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Abstract. The predator-prey interaction in mathematical ecology is a basic phenomenon in nature that
has an important impact on community organization and on preserving the ecological diversity. In this
research work, we have developed an unique aquatic ecological model to investigate the interaction between
Microcystis aeruginosa and filter-feeding fish in presence of toxicity. This model specifically focuses
on describing the phenomenon of Microcystis aeruginosa aggregation and the effect of toxin producing
Microcystis aeruginosa blooms on filter-feeding fishes. Holling type II and Holling type III functional
responses are used in our proposed model. Here, we have analyzed the model parameters to examine
the stability of all equilibrium points in our system. Our system shows local bifurcations, including
transcritical, saddle-node, Hopf, generalized Hopf, Cusp bifurcation and Bogdanov-Takens. Further, we
have seen global bifurcation, particularly homoclinic bifurcation. Additionally, we have provided evidence
of the hysteresis phenomena and basins of attraction to support the existence of bi-stability. Multiple
numerical examples support each of these theoretical findings.

1. Introduction

Algal blooms are one of the major environmental global problems throughout the world these days.
Blooms, which are sudden large concentrations of algal growth in the aquatic system that discolor water
from its normal form. These algal blooms can deplete the oxygen of surrounding water, which is harmful
to fish and other aquatic life. In addition, certain algae species can produce toxins harmful to humans and
animals. Hence, the drastically resultant effects of algal blooms might have a severe impact on the natural
growth of aquatic ecosystems. As a result, control and removal of algal blooms are imperative globally. The
most common method to remove algal blooms is the use of filter-feeding fish to control algae, which had
worked well in healing the biological community and giving out good response. It minimizes the amount
of algae present, ensures that the water quality remains transparent, and enhances biodiversity [2].
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Algal blooms are rapid and extensive growths of algae in aquatic systems, which might lead to an
overabundance of nutrients such as nitrogen and phosphorus. These blooms can utilize the oxygen in
the water that aquatic animals need to survive, creating dead zones. There may be internal and external
reasons for algal blooms. The causes of algal blooms are usually associated with external factors such as
agricultural runoff, wastewater discharge and climate changes or also internal factors including migration
and aggregation of algae population [3]. Algal aggregation can happen in two main ways. The first is
when individual cells get together to form gel colonies. The second being efficient grouping of daughter
cells by single cell division and growth. Meanwhile, algae population can slowly increase, promote vertical
movement and rise to water surface to form algal aggregations leading to the generation of algal blooms
simultaneously.

In the sphere of environmental science, along with aquatic biology, there have been numerous researchers
working on how the reproduction of aquatic life is impacted by algae growth over the last ten years [4, 5, 7, 8].
Following the process of aggregation, Microcystis aeruginosa forms a dense gel-like coating that is hard
to digest by filter-feeding fish. When microcystis cells aggregate, they can produce more algal toxins than
their individual cells, which reduces the danger of being eaten. On the other hand, there exists a food web
in aquatic environments, where some fish consume algae and predatory fish consume smaller fish (prey)
[9].

The mathematical model of ecological communities and population dynamics research technique is
a complete approach that combines coordination, order and purpose. This method forms the basis for
studying biological systems via trophic level analysis, system viewpoint, with dynamic analysis. The
primary objective of modeling population dynamics is to enhance understanding of the interactions between
populations and how they depend on internal and external circumstances [10, 11]. Predator-prey interaction
models have been extensively studied in recent decades to understand the dynamics of various species and
their impact on real-life situations [1, 6, 18]. However, in recent decades, there has been a growing focus and
fast development of the complete study approach of ecological model and population dynamics, particularly
in the field of bifurcation dynamics. Mukherjee and Maji [12] examined the dynamics of bifurcation of a
predator-prey model. Prey refuge is an important factor for occurrence of bifurcation, namely Hopf, saddle-
node, transcritical and Bogdanov-Takens bifurcations. The underlying conditions have been established
and these results are useful and essential. Another work on prey refuge was discussed using strong Allee
effect and Michaelis–Menten predator–prey model [19].

In addition to this, numerous other studies have made advancements in the areas of population dynamics
and ecological models [13–17, 20–22, 24, 28]. The field of modeling and population dynamics has seen a
considerable progress leading to the discovery of numerous important research findings. Unfortunately,
progress in the development of models has been relatively sluggish especially regarding research on the
impact of algal aggregation.

Our primary claim in this paper is: filter-feeding fish are capable of effectively managing Microcystis
aeruginosa blooms in subtropical lake reservoirs. The aggregation of Microcystis aeruginosa is advanta-
geous in reducing the danger of predation and provides a certain level of self-protection. Additionally,
Microcystis aeruginosa blooms produce toxic elements which affect the growth of filter-feeding fish pop-
ulation. Furthermore, in section 2, we have introduced an aquatic ecological model to explain the process
of Microcystis aeruginosa aggregation and its impact on the feeding dynamics of filter-feeding fish. In
section 3 we have shown the positivity of the solution of the proposed model. The prey-predator model’s
positivity ensures that populations have a real and meaningful impact. Next the 4th section contains the
existence criteria of equilibrium points of system (2.1). A thorough study of the stability of the equilibrium
points of our system has been presented in section 5. We have performed a theoretical study in section 6,
that enables us to determine the critical threshold condition by identifying one parametric bifurcation such
as transcritical bifurcation, saddle-node bifurcation, Hopf-bifurcation. The two-parametric bifurcations
such as Bogdanov-Takens bifurcation, generalized Hopf-bifurcation and Cusp bifurcation have also been
exhibited. Section 7 presents numerical simulation of our model. It provides a thorough explanation and
examination of bifurcations with one and two parameters, including a discussion on the system’s basins
of attraction and hysteresis. This section also incudes a global bifurcation, i.e., Homoclinic bifurcation. At
last, in section 8 we have given the discussion of our work.
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2. Model Formulation

To develop a new aquatic ecological model including the effects of aggregation and toxicity, we have
taken some modeling assumptions that are presented as follows:

Microcystis aeruginosa, a type of cyanobacteria often seen in freshwater environments, can engage in
interactions with filter-feeding fish within a confined aquatic ecosystem. In proposed system (2.1) the
variables x(t) and y(t) represent the population sizes of Microcystis aeruginosa (prey) and filter-feeding fish
(predator) respectively, at a given time t. The parameter r1 signifies the intrinsic growth rate of Microcystis
aeruginosa while its maximum sustainable size or carrying capacity is denoted by K. Filter-feeding fish
possesses specialized anatomical features such as gill rakers or modified gill arches, which enable them to
strain planktons and small organisms from the water as they move. Microcystis aeruginosa, being a type of
cyanobacteria commonly found in freshwater habitats, has the potential to form blooms of cyanobacteria.

• In our proposed model (2.1), r1x
(
1 −

x
K

)
is the growth function of Microcystis aeruginosa. Here r1

represents the intrinsic growth rate and K is the maximum carrying capacity of the environment.

• The mathematical function
β(x − 1)y
B + x − 1

describes the consumption rate of filter-feeding fish with grazing

coefficient β, Microcystis aeruginosa aggregation coefficient is denoted as 1 and half saturation con-
stant as B. The aggregation of Microcystis aeruginosa serves as a strong defense mechanism against
filter-feeding fish grazing, making it a viable self-protection strategy. Here, if Microcystis aeruginosa
does not gather together then the parameter 1 vanishes, but if they aggregate more and more, then 1
tends to x(t).

• The aggregation of Microcystis aeruginosa often includes an extensive number of cells, resulting in an
enormous mass which makes it unsuitable for filter-feeding fish grazing. Consequently, filter-feeding
fishes are limited to grazing on Microcystis aeruginosa monomar. So, we may say that the quantity
of Microcystis aeruginosa aggregation and Microcystis aeruginosa monomer is the primary factor

that determines the growth of filter-feeding fish. Here in our model (2.1), the function
γβ(x − 1)y
B + x − 1

describes how the aggregation affects the filter-feeding fishes to consume those aggregated Microcystis
aeruginosa, where γ is the coefficient of consumption rate of filter-feeding fish. Next the mathematical

function r2y
(
1 −

x
K

)
is used to describe the impact of Microcystis aeruginosa monomer on filter-feeding

fish abundance. Here r2 is the intrinsic growth rate of filter-feeding fish due to Microcystis aeruginosa
monomer.

• We have used the function d1y as the natural mortality rate of filter-feeding fish, with d1 as natural
mortality coefficient.

• Lastly, we have introduced toxicity, and the toxicity has been defined as function
cx2y2

A + x2 , where c is

the toxicity parameter and
√

A is half-saturation constant. According to the scientific design of the
experiment, it is presumed that toxic substances occur in Microcystis aeruginosa, or they serve as
producers of the toxin. Consequently, anything that filter-feeding fishes use as food to feed or nourish
themselves, like Microcystis aeruginosa, shall make the fishes fall ill or give rise to diseases and bring
about their death.

The proposed model is as follows:
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Table 1: List of parameters with their biological meaning

Parameters Descriptions of Parameters
x(t) Population size of Microcystis aeruginosa (prey) at time t
y(t) Population size of filter-feeding fish (predator) at time t
r1 Intrinsic growth rate of Microcystis aeruginosa (prey) (> 0)
K Carrying capacity of the environment (> 0)
β Grazing coefficient of filter-feeding fish
1 Coefficient of Microcystis aeruginosa aggregation
B Half saturation constant
γ Absorption coefficient of filter-feeding fish
r2 Intrinsic growth rate of filter-feeding fish (predator) (> 0)
d1 Natural mortality rate of predator species
η1 Toxicity coefficient of predator population
A Square of the half saturation constant

dx
dt
= r1x

(
1 −

x
K

)
−
β(x − 1)y
B + x − 1

≡ F(x, y), (say)

dy
dt
=
γβ(x − 1)y
B + x − 1

+ r2y
(
1 −

x
K

)
− d1y −

η1x2y2

A + x2 ≡ G(x, y) = y f2(x, y), (say)
(2.1)

With x(0) > 0 and y(0) > 0, it is assumed that B > 1.

All the parameters and their respective biological meanings are mentioned in Table 1 :

3. Positivity and Boundedness

Positivity of solutions of a prey-predator model ensures that the model is biologically meaningful. In
this context we have the following theorem.

Theorem 3.1. Each solution of (2.1) remains positive for any x(0) > 0, y(0) > 0; ∀ t > 0.

Proof.

dy
dt
= y f2(x, y) (3.1)

where, f2(x, y) =
γβ(x − 1)
B + x − 1

+ r2

(
1 −

x
K

)
− d1 −

η1x2y
A + x2 .

Now from equation (3.1) we get,

y(t) = y(0) exp
(∫ t

0
f2(x, y)dt

)
> 0, for y(0) > 0.

Thus, y(t) > 0 whenever y(0) > 0, ∀ t > 0.
Now we have to prove x(t) > 0, ∀ t > 0.



P. Akhtar et al. / Filomat 39:7 (2025), 2281–2316 2285

To show the positivity of x(t) in system (2.1), firstly we claim that x(t) > 0, ∀ t ∈ [0, k), where 0 < k ≤ ∞.
Now let us take that our assumption is incorrect. Then, ∃ t1 ∈ (0, k) s.t x(t1) = 0 and x(t) > 0 ∀ t ∈ [0, t1) and
ẋ(t1) ≤ 0.
From 1st equation of system (2.1) we get,[

dx
dt

]
t=t1

= r1x(t1)
(
1 −

x(t1)
K

)
−
β(x(t1) − 1)y(t1)

B + x(t1) − 1

Now, as x(t1) = 0, so,[
dx
dt

]
t=t1

=
β1y(t1)
B − 1

> 0, as B > 1 and y(t1) > 0.

Therefore, we arrive a contradiction and hence x(t1) > 0, ∀ t > 0.

Theorem 3.2. Every solution of system (2.1) is uniformly bounded in R2
+ whenever d1 > r2.

Proof. Now let us assume, w(t) = x(t) +
y(t)
γ

. So we have,

dw
dt
=

dx
dt
+

1
γ

dy
dt

=⇒
dw
dt
= r1x

(
1 −

x
K

)
+

r2

γ
y
(
1 −

x
K

)
−

d1

γ
y −

η1x2y2

γ(A + x2)

≤ (r1 + 1)x −
r1x2

K
+

1
γ

(r2 − d1)y − x

= −
r1

K

{
x −

K
2r1

(r1 + 1)
}2

+
K

4r1
(r1 + 1)2

−

{
x +

1
γ

(d1 − r2)y
}

≤
K(r1 + 1)2

4r1
−

[
x +

1
γ

(d1 − r2)y
]

=⇒
dw
dt
≤M − µw, where, M =

K(r1 + 1)2

4r1
and µ =Min{1, d1 − r2}, since d1 > r2

=⇒
dw
dt
+ µw ≤M

Now by the principle of differential inequality, we get, 0 < w(t) ≤
M
µ

(
1 − e−µt

)
+ w(0)e−µt. As t → ∞,

we get 0 < w(t) ≤
M
µ
+ ϵ, for any ϵ > 0. Hence, any solution of system (2.1) in R2

+ enter in the region:

Ω =

{
(x, y) ∈ R2

+ : 0 < x(t) +
y(t)
γ
≤

M
µ
+ ϵ, for ϵ > 0, d1 > r2

}
. So, every solution of system (2.1) is uniformly

bounded.

4. Equilibrium Points

4.1. Trivial and Axial equilibrium

System (2.1) possesses a trivial equilibrium point, denoted by E0(0, 0), and one axial equilibrium point,
denoted by Ea(K, 0).
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4.2. Interior Equilibrium

Solving two non-trivial nullclines of system (2.1) yields the interior equilibrium point,

f2(x, y) =
γβ(x − 1)
B + x − 1

+ r2

(
1 −

x
K

)
− d1 −

η1x2y
A + x2 = 0

=⇒ y =
A + x2

η1x2

(
γβ(x − 1)
B + x − 1

+ r2

(
1 −

x
K

)
− d1

)
. (4.1)

F(x, y) = r1x
(
1 −

x
K

)
−
β(x − 1)y
B + x − 1

= 0 (4.2)

If we now take the value of y from equation (4.1) and substitute it into equation (4.2), we get the following:
ϕ(x) ≡ a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 = 0, where

a0 = Aβ1K
[
(1 − B) (r2 − d1) + γβ1

]
a1 = −βA[K(B(d1 − r2) + 1(2βγ − 2d1 + 2r2)) − 1r2(B − 1)]

a2 = β
[
−d1K(A + 1(1 − B)) + r2(A(−B + 21 + K) + 1K(1 − B)) + γβK

(
A + 12

)]
a3 = βr2[B(1 + K) − 1(1 + 2K) − A] − βd1K(B − 21) − η1Kr1(B − 1)2

− 2β2γ1K

a4 = βr2(21 + K − B) + η1r1(B − 1)(B − 1 − 2K) + βK
(
γβ − d1

)
a5 = −η1r1[2(1 − B) + K] − r2

a6 = η1r1

Let x∗ be a positive solution of ϕ(x) = 0. From equation (4.1), we have,

y =
A + x∗2

η1x∗2

(
γβ(x∗ − 1)
B + x∗ − 1

+ r2

(
1 −

x∗

K

)
− d1

)
= y∗ (say) provided,

γβx∗

B + x∗ − 1
+ r2 >

r2x∗

K
+

γβ1

B + x∗ − 1
+ d1

Thus, EI(x∗, y∗) is the interior equilibrium point of system (2.1).
It is observed that by changing specific parameter values, the number of interior equilibrium points of
system (2.1) varies accordingly. In Fig.1, we have shown the variations of equilibrium points by changing
the parameter value of d1. In the following table 2, we have mentioned these equilibrium points with its
coordinates and their parameter sets along with their stability behavior.

5. Stable behavior

Jacobian matrix of system (2.1) at E(x, y) is

J(x, y) =


∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y
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Table 2: Variation of interior equilibrium points

No of Equi-
librium
points

Parameters set Equilibrium point co-
ordinates

Stability

EI1(0.17, 8.04) Stable

3
r1 = 1.18, K = 4.06, β = 0.71, 1 = 0.164, B =
0.27, γ = 0.84, r2 = 0.61, d1 = 0.49, η1 =
0.25, A = 0.5

EI2(1.51, 1.89) Unstable

EI3(3.80, 0.42) Stable

2
r1 = 1.18, K = 4.06, β = 0.71, 1 = 0.164, B =
0.27, γ = 0.84, r2 = 0.61, d1 = 0.65, η1 =
0.25, A = 0.5

EI1(0.23, 1.82) Stable

EI2(0.94, 1.62) Unstable

1
r1 = 1.18, K = 4.06, β = 0.71, 1 = 0.164, B =
0.27, γ = 0.84, r2 = 0.61, d1 = 0.35, η1 =
0.25, A = 0.5

EI1(0.16, 18.22) Stable

0
r1 = 1.18, K = 4.06, β = 0.71, 1 = 0.164, B =
0.27, γ = 0.84, r2 = 0.61, d1 = 0.85, η1 =
0.25, A = 0.5

- -
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(a) 3 interior equilibrium points
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(c) 1 interior equilibrium point
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(d) Zero interior equlibrium point

Figure 1: Variation in prey and predator nullcline interior equilibrium points alongwith vector fields with adequate parameter
values. The non-trivial x and y nullclines are represented by the blue and red curve respectively.
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=


−

Bβy
(B − 1 + x)2 + r1

(
1 −

2x
K

)
−
β(x − 1)

B − 1 + x

βγy
(B − 1 + x)2 −

2Aη1xy2

(A + x2)2 −
r2y
K

βγ(x − 1)
B − 1 + x

−
2η1x2y
A + x2 + r2

(
1 −

x
K

)
− d1


Theorem 5.1. Equilibrium state E0(0, 0) is unstable. Moreover, it is a unstable node if r2 >

βγ1

B − 1
+ d1 and unstable

saddle if r2 <
βγ1

B − 1
+ d1.

Proof. At E0(0, 0), Jacobian matrix is obtained as,

J(E0) =


r1

β1

B − 1

0 −
βγ1

B − 1
− d1 + r2


The eigenvalues of J(E0) are r1 and

(
−
βγ1

B − 1
− d1 + r2

)
. If r2 >

βγ1

B − 1
+ d1, then both eigenvalue are positive.

So, E0(0, 0) is a unstable node. On the other hand, if r2 <
βγ1

B − 1
+ d1, then one eigen value is positive and

another is negative. Hence, E0(0, 0) is a unstable saddle.

Theorem 5.2. Predator-free equilibrium point Ea(K, 0) is locally asymptotically stable (LAS) if
βγ(K − 1)
B − 1 + K

< d1 and

it is an unstable saddle if
βγ(K − 1)
B − 1 + K

> d1.

Proof. Jacobian matrix J(E) at Ea = (K, 0) is,

J(E) =


−r1 −

β(K − 1)
B − 1 + K

0 −d1 +
βγ(K − 1)
B − 1 + K


The eigenvalues of J(E) are −r1 and

(
−d1 +

βγ(K − 1)
B − 1 + K

)
. Therefore, the predator free equilibrium is locally

asymptotically stable (LAS) if
βγ(K − 1)
B − 1 + K

< d1 and it is an unstable saddle if
βγ(K − 1)
B − 1 + K

> d1.

Theorem 5.3. The survival of the both species reflects the existence of the interior equilibrium state EI(x∗, y∗), that
leads to the following stability behavior of EI(x∗, y∗):

I. stable node when Γ < 0, ∆ > 0, Γ2
− 4∆ ≥ 0

II. unstable node when Γ > 0, ∆ > 0, Γ2
− 4D ≥ 0

III. stable spiral provided Γ < 0, Γ2
− 4∆ < 0

IV. unstable spiral when Γ > 0, Γ2
− 4∆ < 0

V. unstable saddle when ∆ < 0
VI. stable centre provided Γ = 0, ∆ > 0
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where, Γ = Tr(J(x∗, y∗)) and ∆ = det(J(x∗, y∗))

Proof. At the interior equilibrium point EI(x∗, y∗), the Jacobian matrix is given by,

J(EI) =


∂F
∂x

∂F
∂y

y
∂ f2
∂x

y
∂ f2
∂y


EI

=

C11 C12

C21 C22

 = C

where,

C11 = −
Bβy∗

(B − 1 + x∗)2 + r1

(
1 −

2x∗

K

)
C12 = −

β(x∗ − 1)
B − 1 + x∗

C21 = −
2Aη1x∗y∗2(
A + x∗2

)2 +
By∗βγ

(B − 1 + x∗)2 −
r2y∗

K

C22 = −
η1y∗x∗2

A + x∗2

Now, for matrix C, the characteristic equation becomes

|A − λI| = 0⇒ λ2
− Γλ + ∆ = 0

∴ λ = λ1, λ2 where, λ1 =
Γ +
√

Γ2 − 4∆
2

, λ2 =
Γ −
√

Γ2 − 4∆
2

.

where λ1 and λ2 are eigenvalues of matrix C.

Here, Γ = Tr(J(x∗, y∗)) = C11 + C22 = −
Bβy∗

(B − 1 + x∗)2 + r1

(
1 −

2x∗

K

)
−
η1y∗x∗2

A + x∗2

and ∆ = det(J(x∗, y∗)) = (C11C22 − C12C21)

=
βy∗(x∗ − 1)
(B − 1 + x∗)

− 2Aη1x∗y∗(
A + x∗2

)2 +
Bβγ

(B − 1 + x∗)2 −
r2

K

 + η1x∗2y∗

(A + x∗2)

(
Bβy∗

(B − 1 + x∗)2 + r1

(2x∗

K
− 1

))

Case I: If Γ < 0, ∆ > 0, Γ2
− 4∆ ≥ 0, then λ1 and λ2 are negative. So, EI(x∗, y∗) is stable node.

Case II: If Γ > 0, ∆ > 0, Γ2
− 4∆ ≥ 0, then λ1 and λ2 are positive. Therefore, EI(x∗, y∗) is unstable node.

Case III: If Γ < 0, Γ2
− 4∆ < 0, then λ1 and λ2 are imaginary whose real part is negative. Therefore, EI(x∗, y∗)

is stable spiral.
Case IV: If Γ > 0, Γ2

− 4∆ < 0, then λ1 and λ2 are imaginary whose real part is positive. Hence, EI(x∗, y∗) is
unstable spiral.
Case V: If ∆ < 0, then between λ1 and λ2, one is negative and another is positive (since ∆ = λ1λ2). Hence,
EI(x∗, y∗) is unstable saddle.
Case VI: If Γ = 0, ∆ > 0, λ1 and λ2 are purely imaginary. So, EI(x∗, y∗) is stable centre.

6. Bifurcation Analysis

In this particular section, our focus is directed towards an exhaustive exploration of all possible local
bifurcations associated with system (2.1).
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6.1. Transcritical Bifurcation
Transcritical bifurcation is the fundamental process by which an equilibrium point of the system changes

its stability with another equilibrium point for a variation of a parameter. In this study, we demonstrate
that system (2.1) undergoes a transcritical bifurcation with respect to the bifurcating parameter d1. This
results in a switch in stability between the interior equilibrium point and predator free equilibrium point
Ea(K, 0).

Theorem 6.1. The system (2.1) experiences a transcritical bifurcation around the predator-free equilibrium point

Ea (K, 0) at the bifurcation threshold d(TC)
1 =

βγ(K − 1)
B − 1 + K

.

Proof. In order to prove that system (2.1) undergoes a transcritical bifurcation around Ea (K, 0) at the bifurca-

tion threshold d(TC)
1 =

βγ(K − 1)
B − 1 + K

, we apply Sotomayor’s theorem [25]. Now the Jacobian matrix at Ea (K, 0)

is

J(Ea)|d1=d(TC)
1
=


−r1 −

β(K − 1)
B − 1 + K

0 0

 = M̃

Now 0 is an eigen value of M̃. So, 0 is also an eigenvalue of M̃T and let W and Z are eigenvectors corre-

sponding to 0 of matrix M̃ and M̃T respectively. Here, W =
(

1
w1

)
, and Z =

(
0
1

)
, where, w1 = −

r1(B − 1 + K)
β(K − 1)

.

Let H(x, y) =
[
F(x, y)
G(x, y)

]
.

∴ Hd1 =

[
0
−y

]
, so the transversality conditions for transcritical bifurcation are,

ZT
[
Hd1

(
Ea; d1 = d(TC)

1

)]
= 0,

ZT
[
DHd1

(
Ea; d1 = d(TC)

1

)
W

]
=

r1(B − 1 + K)
β(K − 1)

, 0, (Since K > 1 and B > 1)

ZT
[
D2H

(
Ea; d1 = d(TC)

1

)
(W,W)

]
= −

2r1(B − 1 + K)
β2(K − 1)2

[
η1K2r1(B − 1 + K)

A + K2 +
β2Bγ(K − 1)
(B − 1 + K)2 −

r2β(K − 1)
K

]
, 0

provided,
r2β(K − 1)

K
,
η1K2r1(B − 1 + K)

A + K2 +
β2Bγ(K − 1)
(B − 1 + K)2

So, by Sotomayor’s theorem, the system experiences a transcritical bifurcation around Ea (K, 0) at the bifur-

cation threshold d(TC)
1 =

βγ(K − 1)
B − 1 + K

.

Theorem 6.2. Around the predator-free equilibrium point Ea (K, 0), system (2.1) experiences a transcritical bifurca-

tion at the bifurcation threshold β(TC) =
βγ(K − 1)
B − 1 + K

.

Proof. This proof can be obtained by following Theorem 6.1.

6.2. Saddle-node Bifurcation
A saddle-node bifurcation arises when two equilibrium states within system (2.1) converge, collide, and

disappear due to changes in a parametric value, resulting in their mutual annihilation and also it occurs,
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Figure 2: Non-trivial nullclines associated with saddle-node bifurcations. The blue curve represents the nontrivial prey nullcline,
whereas the red curve represents the nontrivial predator nullcline.

when predator and prey nullclines meet tangentially. Figure 2 illustrates that the non-trivial prey and
predator nullclines touch each other at two different values of d1, with the other parameters values set to
{r1 = 1.18, K = 4.06, β = 0.71, 1 = 0.164, B = 0.27, γ = 0.84, r2 = 0.61, η1 = 0.25, A = 0.5}. Now we will
provide a theorem that proves the occurrence of a saddle-node bifurcation in the system with respect to the
bifurcation parameter d1.

Theorem 6.3. System (2.1) exhibits a saddle-node bifurcation corresponding to the bifurcation parameter d1 at
d1 = d(SN1)

1 and d1 = d(SN2)
1 .

Proof. Suppose xI1 be the repeated positive root ofϕ(x) = 0, withϕ(x) ≡ a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0.
In section 4.2, we have provided the coefficients a0, a1, a2, a3, a4, a5 and a6. If the nontrivial nullcline

F(x, y) = 0 intersects the nontrivial nullcline f2(x, y) = 0 tangentially at EI1, then
dy(F)

dx

∣∣∣∣∣∣
EI1

=
dy( f2)

dx

∣∣∣∣∣∣∣
EI1

.

Jacobian matrix J(x, y) at d1 = d(SN1)
1 is as follows:

J(x, y) =


∂F
∂x

∂F
∂y

y
∂ f2
∂x

y
∂ f2
∂y


EI1,d

(SN1)
1

(
∵ f2

∣∣∣∣
EI1

= 0
)

=


r1(K − 2x)

K
−

βyB
(B + x − 1)2 −

β(x − 1)
B + x − 1

γβBy
(B + x − 1)2 −

r2y
K
−

2η1xy2A
(A + x2)2 −

η1x2y
A + x2


EI1,d

(SN1)
1

Now,

det(J(x, y)) =
[
y
(
∂F
∂x
∂ f2
∂y
−
∂ f2
∂x
∂F
∂y

)]
EI1,d

(SN1)
1

=

[
y
∂F
∂y
∂ f2
∂y

(
dy( f2)

dx
−

dy(F)

dx

)]
EI1,d

(SN1)
1

= 0.



P. Akhtar et al. / Filomat 39:7 (2025), 2281–2316 2293

Let J(x, y) = P and JT(x, y) = Q. As det(J(x, y)) = 0, so 0 is an eigenvalue of both P and Q. The eigenvectors

corresponding to P and Q are given by W =

[
w1
w2

]
EI1,d

(SN1)
1

and Z =
[
z1
z2

]
EI1,d

(SN1)
1

respectively, where w1 = 1,

w2 = −
r1(K − 2x)(B − 1 + x)2

− BβKy
βK(B + x − 1)(1 − x)

, z1 = 1 and z2 = −
β
(
A + x2

)
(x − 1)

η1x2y(B − 1 + x)
.

Applying the Sotomayor’s theorem [25] at d1 = d(SN1)
1 , we get

ZTF̃d1 (EI1, d
(SN1)
1 ) = −y′ , 0

ZT
[
D2F̃(EI1, d

(SN1)
1 )(W,W)

]
= R −

2r1

K
, 0, provided, R ,

2r1

K

where, R = L +M +N and

L =

2
(
β2BK2y2(2B − 1 + x) + 3βBKr1y(2x − K)(B − 1 + x)2 + r2

1(K − 2x)2(B − 1 + x)4
)

βK2y(x − 1)(B − 1 + x)3


EI1,d

(SN1)
1

M =

2
(
A + x2

) (
r1(2x − K)(B − 1 + x)2 + βBKy

)
η1Kx2y(B − 1 + x)2

(
4Aη1xy

(A + x2)2 −
Bγβ

(B − 1 + x)2 +
r2

K

)
EI1,d

(SN1)
1

N =

β
(
A + x2

)
(1 − x)

η1x2(B − 1 + x)

2Aη1y
(
A − 3x2

)
(A + x2)3 +

2Bγβ
(B − 1 + x)3




EI1,d
(SN1)
1

Here, F̃ =
(
F
G

)
, each of F and G is specified in equation (2.1). Therefore, the system satisfies the required

conditions needed for a saddle-node bifurcation around the interior equilibrium EI1 at d1 = d(SN1)
1 . In a

similar way, there is another saddle-node bifurcation occurring at a different interior equilibrium point at
d1 = d(SN2)

1 .

Theorem 6.4. The system (2.1) exhibits saddle-node bifurcation at β = β(SN1) and β = β(SN2) with respect to β.

Proof. Let us skip this proof as it is similar to previous one (Theorem 6.3).

Theorem 6.5. For parameter η1, system (2.1) experiences saddle-node bifurcation at η1 = η
(SN1)
1 and η1 = η

(SN2)
1 .

Proof. Let us omit this proof as it is similar to Theorem 6.3.

Theorem 6.6. System (2.1) exhibits saddle-node bifurcation at r2 = r(SN1)
2 and r2 = r(SN2)

2 for bifurcation parameter
r2.

Proof. This proof can be obtained by following Theorem 6.3.

6.3. Hopf-bifurcation
Using r2 as a variable parameter, the characteristic equation of (2.1) for J(x, y) can be represented as

follows:

λ2
− Γ(r2)λ + ∆(r2) = 0 (6.1)

where Γ(r2), ∆(r2) are trace and determinant of J(x, y) at EI(x∗, y∗) respectively (mentioned in Theorem 5.3).
Suppose the purely imaginary roots of (6.1) appear at the point r2 = r(H)

2 . Then Γ(r(H)
2 ) = 0, and ∆(r(H)

2 ) > 0.
Let us prove the existence of Hopf-bifurcation in (2.1) at r2 = r(H)

2 .
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Theorem 6.7. System (2.1) experiences a Hopf-bifurcation around EI(x∗, y∗) at r2 = r(H)
2 , when Γ(r(H)

2 ) = 0,∆(r(H)
2 ) >

0 and
[

dΓ
dr2

]
r2=r(H)

2

, 0.

Proof. At r2 = r(H)
2 , Γ(r(H)

2 ) = 0, ∆(r(H)
2 ) > 0, the characteristic equation has purely imaginary roots, i.e.

λ1 = i
√
∆(r(H)

2 ) and λ2 = −i
√
∆(r(H)

2 ). Hence, λ1 = 11(r2) + i12(r2) and λ2 = 11(r2) − i12(r2) are the roots of

(6.1) in an open neighbourhood of r(H)
2 , where 11(r2), 12(r2) ∈ R. By utilizing the Hopf-Bifurcation Theorem

[23], it can be inferred that the stability of (2.1) transists through a Hopf-bifurcation, provided the following
transversality condition

[
d

dr2
(Re(λi(r2)))

]
r2=r(H)

2

=

[
d11(r2)

dr2

]
r2=r(H)

2

, 0

is satisfied. Let us put λ(r2) = 11(r2) + i12(r2) in equation (6.1), then we get,

(11(r2) + i12(r2))2
− Γ(r2)(11(r2) + i12(r2)) + ∆(r2) = 0

If we differentiate both sides w.r.t. r2 we get,

2(11(r2) + i12(r2))(1̇1(r2) + i1̇2(r2)) − Γ(r2)(1̇1(r2) + i1̇2(r2)) − Γ̇(r2)(11(r2) + i12(r2)) + ∆̇(r2) = 0

Comparing and solving the real and imaginary parts of both sides yields:

1̇1 = −
(X1X3 + X2X4)

X2
1 + X2

2

(6.2)

where, X1 = (211 − Γ), X2 = 212, X3 = (∆̇ − Γ̇11), X4 = −Γ̇12.
At r2 = r(H)

2 ; 11 = 0, 12 = ±
√
∆which gives, X1 = 0, X2 = ±2

√
∆, X3 = ∆̇ and X4 = ∓Γ̇

√
∆. Then:

[1̇1]r2=r(H)
2
=

[
d11(r2)

dr2

]
r2=r(H)

2

= ±
1
2

[
dΓ(r2)

dr2

]
r2=r(H)

2

, 0

This completes the proof.

Theorem 6.8. For parameter d1, a Hopf-bifurcation occurs in system (2.1) around EI(x∗, y∗) at d1 = d(H)
1 , provided

Γ(d(H)
1 ) = 0, ∆(d(H)

1 ) > 0 and
[

dT
dd1

]
d1=d(H)

1

, 0.

Proof. Let us skip this as it can be obtained by following Theorem 6.7.

6.4. Bogdanov-Takens bifurcation
It is evident that system (2.1) experiences both saddle-node bifurcation and Hopf-bifurcation for a

suitable collection of parametric values. Within a specific two-parametric bifurcation plane, these two
bifurcation points can result in the formation of a saddle-node bifurcation curve and a Hopf-bifurcation
curve. When the Hopf-bifurcation curve intersects with the saddle-node bifurcation curve, a new bifurcation
called Bogdanov-Takens bifurcation arises. Usually, a Bogdanov-Takens (BT) bifurcation refers to a point,
in which the Jacobian matrix has a zero eigenvalue with algebraic multiplicity two. We will now provide a
theorem demonstrating that, system (2.1) goes Bogdanov–Takens bifurcation for the bifurcation parameters
β and r2.

Theorem 6.9. System (2.1) undergoes a Bogdanov–Takens bifurcation around the interior equilibrium point EI(x∗, y∗)
with respect to the bifurcation parameters β, r2, whenever EI(x∗, y∗) satisfies the following conditions:
(BT1) tr(J(EI; (βBT, rBT

2 ))) = 0
(BT2) det(J(EI; (βBT, rBT

2 ))) = 0
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Proof. Conditions (BT1) and (BT2) are equivalent to following:

−
Bβy∗

(B − 1 + x∗)2 + r1

(
1 −

2x∗

K

)
−
η1y∗x∗2

A + x∗2
= 0

βy∗(x∗ − 1)
(B − 1 + x∗)

− 2Aη1x∗y∗(
A + x∗2

)2 +
Bβγ

(B − 1 + x∗)2 −
r2

K

 + η1x∗2y∗

(A + x∗2)

(
Bβy∗

(B − 1 + x∗)2 + r1

(2x∗

K
− 1

))
= 0

From above equations we can write explicitly

βBT =

(
B − 1 + x∗

)2
(
AKr1 − 2Ar1x∗ + Kr1x∗2 − η1Kx∗2y∗ − 2r1x∗3

)
BKy∗

(
A + x∗2

) ,

rBT
2 =

γ
(
r1

(
A + x∗2

)
(2x∗ − K) + η1Kx∗2y∗

)
y∗

(
A + x∗2

) +
2Aη1Kx∗y∗(

A + x∗2
)2

+
Bη2

1K2x∗4y∗2(
A + x∗2

) (
x∗ − 1

) (
B − 1 + x∗

) (
r1

(
A + x∗2

)
(K − 2x∗) − η1Kx∗2y∗

)
Let us consider a small perturbation around the bifurcation threshold (βBT, rBT

2 ), say (βBT + λ1, rBT
2 + λ2),

where {λi; i = 1, 2} are sufficiently small.
Then system (2.1) becomes

dx
dt
= r1x

(
1 −

x
K

)
−

(βBT + λ1)(x − 1)y
B + x − 1

≡ G1(x, y, λ1) = F(x, y) −
λ1(x − 1)y
B + x − 1

dy
dt
=
γ(βBT + λ1)(x − 1)y

B + x − 1
+ (rBT

2 + λ2)y
(
1 −

x
K

)
− d1y −

η1x2y2

A + x2

≡ G2(x, y, λ2) = G(x, y) + λ2y
(
1 −

x
K

)
+
λ1γ(x − 1)y

B + x − 1

(6.3)

Now we shift the equilibrium point EI(x∗, y∗) to the origin by the transformations x1 = x− x∗ and x2 = y− y∗.
So system (6.3) becomes

dx1

dt
= p00 + p10x1 + p01x2 +

p11

2
x1

2 + p12x1x2 +
p22

2
x2

2 + ...

dx2

dt
= q00 + q10x1 + q01x2 +

q11

2
x1

2 + q12x1x2 +
q22

2
x2

2 + ...
(6.4)

where,

p00 = G1(x∗, y∗, λ1, λ2) , q00 = G2(x∗, y∗, λ1, λ2) , p10 =
∂G1

∂x
(x∗, y∗, λ1, λ2) = a −

Bλ1y∗

(B − 1 + x∗)2

q10 =
∂G2

∂x
(x∗, y∗, λ1, λ2) = b −

λ2y∗

K
+

Bγλ1y∗

(B − 1 + x∗)2 , p01 =
∂G1

∂y
(x∗, y∗, λ1, λ2) = c −

λ1(x∗ − 1)
B − 1 + x∗

q01 =
∂G2

∂y
(x∗, y∗, λ1, λ2) = d + λ2

(
1 −

x∗

K

)
+
λ1γ(x∗ − 1)
B + x∗ − 1

, p22 =
∂2G1

∂y2 (x∗, y∗, λ1, λ2) = 0

p11 =
∂2G1

∂x2 (x∗, y∗, λ1, λ2) =
2By∗

(
βBT + λ1

)
(B − 1 + x∗)3 −

2r1

K
, q22 =

∂2G2

∂y2 (x∗, y∗, λ1, λ2) = −
2η1x∗2

A + x∗2

q11 =
∂2G2

∂x2 (x∗, y∗, λ1, λ2) = −
2Aη1y∗2

(
A − 3x∗2

)
(
A + x∗2

)3 −
2Bγy∗

(
β + λ1

)
(B − 1 + x∗)3

p12 =
∂2G1

∂y∂x
(x∗, y∗, λ1, λ2) = −

B
(
βBT + λ1

)
(B − 1 + x∗)2
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q12 =
∂2G2

∂y∂x
(x∗, y∗, λ1, λ2) = −

4Aη1x∗y∗(
A + x∗2

)2 +
Bγ

(
β + λ1

)
(B − 1 + x∗)2 −

λ2 + r2

K

Here, a = −
Bβy∗

(B − 1 + x∗)2 + r1

(
1 −

2x∗

K

)
, b = −

β(x∗ − 1)
B − 1 + x∗

, c = −
2Aη1x∗y∗2(
A + x∗2

)2 +
By∗βγ

(B − 1 + x∗)2 −
r2y∗

K
,

d = −
η1y∗x∗2

A + x∗2
.

Now, introducing affine transformation [25] z1 = x1, z2 = ax1+bx2, then the above system is transformed into

dz1

dt
= z2 + ζ00(λ) + ζ10(λ)z1 + ζ01(λ)z2 +

ζ20(λ)
2

z1
2 + ζ11z1z2 +

ζ02(λ)
2

z2
2 + B1(z1, z2)

dz2

dt
= η00(λ) + η10(λ)z1 + η01(λ)z2 +

η20(λ)
2

z1
2 + η11z1z2 +

η02

2
z2

2 + B2(z1, z2)
(6.5)

where, λ = (λ1, λ2) and B1(z1, z2), B2(z1, z2) are C∞ functions at least of third order with respect to (z1, z2).

ζ00(λ) = G1(x∗, y∗, λ) , η00(λ) = aG1(x∗, y∗, λ) + bG2(x∗, y∗, λ) , ζ10(λ) = (p10 −
a
b

p01),

η10(λ) = bq10 − aq01 + ap10 −
a2

b
p01 , ζ01(λ) =

1
b

p01 − 1 , η01(λ) = q01 +
a
b

p01 , ζ02(λ) =
p22

b2 ,

ζ20(λ) =
[
p11 −

2ap12

b
+

a2p22

b2

]
, η20(λ) =

[
ap11 + bq11 −

2a(ap12 + bq12)
b

+
a2(ap22 + bq22)

b2

]
,

ζ11(λ) =
[p12

b
−

ap22

b2

]
, η11(λ) =

[ (ap12 + bq12)
b

−
a(ap22 + bq22)

b2

]
, η02(λ) =

(ap22 + bq22)
b2 .

The degeneracy conditions of the Bogdanov-Takens bifurcations at (βBT, rBT
2 ) are,

I.
[
a b
c d

]
,

[
0 0
0 0

]
II. ζ20(0) + η11(0) = R1 , 0

where, R1 =
2γr1(K−2x∗)

Ky∗ −
2γη1x∗2

A+x∗2 +
2η1x∗y∗(Ax∗(2B−71)+3A1(1−B)+4Ax∗2−x∗3(B+1)+x∗4)

(A+x∗2)2(1−x∗)(B−1+x∗)

+
3Br2

1(A+x∗2)(K−2x∗)2

K(1−x∗)(B−1+x∗)(r1(A+x∗2)(K−2x∗)−η1Kx∗2 y∗) +
r1(2x∗(4B−41−K+3x∗)−B(21+3K)+21(1+K))

K(1−x∗)(B−1+x∗)

Also,

III. η20 =
2R2(

A + x∗2
)4

where, R2 = −
Bη3

1Kx∗6 y∗3(A+x∗2)2

(1−x∗)(B−1+x∗)(r1(A+x∗2)(K−2x∗)−η1Kx∗2 y∗) −
η1x∗2 y∗(A+x∗2)2(r1(A+x∗2)(B−1−K+3x∗)+η1Kx∗2 y∗)

K(B−1+x∗)

+
Bη3

1Kx∗6 y∗3(A+x∗2)2

(x∗−1)(B−1+x∗)(r1(A+x∗2)(K−2x∗)−η1Kx∗2 y∗) +
Bη2

1x∗4 y∗2(A+x∗2)2

(1−x∗)(B−1+x∗) +
2γη1x∗2(A+x∗2)2(η1Kx∗2 y∗−r1(A+x∗2)(K−2x∗))

K

+
(1−x∗)(r1(A+x∗2)(K−2x∗)−η1Kx∗2 y∗)

(
η1Ky∗

(
γx∗2(A+x∗2)2

−Ay∗(A−3x∗2)(B−1+x∗)
)
−γr1(A+x∗2)3

(K−2x∗)
)

BK2 y∗

+ 6Aη2
1x∗3y∗2

(
A + x∗2

)
Therefore, ζ20(0) + η11(0) , 0 and η20(0) may or may not be 0. So, when η20(0) , 0, then according
to sign

[
η20(0)

(
ζ20(0) + η11(0)

)]
, i.e., either +1 or −1, the predator-prey model undergoes a subcritical BT

bifurcation or undergoes a supercritical BT bifurcation respectively. It is difficult to show that η20(0) , 0 but
we can assure the existence of Bogdanov-Takens bifurcation numerically for certain choice of parameters
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shown in Section 7.2.

Theorem 6.10. System (2.1) experiences a Bogdanov–Takens bifurcation around the interior equilibrium point
EI(x∗, y∗) with respect to the bifurcation parameters η1, r2, whenever EI(x∗, y∗) satisfies the following conditions:
(BT1) tr(J(EI; (ηBT

1 , r
BT
2 ))) = 0

(BT2) det(J(EI; (ηBT
1 , r

BT
2 ))) = 0

Proof. We have omitted this proof as it is similar to Theorem 6.9.

Theorem 6.11. System (2.1) exhibits a Bogdanov–Takens bifurcation around the interior equilibrium point EI(x∗, y∗)
with respect to the bifurcation parameters d1, β, whenever EI(x∗, y∗) satisfies the following conditions:
(BT1) tr(J(EI; (dBT

1 , β
BT))) = 0

(BT2) det(J(EI; (dBT
1 , β

BT))) = 0

Proof. Proceeding as in Theorem 6.9, the results can be obtained.

6.5. Generalized Hopf-bifurcation
A stable limit cycle is formed by a supercritical Hopf-bifurcation when the first Lyapunov coefficient

is negative (σ < 0). Conversely, an unstable limit cycle is formed through a subcritical Hopf-bifurcation
when the first Lyapunov coefficient is positive (σ > 0). Therefore, when σ = 0, system (2.1) undergoes a
generalized Hopf-bifurcation in two-parametric bifurcation plane. This point of bifurcation signifies the
shift from subcritical to supercritical Hopf-bifurcation. We provide a theorem that establishes the existence
of a generalized Hopf-bifurcation in system (2.1), specifically in relation to the bifurcation parameters β and
d1.

Theorem 6.12. System (2.1) undergoes a Bautin (Generalized Hopf) bifurcation at the interior equilibrium point
EI(x∗, y∗) when it reaches the bifurcation threshold (βGH, dGH

1 ), whenever the value of EI(x∗, y∗) meets the following
requirements:
(GH1) T = tr(J(EI; (βGH, dGH

1 ))) = 0
(GH2) D = det(J(EI; (βGH, dGH

1 ))) > 0
(GH3) L(EI; (βGH, dGH

1 )) = 0
where L is the first Lyapunov number.

Proof. Let the nontrivial equilibrium point EI(x∗, y∗) satisfies the above three conditions. The Jacobian matrix
at EI is

J(EI) =


∂F
∂x

∂F
∂y

y
∂ f2
∂x

y
∂ f2
∂y


EI

(
∵ f2

∣∣∣∣
EI1

= 0
)

=


r1(K − 2x∗)

K
−

βy∗B
(B + x∗ − 1)2 −

β(x∗ − 1)
B + x∗ − 1

γβBy∗

(B + x∗ − 1)2 −
r2y∗

K
−

2η1x∗y∗2A
(A + x∗2)2

−
η1x∗2y∗

A + x∗2


Now, from the conditions (GH1) and (GH2):

βGH =

(
B − 1 + x∗

)2
(
AKr1 − 2Ar1x∗ + Kr1x∗2 − η1Kx∗2y∗ − 2r1x∗3

)
BKy∗

(
A + x∗2

)
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To find the first Lyapunov number L at EI, we shift EI to origin by using the transformation x1 = x − x∗ and
x2 = y − y∗. So, system (2.1) becomes

dx1

dt
= ax1 + bx2 + P(x1, x2)

dx2

dt
= cx1 + dx2 +Q(x1, x2)

where, a =
(∂F
∂x

)
EI

, b =
(∂F
∂y

)
EI

, c =
(∂G
∂x

)
EI

, d =
(∂G
∂y

)
EI

and P(x1, x2), Q(x1, x2) are analytic functions, defined

by

P(x1, x2) =
∑

i+ j≥2

ai jx1
ix2

j

Q(x1, x2) =
∑

i+ j≥2

bi jx1
ix2

j

where, ai j and bi j are defined by, ai j =
1

i! j!

( ∂i+ jF
∂xi∂y j

)
EI

and bi j =
1

i! j!

( ∂i+ jG
∂xi∂y j

)
EI

.

Now, the first Lyapunov number is as follows;

L = −
3π

2bD
3
2

[{
ac(a2

11 + a11b02 + a02b11)+ ab(b2
11 + a20b11 + a11b02)+ c2(a11a02 + 2a02b02)− 2ac(b2

02 − a20a02)− 2ab(a2
20 −

b20b02) − b2(2a20b20 + b11b20) + (bc − 2a2)(b11b02 − a11a20)
}
−(a2 + bc)

{
3(cb03 − ba30) + 2a(a21 + b12) + (ca12 − bb21)

}]
Let us determine the coefficients ai j, bi j and a, b, c and d to calculate the first Lyapunov number.

a =
∂F
∂x

(x∗, y∗) =
r1(K − 2x∗)

K
−

βy∗B
(B + x∗ − 1)2 , b =

∂F
∂y

(x∗, y∗) = −
β(x∗ − 1)

B + x∗ − 1
,

c =
∂G
∂x

(x∗, y∗) =
γβBy∗

(B + x∗ − 1)2 −
r2y∗

K
−

2η1x∗y∗2A
(A + x∗2)2

, d =
∂G
∂y

(x∗, y∗) = −
η1x∗2y∗

A + x∗2
,

a11 =
∂2F
∂y∂x

(x∗, y∗) = −
βB

(B − 1 + x∗)2 , a20 =
1
2
∂2F
∂x2 (x∗, y∗) =

βBy∗

(B − 1 + x∗)3 −
r1

K
,

a02 =
1
2
∂2F
∂y2 (x∗, y∗) = 0 , a21 =

1
2
∂3F
∂x2∂y

(x∗, y∗) =
βB

(B − 1 + x∗)3 , a12 =
1
2
∂3F
∂x∂y2 (x∗, y∗) = 0,

a30 =
1
6
∂3F
∂x3 (x∗, y∗) = −

βBy∗

(B − 1 + x∗)4 , a03 =
1
6
∂3F
∂y3 (x∗, y∗) = 0 , b03 =

1
6
∂3G
∂y3 (x∗, y∗) = 0,

b11 =
∂2G
∂y∂x

(x∗, y∗) = −
4Aη1x∗y∗(
A + x∗2

)2 +
Bγβ

(B − 1 + x∗)2 −
r2

K
, b12 =

1
2
∂3G
∂x∂y2 (x∗, y∗) = −

2Aη1x∗(
A + x∗2

)2 ,

b20 =
1
2
∂2G
∂x2 (x∗, y∗) = −

Aη1y∗2
(
A − 3x∗2

)
(
A + x∗2

)3 −
Bγβy∗

(B − 1 + x∗)3 , b02 =
1
2
∂2G
∂y2 (x∗, y∗) = −

η1x∗2

A + x∗2
,

b21 =
1
2
∂3G
∂x2∂y

(x∗, y∗) = −
2Aη1y∗

(
A − 3x∗2

)
(
A + x∗2

)3 −
Bγβ

(B − 1 + x∗)3 ,

b30 =
1
6
∂3G
∂x3 (x∗, y∗) =

4Aη1x∗y∗2
(
A − x∗2

)
(
A + x∗2

)4 +
Bγβy∗

(B − 1 + x∗)4 .

Substituting the values of above expressions in first Lyapunov number and after some algebraic com-
putations, we obtain,
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L = −
3π · (L1 + L2 + L3 + L4 + L5 + L6 + L7)

2bD
3
2

where,

L1 = −2B2η3
1K3(x∗)6(y∗)3(A + (x∗)2)2(B − 1 + x∗)·

[−2Aη1Kx∗y∗(B − 1 + x∗)2
− r2(A + (x∗)2)2(B − 1 + x∗)2 + BγβK(A + (x∗)2)2]

L2 = B2η1Kr1(x∗)2y∗(A + (x∗)2)3(K − 2x∗)(B − 1 + x∗)[r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗]·

[−2Aη1Kx∗y∗(B − 1 + x∗)2
− r2(A + (x∗)2)2(B − 1 + x∗)2 + BγβK(A + (x∗)2)2]

L3 = K(1 − x∗)2(r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗)2
·

[Aη1y∗(A − 3(x∗)2)(B − 1 + x∗)3 + Bγβ(A + (x∗)2)3]·

[−2r1(A + (x∗)2)2(B − 1 + x∗)(B − 1 − K + 3x∗) − 2η1Kx∗y∗(B − 1 + x∗)·

(2AB − 2A1 + 3Ax∗ + (x∗)3) − r2(A + (x∗)2)2(B − 1 + x∗)2 + BγβK(A + (x∗)2)2]

L4 = B(A + (x∗)2)[(A + (x∗)2)(B − 1 + x∗)(r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗)·

(η1(−K)(x∗)2y∗ − r1(A + (x∗)2)(B − 1 − K + 3x∗)) − η1K(x∗)2y∗·

(−4Aη1Kx∗y∗(B − 1 + x∗)2
− r2(A + (x∗)2)2(B − 1 + x∗)2 + BγβK(A + (x∗)2)2)]·

[2Bη2
1K2(x∗)4(y∗)2(A + (x∗)2)(B − 1 + x∗) − (1 − x∗)(r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗)·

(−2Aη1Kx∗y∗(B − 1 + x∗)2
− r2(A + (x∗)2)2(B − 1 + x∗)2 + BγβK(A + (x∗)2)2)]

L5 = Bη1K(x∗)2(A + (x∗)2)(1 − x∗)[r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗][y∗(A + (x∗)2)(B − 1 + x∗)·

(η1(−K)(x∗)2y∗ − r1(A + (x∗)2)(B − 1 − K + 3x∗))(−4Aη1Kx∗y∗(B − 1 + x∗)2
− r2(A + (x∗)2)2(B − 1 + x∗)2+

BγβK(A + (x∗)2)2) + y∗(4Aη1Kx∗y∗(B − 1 + x∗)2 + r2(A + (x∗)2)2(B − 1 + x∗)2
− BγβK(A + (x∗)2)2)2+

η1K(x∗)2(A + (x∗)2)2(B − 1 + x∗)4(r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗)]

L6 = 2Bη1K(x∗)2y∗(A + (x∗)2)(1 − x∗)(B − 1 + x∗)[r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗]·

[(A + (x∗)2)2(B − 1 + x∗)(r1(A + (x∗)2)(B − 1 − K + 3x∗) + η1K(x∗)2y∗)2
−

η1K2(x∗)2y∗(Aη1y∗(A − 3(x∗)2)(B − 1 + x∗)3 + Bγβ(A + (x∗)2)3)]

L7 = [Bη2
1K2(x∗)4(y∗)2(A + (x∗)2)(B − 1 + x∗) + (1 − x∗)(r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗)·

(−2Aη1Kx∗y∗(B − 1 + x∗)2
− r2(A + (x∗)2)2(B − 1 + x∗)2 + BγβK(A + (x∗)2)2)]·

[K(1 − x∗)(r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗)(2Aη1y∗(A − 3(x∗)2)(B − 1 + x∗)3 + Bγβ(A + (x∗)2)3)−

2Bη1K(x∗)2y∗(A + (x∗)2)(B − 1 + x∗)(η1Kx∗y∗(2Ax(B − 1) + x∗(2Ax + A) + (x∗)3) − r1(A + (x∗)2)2(K − 2x∗))+

3(A + (x∗)2)2(1 − x∗)(B − 1 + x∗)(r1(A + (x∗)2)(K − 2x∗) − η1K(x∗)2y∗)2]

If L = 0, then system (2.1) undergoes generalized Hopf-bifurcation. But, it is difficult to show L = 0, so the
occurrence of generalized Hopf-bifurcation can be confirmed numerically for certain parametric values.
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Theorem 6.13. System (2.1) undergoes a Bautin (Generalized Hopf) bifurcation at the interior equilibrium point
EI(x∗, y∗) when it reaches the bifurcation threshold (βGH, rGH

2 ), whenever the value of EI(x∗, y∗) meets the following
requirements:
(GH1) T = tr(J(EI; (βGH, rGH

2 ))) = 0
(GH2) D = det(J(EI; (βGH, rGH

2 ))) > 0
(GH3) L(EI; (βGH, rGH

2 )) = 0
where L is the first Lyapunov number.

Proof. Proceeding as in Theorem 6.12, the results can be obtained.

Theorem 6.14. System (2.1) undergoes a Bautin (Generalized Hopf) bifurcation at the interior equilibrium point
EI(x∗, y∗) when it reaches the bifurcation threshold (rGH

2 , η
GH
1 ), whenever the value of EI(x∗, y∗) meets the following

requirements:
(GH1) T = tr(J(EI; (rGH

2 , η
GH
1 ))) = 0

(GH2) D = det(J(EI; (rGH
2 , η

GH
1 ))) > 0

(GH3) L(EI; (rGH
2 , η

GH
1 )) = 0

where L is the first Lyapunov number.

Proof. It can be obtained by following Theorem 6.12.

6.6. Cusp Bifurcation
We have determined that by choosing suitable parameter values, system (2.1) may possess three interior

equilibrium points, which are denoted as EI1, EI2, and EI3. When we successively modify any parameter
value, there are two potential outcomes: Either EI1 and EI2 coincide, or EI2 and EI3 coincide, leading to the
occurrence of two saddle-node bifurcations. These two saddle-node bifurcation points result in two distinct
saddle-node bifurcation curves within a particular two parameteric bifurcation plane. At certain parameter
values, coincidence of these two saddle-node bifurcation curves leads to a cusp bifurcation [27]. In simple
terms, cusp bifurcation occurs when three coexistence equilibrium points of a system come together and
coincide. The lack of an explicit expression for coexistence equilibrium point makes it difficult to evaluate
the coordinates of Cusp bifurcation. Thus, it is important to have numerical confirmation in order to
validate the existence of this bifurcation (refer to Fig.9 & Fig.13).

7. Numerical simulation

For pictorial representations of local and global bifurcations, basins of attraction, and hysteresis loop,
as well as to examine the influence of various parameters on the dynamical behavior of system (2.1), we
conduct a series of numerical simulations in this section.

7.1. One-parametric bifurcation analysis
Consider a parameter in system (2.1) to examine thoroughly several bifurcation diagrams, which give

us an entire understanding of how the dynamics of the system vary with respect to the chosen parameter.
Let us vary the parameter β (grazing coefficient of filter-feeding fish) and keeping other parameter values
unchanged at {r1 = 1.18, K = 4.06, 1 = 0.164, B = 0.27, γ = 0.84, r2 = 0.61, d1 = 0.49, η1 = 0.25, A = 0.5}.
In this bifurcation scenario, E0(0, 0) remains unstable for all β. In fig.3, we observed that one stable and one
unstable coexistence equilibrium points intersect with each other and vanishes at β = β(SN1) = 0.82016136.
A similar type of scenario occurs between a unstable coexistence equilibrium point and another stable
coexistence equilibrium point at β = β(SN2) = 0.24197857. As a result, saddle node bifurcation occurs at
β = β(SN1), β = β(SN2). On the other hand, the system’s stability shifts when a predator-free equilibrium
point Ea meets with a coexistence equilibrium point at β = β(TC) = 0.62375941. At β = β(TC), a transcritical
bifurcation occurs, where Ea becomes unstable and a stable coexistence equilibrium point appears. For
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Figure 3: Bifurcation diagram of system (2.1) for the bifurcation parameter β. The cyan dotted and violet dotted curves indicate
unstable trivial equilibrium point (E0) and unstable predator free equilibrium point (Ea), respectively. The pink solid curve denotes
the stable behavior of predator free equilibrium point (Ea). The orange solid and green dotted curves represent stable and unstable
behavior of the interior equilibrium point (EI), respectively.

Table 3: Nature of equilibrium states for the parameter range of β, shown in fig.(3).

Range Equilibrium states Nature of equilibrium states
0 < β < β(SN2) E0,Ea E0 is unstable and Ea is LAS
β(SN2) < β < β(TC) E0,Ea, Two interiors E0 is unstable, Ea is LAS,

one interior is unstable and another is LAS
β(TC) < β < β(SN1) E0,Ea, Three interiors E0 is unstable and Ea is unstable, Two interiors are LAS,

one interior is unstable
β > β(SN1) E0,Ea, One interior E0 is unstable, Ea is unstable and the interior is LAS
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Figure 4: The bifurcation diagram illustrates the behavior of system (2.1) when the bifurcation parameter d1 varies. The cyan dotted
curve represents the unstable trivial equilibrium point (E0), whereas the violet dotted curve represents the unstable predator free
equilibrium point (Ea). The pink solid curve represents the stable state of the predator free equilibrium point (Ea). The orange solid
and green dotted curves depict the stable and unstable characteristics of the interior equilibrium point (EI), respectively. The unstable
limit cycle is shown by the blue dotted curve.

varying the parameter β, we observe some changes in number and nature of equilibrium points, which are
shown in Table 3. Due to the presence of a stable predator free and a stable coexistence equilibrium point in
β(SN2) < β < β(TC), a bi-stability phenomenon emerges. A similar type of phenomenon is observed between
two stable coexistence equilibrium points in β(TC) < β < β(SN1).

Next we examine bifurcation parameter d1, which indicates natural mortality rate of predator species.
Initially, we fixed parameter values to {r1 = 1.18, K = 4.06, 1 = 0.164, B = 0.27, γ = 0.84, r2 = 0.61, β =
0.71, η1 = 0.25, A = 0.5} and vary the parameter d1. In fig.4, a coexistence equilibrium point lost it’s
stability at d1 = d(H)

1 = 0.75516967, resulting in the emergence of Hopf-bifurcation, which is subcritical due
to positive lyapunov coefficient. As a result a unstable limit cycle occurs (shown in fig.5). This unstable
coexistence equilibrium point approaches and collides with another unstable coexistence equilibrium point
at d1 = d(SN2)

1 = 0.75664601. Additionally, a similar kind of situation is observed between one unstable and
one stable coexistence equilibrium points at d1 = d(SN1)

1 = 0.35406954.

As a result, saddle node bifurcation occurs at d1 = d(SN1)
1 and d1 = d(SN2)

1 . On the other hand, a shift of
stability observed between coexistence equilibrium point and Ea at d1 = d(TC)

1 = 0.5577471. Consequently, at
d1 = d(TC)

1 , a transcritical bifurcation takes place, where Ea becomes stable and coexistence equilibrium point
disappears. By varying the parameter d1, we have seen variations in both the number and characteristics
of equilibrium points. These changes are shown in Table 4. Due to presence of two stable coexistence
equilibrium points in d(SN1)

1 < d1 < d(TC)
1 , a bi-stability phenomenon emerges. A similar type of phenomenon

is observed between a coexistence and predator free equilibrium point in d(TC)
1 < d1 < d(H)

1 .

To investigate system (2.1) in another way, let us take parameter r2, representing intrinsic growth rate of
filter-feeding fish. At first, set the parametric values at {r1 = 1.18, K = 4.06, 1 = 0.164, B = 0.27, γ =
0.84, d1 = 0.49, β = 0.71, η1 = 0.25, A = 0.5} and vary the parameter r2. In fig.6, one stable and one
unstable coexistence stationary states are converge and collide at r2 = r(SN1)

2 = 1.1093139. Additionally, two
unstable coexistence equilibrium point converge and collide with each other at r2 = r(SN2)

2 = 0.30632806. As
a result, saddle node bifurcation occurs at r2 = r(SN1)

2 and r2 = r(SN2)
2 . Between these unstable coexistence
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Figure 5: The phase portrait of system demonstrates the presence of a unstable limit cycle with respect to parameter d1. The red
(dotted) curve depicts unstable limit cycle, whereas blue curve reflects the paths that originate from different (x(0), y(0)), marked by
solid blue dots. The black dotted point and black circular point indicate the stable and unstable equilibrium point of system (2.1)
respectively.

Table 4: Nature of equilibrium states for the parameter range of d1, shown in fig.(4).

Range Equilibrium states Nature of equilibrium states

0 < d1 < d(SN1)
1 E0,Ea, One interior E0 is unstable, Ea is unstable and the interior is LAS

d(SN1)
1 < d1 < d(TC)

1 E0,Ea, Three interiors E0 is unstable, Ea is unstable and
one interior is unstable and two interiors are LAS

d(TC)
1 < d1 < d(H)

1 E0,Ea, Two interiors E0 is unstable and Ea is LAS,
one interior is unstable and other interior is LAS

d(H)
1 < d1 < d(SN2)

1 E0,Ea, Two interiors E0 is unstable, Ea is LAS and both interiors are unstable
d1 > d(SN2)

1 E0,Ea E0 is unstable, Ea is LAS
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Figure 6: The bifurcation diagram shows the behavior of system (2.1) when the bifurcation parameter r2 changes. The cyan
dotted curve represents the unstable trivial equilibrium point (E0), while the violet dotted curve indicates the unstable predator free
equilibrium point (Ea). The orange solid and green dotted curves represent the stable and unstable behavior of coexistence stationary
state (EI), respectively. Blue dotted curve denotes unstable limit cycle.
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Figure 7: The phase portrait shows the presence of unstable limit cycle with respect to the parameter r2. The red dotted curve
represents unstable limit cycle, whereas the blue curve shows the trajectory that starts from different (x(0), y(0)), shown by solid blue
dots. The black dot reflects the stable equilibrium points, whereas the black circle denotes the unstable equilibrium point in system
(2.1).

stationary states, one unstable coexistence stationary state gains its stability at r2 = r(H)
2 = 0.31279657, re-

sulting in an appearance of Hopf-bifurcation, which is subcritical due to positive Lyapunov coefficient. As
a result a unstable limit cycle occurs (shown in fig.7). Through experimentation with different values of
parameter r2, we have observed changes in both the number and behavior of stability of the equilibrium
points. The changes are provided in Table 5. The presence of two stable coexistence equilibrium points in
r(H)

2 < r2 < r(SN1)
2 , results in a bi-stability phenomenon.

For more experiments, we have also varied parameter η1, the toxicity coefficient of predator population
and kept other remaining parameters fixed at {r1 = 1.18, K = 4.06, β = 0.71, 1 = 0.164, B = 0.27, γ =
0.84, r2 = 0.61, d1 = 0.49, A = 0.5}. In fig.8, we have noticed a convergence and collision between a stable
and an unstable coexistence equilibrium point at a certain value of η1 = 0.15825935, denoted as η(SN1)

1 .
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Table 5: Nature of equilibrium states for the parameter range of r2, shown in fig.(6).

Range Equilibrium states Nature of equilibrium states

0 < r2 < r(SN2)
2 E0,Ea, One interior E0 is unstable and Ea is unstable and the interior is LAS

r(SN2)
2 < r2 < r(H)

2 E0,Ea, Three interiors E0 is unstable, Ea is unstable and
one interior is LAS and two interiors are unstable

r(H)
2 < r2 < r(SN1)

2 E0,Ea, Three interiors E0 is unstable and Ea is unstable,
one interior is unstable and other two interiors are LAS

r2 > r(SN1)
2 E0,Ea, One interior E0 is unstable, Ea is unstable and the interior is LAS
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Figure 8: The bifurcation diagram illustrates the dynamics of system (2.1) as the bifurcation parameter η1 varies. The cyan
dotted curve indicates the unstable trivial equilibrium point (E0), whereas the violet dotted curve indicates the unstable predator free
equilibrium point (Ea). The orange solid and green dotted curves depict the stable and unstable characteristics of the coexistence
stationary state (EI), respectively.

Table 6: Nature of equilibrium states for the parameter range of η1, shown in fig.8.

Range Equilibrium states Nature of equilibrium states

0 < η1 < η
(SN1)
1 E0,Ea, One interior E0 is unstable and Ea is unstable and the interior is LAS

η(SN1)
1 < η1 < η

(SN2)
1 E0,Ea, Three interiors E0 is unstable, Ea is unstable and

one interior is unstable and two interiors are LAS
η1 > η

(SN2)
1 E0,Ea, One interior E0 is unstable, Ea is unstable and the interior is LAS

Additionally, a similar type of scenario occurs between a stable and a unstable coexistence equilibrium
point at η1 = η

(SN2)
1 = 1.3162526. As a consequence, saddle node bifurcation occurs at η1 = η

(SN1)
1 and

η1 = η
(SN2)
1 .

.

Through the process of conducting experiments with varying values of the parameter η1, we have noticed
variations in the number of equilibrium points and the stability characteristics of those points, which is
provided in Table 6. Due to presence of two stable coexistence stationary states in η(SN1)

1 < η1 < η
(SN2)
1 , a

bi-stability phenomenon emerges.
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Figure 9: In the η1 – r2 plane, there is a two-parameter bifurcation diagram of system (2.1). The solid pink curve indicates saddle-
node bifurcation curve for coexistence stationary state. Here, solid green curve indicates Hopf-bifurcation curve, while the solid blue
curve represents the homoclinic bifurcation curve for coexistence equilibrium point.

7.2. Two-parametric bifurcation analysis

Let us, examine bifurcation diagrams by changing two parameters in system (2.1). This analysis
provides a comprehensive understanding of how the dynamics of system is affected by variations in
chosen parameter. We select toxicity coefficient of predator population η1 and intrinsic growth rate of
filter-feeding fish (predator) r2 as the key parameters for studying system (2.1). So, we generate two-
parametric bifurcation diagram in η1 − r2 plane, while keeping remaining parameters at {r1 = 1.18, K =
4.06, β = 0.71, 1 = 0.164, B = 0.27, γ = 0.84, d1 = 0.49, A = 0.5}, which is shown in fig.9. Fig.9 includes
two Hopf-bifurcation curves (green), two saddle-node bifurcation curves (pink) and one homoclinic curve
(blue). These bifurcation curves divide entire η1 − r2 parametric plane into six separate regions, i.e., G1,
G2, G3, G4, G5 and G6. These regions will be examined in more depth in the following discussion, which
is presented below. Several co-dimension 2 bifurcation points appear when these bifurcation curves come
together. A cusp bifurcation, which arises at CP(0.051806132, 0.11706239), is one such occurrence, where two
saddle-node bifurcation curves meet and then disappear. On the other hand, Hopf-bifurcation curve meets
with saddle node bifurcation curve at BT1(0.051839047, 0.11715533) and Hopf-bifurcation curve disappears.
As a result, Bogdanov–Takens bifurcation occurs at this point. There is another Hopf-bifurcation curve
that includes a generalized Hopf-bifurcation point at coordinates GH(0.19111678, 0.29187368), where the
supercritical Hopf-bifurcation undergoes a transition to subcritical Hopf-bifurcation. Moreover, this Hopf-
bifurcation curve touches saddle–node bifurcation curve tangentially at BT2(0.33392155, 0.34597642).
As a result, the Bogdanov-Takens bifurcation takes place at this specific position, causing the disappear-
ance of the Hopf-bifurcation curve. Furthermore, the homoclinic bifurcation curve originates from this
Bogdanov-Takens bifurcation point. On this bifurcation curve, a unique closed orbit is produced, estab-
lishing a link between a saddle coexistence equilibrium point and itself. The closed orbit seen in Figure 10
is known as homoclinic orbit.
Our next step is to take a closer look at the unique dynamic characteristics of every region. In region
G1, the system has one unstable trivial, one unstable predator free and one stable coexistence equilibrium
points. When a transition takes place from G1 to G2, a saddle node bifurcation curve causes the emergence
of two coexisting stationary states, one of which is stable and the other is unstable. Transitioning from
region G1 to G4: the stable coexistence equilibrium point lost it’s stability through Hopf-bifurcation curve.
One stable and one unstable coexistence equilibrium points appear through saddle-node bifurcation curve
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Figure 10: Evidence of existence of homoclinic bifurcation. The red solid curve depicts the homoclinic orbit, whereas the blue
curve shows the trajectories that start from different (x(0), y(0)), denoted by blue dots. The black dotted point and black circular point
indicates the stable and the unstable behavior of interior stationary states respectively of system (2.1).

Table 7: Nature of equilibrium states for individual regions of η1 vs r2 bifurcation, shown in fig.9.

Regions Equilibrium states Nature of equilibrium states
G1 E0,Ea,One interior E0 is unstable, Ea is unstable and the interior is LAS
G2 E0,Ea, Three interiors E0 is unstable, Ea is unstable, two interiors are LAS and

One interior is unstable
G3 E0,Ea,One interior E0 is unstable, Ea is unstable and the interior is LAS
G4 E0,Ea, One interior E0 is unstable, Ea is unstable and

The interior is unstable spiral
G5 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is unstable, another

one interior is unstable spiral and one interior is LAS
G6 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

one interior is stable spiral and other is unstable

as we enter from G4 to G5. Moving from region G5 to G3, two coexistence equilibrium points disappear
through saddle-node bifurcation curve. Finally, when we transit from G3 to G6, a saddle-node bifurcation
curve gives rise to two coexistence equilibrium points, one of which is stable and the other is unstable.
To facilitate all the characteristics of equilibrium points of each regions in η1 − r2 parametric plane, 7 is
displayed.
Our current objective is to create phase portraits of (2.1). In order to achieve this, we choose η1 and r2
from each region, fixing other parameter values at {r1 = 1.18, K = 4.06, β = 0.71, 1 = 0.164, B = 0.27, γ =
0.84, d1 = 0.49, A = 0.5}. The phase portraits are shown in Fig.11. After analyzing these phase portraits,
it is evident that the presence of two stable coexistence equilibrium points inside the regions G2 and G6
lead to a bi-stable phenomenon. Under such conditions, each species’ population size depends on their
respective initial population size. Moreover, the system has only one stable coexistence equilibrium point
in each of the regions G1,G3 and G6. In this scenario, both species’ populations stay a steady state whatever
their initial population size. Population biomass of both species oscillates around coexistence equilibrium
point inside G4.

To investigate system (2.1) from an other perspective, let us choose r2 (intrinsic growth rate of filter-feeding
fish) and β (grazing coefficient of filter-feeding fish) for further analysis. Presently, we create two-parametric
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Figure 11: Phase portrait of (2.1) for regions G1, G2, G3, G4, G5 and G6 as mentioned in fig.9. The red solid curve represents the
predator nullcline, whereas the blue solid curve represents the prey nullcline. The green solid curves show the paths start from different
(x(0), y(0)), indicated by green dots. The black dotted point and black circular point indicates the stable and unstable characteristic of
stationary states of (2.1) respectively. The vector field has been shown in each figure.
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Figure 12: Bifurcation diagram of system (2.1) in two-parametric plane r2−β. Here, pink solid curve depicts saddle node bifurcation
curve of coexistence equilibrium point, while green curve (solid) denotes Hopf-bifurcation curve, and yellow solid curve indicates
transcritical bifurcation curve.

bifurcation diagram in r2 - β plane, while maintaining all other parameters at {r1 = 1.18, K = 4.06, 1 =
0.164, B = 0.27, γ = 0.84, d1 = 0.49, η1 = 0.25, A = 0.5}. Fig.12 represents corresponding bifurcation
diagram, which contains one Hopf-bifurcation curve (green), two saddle-node bifurcation curves (pink)
and one transcritical bifurcation curve (yellow). These bifurcation curves divide the whole parametric
plane r2 - β into eight distinct regions, namely R1, R2, R3, R4, R5, R6, R7 and R8. The subsequent discussion
will provide a more comprehensive analysis of these regions. It is noticed that the Hopf-bifurcation
curve includes a generalized Hopf-bifurcation point, at coordinates GH(0.2638859, 0.79380602), where a
transition takes place from supercritical Hopf-bifurcation to subcritical Hopf-bifurcation. Moreover, this
Hopf-bifurcation curve meets tangentially with saddle node bifurcation curve at BT(0.37455134, 0.61295545),
after that the Hopf-bifurcation curve disappears. As a result, Bogdanov-Taken bifurcation occurs at this
point, which is a codimention 2 bifurcation.
Now, let’s delve into the distinct dynamic attributes of each region separately. In region R1, the system
has one unstable trivial, one unstable predator free and one stable coexistence stationary state. As we
move from R1 to R8, saddle node bifurcation curve leads to two coexistence equilibrium states between
which one is stable and other is unstable. On the other hand, moving from region R1 to region R5, stable
coexistence equilibrium point lost it’s stability as it crosses Hopf-bifurcation curve. When we shift from
region R8 to R2, the unstable predator free equilibrium point becomes stable and the stable coexistence
equilibrium point disappears through transcritical bifurcation curve. If transition takes place from region
R2 to R3, two coexistence equilibrium points disappear because of crossing saddle node bifurcation curve.
Moreover, Shifting from R3 to R4, Ea becomes unstable and one stable coexistence equilibrium point arises
through transcritical bifurcation curve. While moving from R2 to R6, one coexistence equilibrium point lost
it’s stability through Hopf-bifurcation curve. Furthermore, shifting from R4 to R7, saddle node bifurcation
curve leads to two coexistence equilibrium points, both are unstable. In Table 8, the stability behavior of all
equilibrium points in each region of the r2 - β parametric plane are provided.
For further examination of our proposed system (2.1), we have taken the parameters d1 (natural mortality
rate of predator) and β (grazing coefficient of filter-feeding fish). Two-parametric bifurcation diagrams in
d1 - β plane while keeping remaining parameters at {r1 = 1.18, K = 4.06, 1 = 0.164, B = 0.27, γ = 0.84, r2 =
0.61, η1 = 0.25, A = 0.5} are depicted. Fig.13 represents the corresponding bifurcation diagram, which
contains several bifurcation curves. There are two Hopf-bifurcation curves in green, two saddle-node
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Table 8: Nature of equilibrium states for each regions of r2 vs β bifurcation, shown in fig.(12).

Regions Equilibrium states Nature of equilibrium states
R1 E0,Ea, One interior E0 is unstable, Ea is unstable and the interior is LAS
R2 E0,Ea, Two interiors E0 is unstable, Ea is LAS, one interior is unstable and another

one interior is LAS
R3 E0,Ea E0 is unstable and Ea is LAS
R4 E0,Ea, One interior E0 is unstable, Ea is unstable and the interior is LAS
R5 E0,Ea, One interior E0 is unstable, Ea is unstable, One interior is unstable spiral
R6 E0,Ea, Two interiors E0 is unstable, Ea is LAS, One interior is unstable and another

one interior is unstable spiral
R7 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is unstable, another

interior is unstable spiral and the third interior is LAS
R8 E0,Ea, Three interiors E0 is unstable, Ea is unstable, Two interiors are LAS and

one interior is unstable.
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Figure 13: Two-parametric bifurcation diagram on the d1 − β plane. The pink solid curve shows saddle-node bifurcation curve for
the coexistence stationary state. The green curve (solid) illustrates Hopf-bifurcation curve, while the yellow curve (solid) indicates
the transcritical bifurcation curve.

bifurcation curves in pink, a transcritical bifurcation curve in yellow. These bifurcation curves splitting the
whole parametric plane d1 - β into eight separate regions: W1, W2, W3, W4, W5, W6, W7 and W8. A gen-
eralized Hopf-bifurcation is observed at GH(0.84855546, 0.89350739) on the Hopf-bifurcation curve, where
supercritical Hopf-bifurcation transits to subcritical Hopf-bifurcation. At BT1(0.72244603, 0.65150641), this
Hopf-bifurcation curve meets with saddle-node bifurcation curve tangentially and vanishes. At BT1, Bog-
danov Takens bifurcation occurs. Again, another Hopf-bifurcation curve touches saddle node bifurcation
curve at BT2(1.9656289, 2.4231606). Consequently, the Bogdanov-Takens bifurcation occurs at this specific
point, causing the Hopf-bifurcation curve to disappear. Furthermore, we have found a cusp bifurcation
point at CP(2.0795238, 2.6471889), where saddle node bifurcation curve intersects transcritical bifurcation
curve and the saddle node curve vanishes. Next we observe changes of stability behavior and number of
equilibrium points in different regions of this parametric plane. The change of stability of all equilibrium
points in each region of the parametric plane d1 - β are shown in Table 9.
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Table 9: Nature of equilibrium states for each regions of d1 vs β bifurcation, shown in fig.(13).

Regions Equilibrium states Nature of equilibrium states
W1 E0,Ea, One interior E0 is unstable, Ea is unstable and the interior is LAS
W2 E0,Ea, One interior E0 is unstable, Ea is unstable and the interior is unstable spiral
W3 E0,Ea E0 is unstable and Ea is LAS
W4 E0,Ea, Two interiors E0 is unstable, Ea is LAS, one interior is unstable and

other interior is LAS
W5 E0,Ea, Two interiors E0 is unstable, Ea is LAS, One interior is unstable and

other interior is unstable spiral
W6 E0,Ea, Two interiors E0 is unstable, Ea is LAS, One interior is unstable and another

one interior is stable spiral
W7 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is unstable,

two interiors are LAS
W8 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is unstable, another

one interior is unstable spiral and other interior is LAS

7.3. Evidence of bi-stable phenomenon and basins of attraction
While examining our system (2.1), we have found a looping behavior in prey population due to fluctuations
in toxicity coefficient of predator population η1 and intrinsic growth rate of filter-feeding fish r2, which
are shown in fig.14. In this diagram, the solid orange curve denotes the stable behavior of coexistence
equilibrium point and green curve (dotted) is representing unstable behavior of coexistence equilibrium
point. In fig.14a, within the shaded area, system (2.1) exhibits a saddle-node bifurcations at the points
η(SN1)

1 and η(SN2)
1 and in fig.14b, the system exhibits two saddle-node bifurcations at r2 = r(SN1)

2 and Hopf-
bifurcation occurs at r(H)

2 . These points are located on the boundary of the shaded region. In fig.14a, we
observe that the stable coexistence equilibrium point converge and collide with an unstable coexistence
equilibrium point at η1 = η

(SN1)
1 , results in the disappearance of both equilibrium points. Subsequently, the

trajectory of system (2.1) must abruptly shift to the closest attractor of (2.1), which is another coexistence
equilibrium state. In order to return to the first coexistence equilibrium state, it is necessary to invert the
value of η1. So, the 2nd stable coexistence equilibrium state is then followed and traversed backwards.
Consequently, the system’s trajectories abruptly shift towards the 1st interior equilibrium state when the
2nd stable coexistence equilibrium state collides with unstable coexistence equilibrium state, causing them
to vanish due to a saddle-node bifurcation occurring at η1 = η

(SN1)
1 . Thus a looping behavior is exhibited

because of the variation of η1.
The similar incident happens in the prey biomass for fluctuation of parameter r2 (intrinsic growth rate
of filter-feeding fish (predator)), shown in fig.14b. This phenomenon is called hysteresis. Also it is the
evidence that system (2.1) has bi-stable phenomenon.

The basins of attraction refers to the collection of initial conditions that steers the system towards a certain
equilibrium state over a long span of time. In simple words, it refers to the region in the state space
where the behavior of the system results in a specific outcome. A comprehensive understanding of the
basins of attraction is crucial for determining the enduring behavior of the system. In order to illustrate
the basins of attraction for system (2.1), we setup the parametric values as: {r1 = 1.18, K = 4.06, β =
0.71, 1 = 0.164, B = 0.27, γ = 0.84, r2 = 0.61, d1 = 0.49, η1 = 0.25, A = 0.5}. Within this particular set of
parameters, system (2.1) exhibits three coexistence equilibrium states: among which one is unstable, while
the other two are LAS. Hence, a bi-stable behavior occurring between the two stable coexistence states.
Associated basins of attraction is shown in Figure 15. It demonstrates that in the blue zone, population
trajectories converge towards a coexistence equilibrium state characterized by a lower equilibrium biomass
of Microcystis aeruginosa (prey). Conversely, in the green region, population trajectories trend towards a
coexistence equilibrium state with a larger equilibrium biomass of prey. Therefore, when the value of 1
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(a) η1 vs x (b) r2 vs x

Figure 14: Diagram of the hysteresis phenomenon. The black arrows are used to demonstrate the hysteresis loop in the prey
biomass inside the green shaded zone. This loop is caused by changes in the coefficient of toxicity (η1) and the intrinsic growth rate of
the predator species (r2). The green shaded zone illustrates the occurrence of bi-stability between two coexistence equilibrium states
of (2.1).

(coefficient of Microcystis aeruginosa aggregation) is 0.268, it is very probable that the population would
reach a stable coexistence condition with a larger equilibrium biomass. In order to examine changes in the
basins of attraction, we will systematically reduce the amount of aggregation. As the value of 1 reduces to
1 = 0.164 and 1 = 0.02, the size of the blue shaded region increases, resulting in a proportional reduction in
the area of the green shaded region, as shown in fig.15b and fig.15c correspondingly. It suggests that even
while the filter-feeding fish population increases and reaches a higher equilibrium biomass as the value
of 1 decreases, the chance of achieving the associated higher coexistence stationary state decreases. This
happens because of strong effect of toxins. When there are more predators initially, poisoning has a strong
negative effect on those species, and the effect is directly related to the number of predators. This keeps the
lower coexistence stationary state stable. These results are intricate and non-intuitive, and they cannot be
explicitly deduced through a straightforward investigation.

8. Discussion

Nowadays, toxic algal blooms and their effects on aquatic life are becoming more concerning. According
to the National Oceanic and Atmospheric Administration (NOAA) and the Washington State Department
of Health, toxic algal blooms, such as Florida’s red tide and Pacific Northwest shellfish poisoning, have
a detrimental effect on filter-feeding creatures such as manatees and shellfish. These blossoms generate
neurotoxins that harm marine organisms and the creatures which consume these algae. This emphasizes
on the ecological vulnerability and economic consequences in coastal areas. Also, Nile tilapia, which are
filter feeders, have been impacted by cyanobacterial blooms in Lake Victoria, by accumulating microcystins
in their tissues [26]. Our research introduces a new mathematical model for aquatic ecology, specifically
focusing on the impact of toxin-producing Microcystis aeruginosa on the dynamic interaction between
Microcystis aeruginosa and filter-feeding fish. The model is developed using the framework of biological
theory to improve the clarity of this interaction.

Initially, we have verified the well-posedness of our proposed model by showing that solutions remain
positive and bounded in the region Ω ⊆ R2

+. Afterwards, we have examined the local dynamics of
proposed system (2.1). The system has one predator-free equilibrium point Ea whose stability depends on
a parametric condition, which has been discussed in theorem 5.2 along with an unstable trivial equilibrium
point E0. Additionally, the system has interior equilibrium points, the number and existence of which are
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(a) 1 = 0.268 (b) 1 = 0.164

(c) 1 = 0.02

Figure 15: Basins of attraction of system (2.1) corresponding to aggregation parametric values 1 = 0.268, 1 = 0.164 and 1 = 0.02 in
Fig.15a, 15b and 15c respectively. Blue region and green region denotes the basins of attraction for two coexistence stationary states
respectively.
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determined by several types of factors described in section 4.2. Theorem 5.3 determines the stability behavior
of coexistence stationary states. The primary focus of the present work is on two crucial factors: grazing
coefficient of filter-feeding fish β and toxicity coefficient of predator population η1. In addition, we have
also included intrinsic growth rate of filter-feeding fish (predator) r2 and its natural mortality rate d1. Then
we have analyzed how the fluctuations of parameters β, η1, r2 and d1 impact on system dynamics. It is have
shown by numerical analysis that the system undergoes one transcritical bifurcation for the parametersβ and
d1, and two saddle-node bifurcations for the parameters β, η1, r2, and d1. Moreover, the system undergoes
one subcritical Hopf-bifurcation for the parameters r2 and d1 from which unstable bifurcating limit cycle
emerges. Under certain parametric values, the system exhibits a bi-stable phenomena characterized by
the presence of two interior equilibrium points. Sometimes, a bi-stable phenomena may arise between an
interior and predator free equilibrium points. Also, in η1 − r2 and d1 − β parametric planes Bogdanov-
Takens bifurcation, Generalized Hopf-bifurcation and Cusp bifurcation are occurred. Additionally, the
η1 − r2 parametric plane exhibits homoclinic bifurcation. Another two-parametric bifurcation diagram has
also been discussed in r2 − β plane, which demonstrates Bogdanov-Takens bifurcation and Generalized
Hopf-bifurcation. By applying necessary mathematical theory [27], we have also derived the conditions
for these bifurcations. Furthermore, the system promotes the idea of a basins of attraction as a result of the
existence of bistable phenomena. As we have varied the coefficient of Microcystis aeruginosa aggregation
1, a change in the behavior of the proposed system has been reported. The phenomena has been explained
in section 7.3 using the idea of basins of attraction. Additionally, a hysteresis loop has been observed in
the prey species (Microcystis aeruginosa) due to the variations in toxicity coefficient η1 of the predator
(filter-feeding fish) population and its intrinsic growth rate. All of these bifurcation parameters influence
the population biomass of both species. For example, when the grazing activity of filter feeding fish
(predator) is low, it creates a more favorable environment for the survival of Microcystis aeruginosa (prey).
However, prey biomass falls and predator biomass rises when grazing increases slowly. Nonetheless,
significant grazing levels make it harder for prey biomass to survive, as the predator reduces the biomass
of prey. It is unexpected that higher grazing levels of predator could have a negative impact on ecological
diversity. This outcome is also non-intuitive, as one might expect that higher grazing levels would create
an ecosystem more suitable for predator species’ existence. The existence of toxicity in predator species
is the main reason for this phenomenon. With a high grazing level, consumption of harmful prey is also
high, which further influences the predator biomass. Although, when the natural death rate of predator
species is low, it becomes more challenging for prey biomass to survive. Moreover, the rise in the natural
mortality rate of predator enhances an environment for the existence of prey species. Consequently, the
biomass of predators diminishes. A thorough examination of this particular model may provide us with a
comprehensive understanding of how populations undergo changes in the actual world. In the upcoming
future, the system may be developed to a system including two prey species and one predator species. This
modification would have significant advantages in conserving biodiversity and maintaining community
structure.
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