=0

(P(t)u′(t), v(t)) |t
−

i+1
s+i
−

N∑
i=0

∫ ti+1

si

((P(t)u′(t))′, v(t))dt
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+

N∑
i=1

(P(t)u′(t), v(t)) |s
−

i
t+i
−

N∑
i=1

∫ si

ti

(
d
dt

(P(t)u′(t)), v(t))dt

=

N∑
i=1

(P(t−i )u′(t−i ) − P(t+i )u′(t+i ), v(ti))

+

N∑
i=1

(P(s−i )u′(s−i ) − P(s−i )u′(s+i ), v(si))

+(P(T)u′(T), v(T)) − (P(0)u′(0), v(0))

−

N∑
i=0

∫ ti+1

si

((P(t)u′(t))′, v(t))dt

= −

N∑
i=0

∫ ti+1

si

((P(t)u′(t))′, v(t))dt

−

N∑
i=1

(∇Ii(u(ti)), v(ti)), (5)

which together with∫ T

0
(H(t)u(t), v(t))dt =

N∑
i=0

∫ ti+1

si

(H(t)u(t), v(t))dt +
N∑

i=1

∫ si

ti

(H(t)u(t), v(t))dt (6)

yield that ∫ T

0
(P(t)u′(t), v′(t))dt +

N∑
i=0

∫ ti+1

si

(H(t)u(t), v(t))dt +
N∑

i=1

(∇Ii(u(ti)), v(ti))

=

N∑
i=0

∫ ti+1

si

(λiKi(t)Ψ(u(t)), v(t))dt.

Definition 2.2. A function u ∈W1,2
T with ∥u∥∞ < 1 is called a weak solution of problem (1), if (4) is satisfied for any

v ∈W1,2
T .

Next, inspired by [9], we define the functional Φ : W1,2
T → R by

Φ(u) =
1
2

∫ T

0
P(t) |u′(t)|2 dt +

1
2

∫ T

0
(H(t)u(t),u(t))dt

+

N∑
i=1

Ii(u(ti)) − Γ(∥u∥)(
1
2

N∑
i=1

∫ si

ti

(H(t)u(t),u(t))dt

+

N∑
i=0

∫ ti+1

si

λiKi(t)(1 −
√

1 − |u(t)|2)dt), (7)

where Γ ∈ C1(R+, [0, 1]) and satisfies

Γ′(x) ≤ 0, ∀x ∈ [0,
η

c
],

Γ(x) = 0,∀x ≥
η

c
,
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Γ(x) = 1,∀x ≤
η

2c
,

where η = min{ 12 , d}. Noting that Ii are continuously differentiable, standard arguments can prove that
Φ ∈ C1(W1,2

T ,R). Moreover, if ∥u∥ ≤ η
2c which implies |u| ≤ ∥u∥∞ ≤ c∥u∥ ≤ η2 , the critical points of Φ are the

weak solutions of (1).

The following lemma will be used in our paper.

Lemma 2.3 ([21]). Assume that E is a real Banach space and Φ ∈ C1(E,R) satisfy the (PS)-condition. If Φ is
bounded from below, then m = infEΦ is a critical value of Φ.

3. Main Result

Lemma 3.1. If the assumptions of Theorem 1.1 are satisfied, there exists a constant λ∗ > 0 such that if λmin > λ∗, the
critical point u∗ of (7) which satisfies

Φ(u∗) = inf
u∈W1,2

T

Φ(u)

must be the nontrivial ground state weak solutions of (1).
Proof. In fact, we just need to show that u∗ , 0 and ∥u∗∥ ≤

η
2c which implies that ∥u∗∥∞ ≤ c∥u∗∥ ≤

η
2 < 1. By

choosing a function u0 ∈W1,2
T \ {0}with ∥u0∥ ≤

η
2c , for 0 < r < 1 and γi ∈ [2,+∞), it is clear that

1 −
√

1 − |ru0|
2 ≤

1√
1 − η

2

4

|ru0|
2 and (8)

Φ(ru0) =
1
2

∫ T

0
P(t)
∣∣∣ru′0(t)

∣∣∣2 dt +
1
2

N∑
i=0

∫ ti+1

si

(H(t)ru0(t), ru0(t))dt

+

N∑
i=1

Ii(ru0(ti)) −
N∑

i=0

∫ ti+1

si

λiKi(t)(1 −
√

1 − |ru0(t)|2)dt)

≤
r2

2

∫ T

0
P(t)
∣∣∣u′0(t)

∣∣∣2 dt +
r2

2

N∑
i=0

∫ ti+1

si

(H(t)u0(t),u0(t))dt

+

N∑
i=1

rγiαicγi∥u0∥
γi −

r2

2

N∑
i=0

∫ ti+1

si

λiKi(t)|u0(t)|2dt

≤
r2η2

8c2 + rγmin

N∑
i=1

αiηγi

2γi
−

r2λmin

2

N∑
i=0

∫ ti+1

si

Ki(t)|u0(t)|2dt,

where γmin = min{γ1, γ2, ..., γN}. Thus, we can find a

λ∗ =



η2

4c2
N∑

i=0

∫ ti+1
si

Ki(t)|u0(t)|2dt
, γmin > 2,

η2

4c2 +
N∑

i=1

αiη
γi

2γi−1

N∑
i=0

∫ ti+1
si

Ki(t)|u0(t)|2dt
, γmin = 2.

If λmin > λ∗, for a small enough r, we can obtain that

Φ(ru0) < −
λmaxKmaxη2T√

1 − η2
,
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where λmax = max{λ0, λ1, ..., λN} and Kmax = max{∥K0∥L∞ , ∥K1∥L∞ , ..., ∥KN∥L∞ }. Furthermore, if u ∈ W1,2
T with

η
2c < ∥u∥ ≤

η
c , we have

Φ(u) ≥
1
2

∫ T

0
P(t) |u′(t)|2 dt +

1
2

N∑
i=0

∫ ti+1

si

(H(t)u(t),u(t))dt

−

N∑
i=0

∫ ti+1

si

λiKi(t)√
1 − η2

|u(t)|2dt

≥ −
λmaxKmaxη2T√

1 − η2
,

which together with Φ(0) = 0 yield that u∗ , 0 and ∥u∗∥ ≤
η
2c . Thus, the critical point u∗ of Φ is a nontrivial

ground state weak solutions (1).

Lemma 3.2. If the assumptions of Theorem 1.1 are satisfied, then Φ(u) meets the (PS)-condition, i.e., for any
{un} ∈W1,2

T , if

{Φ(un)} is bounded and Φ′(un)→ 0 as n→ +∞,

then {un} has a convergent subsequence in W1,2
T .

Proof. For any u ∈W1,2
T , from the definition of Φ(u) and (I1), if ∥u∥ ≥ ηc , it follows that

Φ(u) =
1
2

∫ T

0
P(t) |u′(t)|2 dt +

1
2

∫ T

0
(H(t)u(t),u(t))dt

+

N∑
i=1

Ii(u(ti)) ≥
1
2
∥u∥2,

which implies that

Φ(u)→ +∞ as ∥u∥ → +∞. (9)

It means thatΦ(u) is coercive and bounded from below. Thus, for any {un} ∈W1,2
T , if {Φ(un)} is bounded and

Φ′(un)→ 0, it follows that {un} is bounded in W1,2
T by (9). If ∥un∥ ≥

η
c , one has

Φ′(un)un =

∫ T

0
P(t)|u′n(t)|2dt +

∫ T

0
(H(t)un(t),un(t))dt

+

N∑
i=1

(∇Ii(un(ti)),un(ti)) ≥ ∥un∥
2,

which yields that Φ′(un) ↛ 0 as n → +∞ . Hence, we only need to investigate the case of ∥un∥ ≤
η
c . Since

W1,2
T is a reflexive Banach space, {un} has a convergent subsequence (denoted again {un}) such that un ⇀ u

in W1,2
T and un → u uniformly in C. Noting that |un| ≤ ∥un∥∞ ≤ c∥un∥ ≤ η, it follows that

|

N∑
i=0

∫ ti+1

si

(λiKi(t)Ψ(un(t)),un(t) − u(t))dt|

≤ λmaxKmax

∫ T

0
|Ψ(un(t))||un(t) − u(t)|dt

≤
λmaxKmax∥un∥∞√

1 − η2

∫ T

0
|un(t) − u(t)|dt→ 0 (10)
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as n→ +∞, which together with Φ′(un)→ 0 as n→ +∞ imply that

o(1) = Φ′(un)(un − u)

= < un,un − u > +
N∑

i=1

(∇Ii(un(ti)),un(ti) − u(ti))

−Γ′(∥un∥) <
un(t)
∥un∥

,un − u > (
1
2

N∑
i=1

∫ si

ti

(H(t)un(t),un(t))dt

+

N∑
i=0

∫ ti+1

si

λiKi(t)(1 −
√

1 − |un(t)|2)dt)

−Γ(∥un∥)(
N∑

i=1

∫ si

ti

(H(t)un(t),un(t) − u(t))dt

+

N∑
i=0

∫ ti+1

si

(λiKi(t)Ψ(un(t)),un(t) − u(t))dt)

= < un,un − u > (1 − Γ′(∥un∥)(

N∑
i=0

∫ ti+1

si
λiKi(t)(1 −

√
1 − |un(t)|2)dt

∥un∥

+

N∑
i=1

∫ si

ti
(H(t)un(t),un(t))dt

∥un∥
) + o(1),

which together with Γ′(∥un∥) ≤ 0 yield that

< un,un − u >→ 0 as n→ +∞.

By un ⇀ u in W1,2
T , it follows that un → u in W1,2

T . Thus, Φ(u) satisfies the (PS)-condition.

Proof of Theorem 1.1. By Lemma 3.2, we know that Φ(u) satisfies the (PS)-condition and is bounded
from below. So, from Lemma 2.2, it follows that there exists a critical point u∗ for Φ(u) such that

Φ(u∗) = inf
u∈W1,2

T

Φ(u).

Moreover, based on Lemma 3.1, we have u∗ , 0 and ∥u∗∥ ≤
η
2c . Thus, the critical point u∗ of Φ a nontrivial

ground state weak solutions (1).

An Example. The example provided is intended to confirm our primary results.


−(P(t)u′(t))′ +H(t)u(t) = λiKi(t)Ψ(u(t)), a.e. t ∈ (si, ti+1], i = 0, 1,
∆(P(t1)u′(t1)) = ∇I1(u(t1)),
P(t)u′(t) = P(t+1 )u′(t+1 ), t ∈ (t1, s1],
u′(s+1 ) = u′(s−1 ),
u(0) = u(1), u′(0) = u′(1),

(11)

where p(t) = 1, H(t) is an identity matrix, T = 1, Ki(t) = 1, i = 0, 1, I1(u) = u4. Therefore, the conditions (I1)
and (I2) are satisfied, there exists a constant λ∗ > 0 such that if λmin > λ∗, the singular differential systems
(11) admits at least one nontrivial ground state weak solutions.
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