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Three-branching transmission irregular graphs

Anran Xua

aSchool of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

Abstract. The transmission of a vertex v in a graph G is the sum of distances from v to other vertices in G.
If any two vertices of G have different transmissions, then G is transmission irregular. A vertex in a graph
is a branching vertex if its degree is at least 3. A graph G is three-branching if G contains exactly three
branching vertices. It is shown in this paper that, for any natural number n ≥ 11 with n < {12, 14}, there
exists a three-branching transmission irregular graph of order n. In particular, there exists a three-branching
transmission irregular tree for each odd n or n ≡ 4 (mod 6).

1. Introduction

Throughout this paper we only consider the undirected, finite, connected and simple graphs unless
stated otherwise. Let G = (V(G),E(G)) be a graph with vertex set V(G) and edge set E(G). The order of
G is just n(G) = |V(G)|. For any vertex v ∈ V(G), the degree dG(v) of v is the number of vertices adjacent
to it in G. For a graph G with x, y ∈ V(G), we denote by dG(x, y) (or d(x, y) if G is clear from the context)
the shortest-path distance between x and y in G. As usual, we denote by Pn = v1v2 · · · vn−1vn a path of
order n with the natural adjacency relation, that is, vivi+1 ∈ E(Pn) for each i ∈ {1, 2, . . . ,n − 1}. Moreover,
Cn = v1v2 . . . vnv1 is a cycle of order n ≥ 3. Other undefined notations and terminology on graph theory can
be found in [8].

As a fundamental parameter of a graph in pure graph theory, the distance (between vertices) plays an
important role in chemical graph theory. As an oldest and most well-known distance-based graph invariant
(also known as topological index in chemical graph theory), the Wiener index W(G) of a graph G introduced
in 1947 [17] is defined as

W(G) =
∑

{u,v}⊆V(G)

dG(u, v)

for exploring chemical graphs, which in turn reflect the physico-chemical properties of the corresponding
(organic) compounds. The area is still very active; for a survey on graphs extremal with respect to distance-
based topological indices see [20], and for a selection of recent developments with a focus on applications
see [12].
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As a basic concept in metric graph theory, the transmission TrG(v) of vertex v in a connected graph G is
the sum of all distances from v to other vertices in G, that is,

TrG(v) =
∑

u∈V(G)\{v}

dG(v,u) .

Moreover, the transmission of a vertex is also known by several other names, such as the status of a
vertex [1, 16] and the total distance of a vertex [9, 15]. The transmission set of a graph G is Tr(G) = {TrG(v)|v ∈
V(G)}. If |Tr(G)| = n(G) holds, then G is transmission irregular, or TI for short. Since the Wiener complexity [2]
of a graph G is the number of different transmissions of its vertices, see also [18], TI graphs are the graphs
with maximum Wiener complexity.

It was shown [2] that almost all graphs are not TI. Thus TI graphs are rare, and the characterization
of TI graphs in various classes of graphs is an interesting and challenging task. Many nice results are
reported on this topic. Al-Yakoob and Stevanović [4] provided a complete characterization of TI starlike
trees with maximum degree 3. Recently Damnjanović [10] extended this result to all the starlike trees and
double starlike trees and gave the complete, but complicated, equivalent conditions of these two classes
of TI graphs, respectively. Dobrynin [13] constructed an infinite family of TI trees of even order. Other
excellent relevant results on this topic can be found in [5, 11, 14, 19, 21] and the references therein.

A vertex v in a tree T is a branching vertex in T if dT(v) ≥ 3. In general, a vertex of degree at least 3 in a
graph G, which is not necessarily a tree, is also called a branching vertex in G. A graph G is three-branching
if G contains exactly three branching vertices. We denote by GB3

n the set of three-branching graphs of order
n. In particular, TB3

n is the set of three-branching trees of order n. Clearly, TB3
n ⊆ GB

3
n. For a tree T ∈ TB3

n
with three branching vertices v1, v2 and v3, if d(v1, v3) = d(v1, v2) + d(v2, v3), then v2 is the central branching
vertex of T. Clearly, we have n ≥ 8 in TB3

n. Moreover, any TI tree T in TB3
n must satisfy n ≥ 10 since

the removal of the central branching vertex will result in at least three components of total order at least
9. Moreover, it can be checked by computer that there is no TI tree in TB3

10. Therefore we only need to
consider the TI trees in TB3

n with n ≥ 11.
Motivated by the characterization of starlike TI trees and double starlike TI trees [10], in the present

paper we consider the TI property of graphs with exactly three branching vertices, that is, those graphs in
GB

3
n. This paper is organized as follows. In Section 2 we list or prove some preliminary results which will

be used in the subsequent proofs. In Section 3 we construct a TI tree T ∈ TB3
n for each odd n ≥ 11. In

Section 4 we prove that there exists a TI tree from TB3
n for each n ≥ 16 with n ≡ 4 (mod 6). Moreover, a TI

graph in GB3
n is presented for each n ≥ 18 with n ≡ ℓ (mod 6) where ℓ ∈ {0, 2}, in particular, a tree in TB3

n is
constructed for n ∈ {18, 20}. In Section 5 we conclude the paper with some open problems.

2. Preliminaries

For X ⊆ V(G) of a graph G, let G−X be the subgraph of G obtained from G by removing the vertices
from X and the edges incident with them. In particular, G − {v} will be briefly denoted by G − v. Similarly,
for F ⊆ E(G), G− F is the spanning subgraph of G obtained by removing the edges of F and if e ∈ E(G), then
we will write G − e for G − {e}. The eccentricity eccG(v) of a vertex v ∈ V(G) is the maximum distance from
v to all other vertices in G. If uv ∈ E(G), then nu (or nG(u) if the graph G is necessarily mentioned) is the
number of vertices in G closer to u than to v and nv (or nG(v) for completeness) can be similarly defined.

For a set A of at least three real numbers, we denote by M(A), m(A) the maximum and the minimum of
A, by SM(A), sm(A) the second maximum and the second minimum of A, and by TM(A), tm(A) the third
maximum and the third minimum of A, respectively. For any positive integer k, we set [k] = {1, 2, . . . , k}
and [k]0 = [k] ∪ {0}. For a set A of integers and an integer t, we denote by A + t the usual coset, that is,
A+ t = {a+ t|a ∈ A}. A set of positive integers is odd (even, resp.) if it consists of odd (even, resp.) integers.

A vertex v with degG(v) = 1 is called a pendent vertex (also leaf when G is a tree) in G, and the edge
incident with a pendent vertex is called a pendent edge. A path P := ukuk−1 · · · u2u1 with the natural adjacency
relation in a graph G is a proper pendent path in G if dG(uk) ≥ 3, dG(u1) = 1, and dG(ui) = 2 for i ∈ {2, 3, . . . , k−1},
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where uk is its root. If both uk and u1 in P have degrees at least 3 and each of u j with j ∈ {2, 3, . . . , k − 1}
has degree 2, then P is an internal path in G with two terminals uk and u1. In particular, if u1 and uk have
degrees at least 2, then the above P is a weak internal path [21] with two weak terminals u1 and uk. A tree
with a unique branching vertex v is starlike. A starlike tree T with the branching vertex v will be denoted
by T = T(n1, . . . ,nk) if T − v consists of k disjoint paths of orders n1, . . . ,nk, respectively, where v is called the
center of T. Also, a pendent path of length ni from v is called an ni-arm in T.

Lemma 2.1. ([6]) If G is a graph with n(G) > 2 and uv ∈ E(G), then Tr(u) − Tr(v) = nv − nu.

From Lemma 2.1, the following two results are obvious.

Corollary 2.2. Let T be a tree with u ∈ V(T) and uv ∈ E(T).

(1) If T − u =
t⋃

k=1
Tk with n(Ti) = n(T j) for two distinct numbers i, j ∈ [t], then T is not TI.

(2) If T − uv = T′ ∪ T′′ with n(T′) = n(T′′), then T is not TI.

Corollary 2.3. Let G1, G2 be two vertex-disjoint graphs of orders n1 ≤ n2 with vi ∈ V(Gi) for i ∈ [2]. Suppose
that G = G1,2(v1 − v2) is the graph obtained from G1 and G2 by joining vertices v1 and v2 with a new edge. Then
TrG(v1) − TrG(v2) = n2 − n1.

Lemma 2.4. ([19]) Let G be a graph with n(G) = n and v ∈ V(G) with deg(v) ≥ 3. If P = uv1v2 · · · vx−1v is a
pendent path with natural adjacency relation attached at v where d(u) = 1 and x < n

2 , then Tr(vx−1)−Tr(v) = n− 2x.

Lemma 2.5. ([21]) Let G be a graph with n(G) = n and P = vv1v2 · · · vkv∗ be a weak internal path in G with two weak
terminals v and v∗ such that each edge in P is a cut edge. If Tr(v1) − Tr(v) = a > 0, then Tr(v j) − Tr(v) = j(a + j − 1)
for any j ∈ [k].

3. Three-branching TI graphs of odd order

For i ≥ 2, we denote by M(i) a tree obtained from a star with center v and three leaves u1, u2 and u3
by attaching at u1 a pendent edge, at u2 two pendent paths of respective lengths i − 1 and i and at u3 two
pendent paths of respective lengths i and i+1. See in Figure 1 the structure of M(i). Clearly, n(M(i)) = 4i+5.

v

u1

u2 u3
· · ·

· · ·

· · ·

· · ·

i

i − 1 i

i + 1︷                          ︸︸                          ︷
︷                    ︸︸                    ︷ ︷                             ︸︸                             ︷

︷                                    ︸︸                                    ︷
Figure 1: Tree M(i).

Lemma 3.1. Let M(i) with i ≥ 2 be a tree defined as above. If i < {6, 9, 11, 14}, then M(i) is TI.
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Proof. Assume that Tr(v) = x. By Lemma 2.1, we have Tr(u1) = 4i + 1 + x, Tr(u2) = 5 + x and Tr(u3) = 1 + x.

By Corollary 2.3 and Lemma 2.4, we have Tr(M(i)) = B ∪ (
3⋃

i=0
Ai) with

B = {0, 4i + 1, 8i + 4} + x,

A0 = {(k + 2)2 + 2ik − 3|k ∈ [i]0} + x,
A1 = A0 + 4,
A2 = A0 + 2i + 3,
A3 = A∗ − (2i + 1)

where A∗ = A0 \ {1, 2i + 6}.
We first prove that Ak ∩ A j = ∅ for any k, j ∈ [3]0 with k , j. Note that the minimum positive difference

between two elements in A0 is min{2k + 2i + 5|k ∈ [i − 1]0} > 4. Therefore A0 ∩ A1 = ∅. If there are two
numbers p, q ∈ [i]0 such that (p+2)2+2ip−3 = (q+2)2+2i(q+1), then p > q with (p−q)(p+q+4+2i) = 2i+3,
which implies that p − q ≥ 1 is odd. So it follows that 2i + 3 ≥ 2i + 4 + p + q ≥ 2i + 5 as a clear contradiction.
Hence A0 ∩ A2 = ∅. If there exist p, q ∈ [i]0 such that (p + 2)2 + 2ip + 1 = (q + 2)2 + 2i(q + 1), then p > q with
(p − q)(p + q + 4 + 2i) = 2i − 1. Similarly as above, we have A1 ∩ A2 = ∅.

Now we claim that (q+2)2+2i(q−1)−4 < A0∪A1∪A2 for any q ∈ [i]\[1]. Otherwise, there exists a p ∈ [i]0
such that (q + 2)2 + 2i(q − 1) − 4 ∈ {−3, 1, 2i} + (p + 2)2 + 2ip. If (q + 2)2 + 2i(q − 1) − 4 ∈ {−3, 1} + (p + 2)2 + 2ip,
then (q − p)(p + q + 2i + 4) ∈ {1, 5} + 2i, each of which will result in a similar contradiction as above. If
(q+ 2)2 + 2i(q− 1)− 4 = (p+ 2)2 + 2i(p+ 1), then (q− p)(q+ p+ 2i+ 4) = 4i+ 4, implying that q− p ≥ 2 is even.
But 4i + 4 ≥ 2(2i + 6), this is a contradiction again. All three above contradictions show that A3 ∩As = ∅ for
any s ∈ [2]0.

Next it suffices to show that B ∩ At = ∅ for any t ∈ [3]0. Clearly, x < At for any t ∈ [3]0. So we only need
to prove that At ∩ ({4i+ 1, 8i+ 4}+ x) = ∅ for any t ∈ [3]0. Since 4i+ 1 < {4, 6, 10, 12}+ 2i with 4i+ 1 < 4i+ 9 =

min{9, 13, 17, 21} + 4i, we have 4i + 1 <
3⋃

k=0
Ak. Moreover, we have 8i + 4 < 8i + 25 = min{25, 33, 37, 45} + 8i

and 8i + 4 < {16, 22, 26, 32} + 6i since i < {6, 9, 11, 14}. Therefore 8i + 4 <
3⋃

k=0
Ak. Thus B ∩

3⋃
k=0

Ak = ∅. Thus our

result holds as desired.

Denote by N(i) with i ≥ 3 a tree obtained from a starlike tree T(i− 1, i, i, i+ 1) with branching vertex v by
attaching a pendent edge at the vertex w1 on an i-arm with d(v,w1) = i− 2 and another pendent edge at the
vertex w2 on the (i + 1)-arm with d(v,w2) = i − 2. See the structure of N(i) in Figure 2.

v

w2 w1
· · ·

· · ·

· · ·

· · ·

i − 2

i i − 1

i − 2

︷                                    ︸︸                                    ︷
︷                    ︸︸                    ︷ ︷                    ︸︸                    ︷

︷                             ︸︸                             ︷

Figure 2: Tree N(i).

Lemma 3.2. Let N(i) with i ≥ 3 be a tree defined as above. Then N(i) is TI if and only if i , 3.

Proof. Note that n(N(i)) = 4i + 3. Thus n(N(3)) = 15. From the structure of N(3) (see Figure 2), we have
Tr(z) = Tr(u) = Tr(v)+ 20 where u is the vertex lying on the pendent path of length 3 in N(3) with d(u, v) = 2,
while z is the pendent vertex attached to w1. Therefore N(3) is not TI. This completes the only if part of the
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proof. Next we turn to the if part of the proof. Assume that Tr(v) = x. By the structure of N(i) and Lemma

2.4, we have Tr(N(i)) − x = {0} ∪ (
2⋃

k=1
Bk) ∪ (

4⋃
k=1

Ak) with

B1 = {−4i + 5,−4i + 3, 4} + 3i2,

B2 = {−6i + 9,−6i + 5,−2i + 4, 2i + 5} + 3i2,

A1 = {2mi +m2 + 4m|m ∈ [i − 1]},

A2 = {2mi +m2 + 2m|m ∈ [i]},

A3 = {2mi +m2
|m ∈ [i − 2]},

A4 = {2mi + (m − 2)m|m ∈ [i − 2]}.

Let B = B1 ∪ B2. It can be routinely checked that B1 ∩ B2 = ∅. We first prove that A3 ∩ B = ∅,
A4 ∩ B = ∅. Clearly, B1 ∩ A3 = ∅ = B2 ∩ A4 since m(B1) > M(A3) and m(B2) > M(A4). Similarly, we have
m(B1) = 3i2 − 4i + 3 > 3i2 − 10i + 8 = M(A4) and m(B2) = 3i2 − 6i + 5 > 3i2 − 8i + 4 = M(A3), which yield
B1 ∩ A4 = ∅ and B2 ∩ A3 = ∅, respectively. Thus Ak ∩ B = ∅ for k ∈ {3, 4}.

Now we claim that Ak ∩ A j = ∅ for any distinct k, j ∈ [4]. If there are two numbers m ∈ [i − 1], n ∈ [i]
such that m2 + (2i + 4)m = n2 + (2i + 2)n, then n > m with (n − m)(n + m + 2i + 2) = 2m, which implies that
n − m ≥ 2 is even. But 2m ≥ 2(n + m + 2i + 2) ≥ 4m + 4i + 8 is a clear contradiction. Hence A1 ∩ A2 = ∅. If
there are two numbers m ∈ [i − 1], p ∈ [i − 2] with m2 + (2i + 4)m = p2 + 2ip, then p − m ≥ 2 is even with
(p −m)(p +m + 2i) = 4m. Thus 4m ≥ 2(p +m + 2i) ≥ 4m + 4i + 4 as a clear contradiction, which implies that
A1 ∩ A3 = ∅. If m2 + (2i + 4)m = q2 + (2i − 2)q with m ∈ [i − 1] and q ∈ [i − 2], then q − m ≥ 2 must be even
with (q−m)(q+m+ 2i− 2) = 6m. Then it follows that 6m ≥ 2(q+m+ 2i− 2) ≥ 4m+ 4i, contradicting with the
range of m. Hence A1 ∩A4 = ∅. If n2 + (2i+ 2)n = p2 + 2ip with n ∈ [i], p ∈ [i− 2], then p− n ≥ 2 must be even
with (p− n)(p+ n+ 2i) = 2n. So it follows that 2n ≥ 2(p+ n+ 2i) ≥ 4n+ 4i+ 4 as a clear contradiction. Hence
A2 ∩ A3 = ∅. If there are two numbers n ∈ [i], q ∈ [i − 2] with n2 + (2i + 2)n = q2 + (2i − 2)q, then q − n ≥ 2 is
even with (q− n)(q+ n+ 2i− 2) = 4n. So 4n ≥ 2(q+ n+ 2i− 2) ≥ 4n+ 4i holds as a clear contradiction. Hence
A2 ∩ A4 = ∅. If there are two numbers p ∈ [i − 2], q ∈ [i − 2] with p2 + 2ip = q2 + (2i − 2)q, then q − p ≥ 2 is
even with (q − p)(q + p + 2i − 2) = 2p. Therefore we conclude that 2p ≥ 2(q + p + 2i − 2) ≥ 4p + 4i as a clear
contradiction. Hence A3 ∩ A4 = ∅.

Next it suffices to show that Ak ∩ B = ∅ with k ∈ [2]. Note that M(A1) = 3i2 − 3 with integer i ≥ 3.
Thus M(A1) < {−4i + 5,−4i + 3, 4,−6i + 9,−6i + 5,−2i + 4, 2i + 5} + 3i2 = B. Similarly, we have SM(A1) =
3i2 − 4i − 4 < B, while TM(A1) = 3i2 − 8i − 3 < 3i2 − 6i + 5 = m(B). Hence A1 ∩ B = ∅. Similarly as above,
we have M(A2) = 3i2 + 2i < {−4i + 5, 4i + 3, 4,−6i + 9,−6i + 5,−2i + 4, 2i + 5} + 3i2 = B. Moreover, we have
SM(A2) = 3i2 − 2i − 1 < B since i , 3. Clearly, TM(A2) = 3i2 − 6i < 3i2 − 6i + 5 = m(B). Hence A2 ∩ B = ∅.
Therefore our result holds clearly.

In what follows some figures will be presented with a specific vertex v being given with TrG(v) = x and
Tr(G) = {au : u ∈ V(G)} + x for all the values of au being labelled. Next we provide a result on the existence
of TI trees in TB3

n with n ≥ 11.
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Figure 3: Trees T∗ and T′.
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Theorem 3.3. There is a TI tree in TB3
n for each odd integer n ≥ 11.

Proof. For n = 11, 15 in TB3
n, two TI trees T∗ of order 11 with the special vertex v and T′ of order 15 with

the special vertex u (with Tr(u) = y) are shown, respectively, in Figure 3. By Lemma 3.2, there is a TI tree
from TB3

n for any odd integer n > 15 with n ≡ 3 (mod 4). In view of Lemma 3.1, we only need to prove the
existence of a TI tree fromTB3

n with n ∈ {29, 41, 49, 61}. Denote by Tr,s,t
a,b,c with a ≤ b ≤ c the tree obtained from

a starlike tree T0 = T(a, b, c) by attaching three pendent paths of lengths r, s and t to each leaf of the pendent
paths of lengths b and c in T0. It can be routinely checked that T2,3,4

3,3,4 ∈ TB29, T4,5,6
3,3,4 ∈ TB41, T5,6,7

3,4,5 ∈ TB49 and
T7,8,9

3,4,5 ∈ TB61 are all TI trees. This completes the proof.

From Theorem 3.3, the following result is obvious.

Corollary 3.4. There is a TI graph in GB3
n for each odd integer n ≥ 11.

4. Three-branching TI graphs of even order

In this section we turn to the determination of TI graphs of even order. For an integer k ≥ 2, we
denote by X(k) a tree obtained from T(2k, 2k, 2k+1) by attaching a pendent vertex at each of the two vertices
v′ and v′′ lying on a (2k)-arm and the (2k + 1)-arm of T(2k, 2k, 2k + 1) with d(v′, v) = 2 = d(v′′, v) where v is
the center of T(2k, 2k, 2k+ 1). See in Figure 4 the structure of X(k). Below we characterize the TI property of
X(k).

vv′′ v′
· · ·

· · ·

· · ·

2k − 1 2k − 2

2k

︷                                      ︸︸                                      ︷ ︷                              ︸︸                              ︷
︷                                                  ︸︸                                                  ︷

Figure 4: Tree X(k).

Lemma 4.1. Let X(k) be a tree defined as above with k ≥ 2. Then X(k) is TI if and only if k < {4, 6, 8, 10, 12}.

Proof. Assume that v with Tr(v) = x is the vertex in X(k) at which a pendent path of length 2k is attached.
Note that n(X(k)) = 6k + 4. Let

A1 = {2k} ∪ {2(p + 2)k + p2 + 5p + 2|p ∈ [2k − 1]0},

A2 = {2k + 2} ∪ {2(p + 2)k + p2 + 7p + 6|p ∈ [2k − 2]0},

A3 = {2pk + p(p + 3)|p ∈ [2k]}.

By Lemmas 2.4 and 2.5, we have Tr(X(k)) − x = B ∪
3⋃

j=1
A j with B = {0, 10k + 4, 10k + 8}.

Now we prove that
3⋃

j=1
A j is a partition set. We first prove that A1 ∩ A2 = ∅. Clearly, 2k < {2(p + 2)k +

p2 + 7p + 6|p ∈ [2k − 2]0} and 2k + 2 < {2(p + 2)k + p2 + 5p + 2|p ∈ [2k − 1]0}. Moreover, if there exist two
distinct numbers i ∈ [2k − 1]0 and j ∈ [2k − 2]0 such that 2(i + 2)k + i2 + 5i + 2 = 2( j + 2)k + j2 + 7 j + 6,
then i > j with (i − j)(i + j + 2k + 5) = 2 j + 4. Consequently, 2 j + 4 ≥ i + j + 2k + 5 ≥ j + 2k + 6, which
is impossible. Thus A1 ∩ A2 = ∅. If there are two distinct numbers i1 ∈ [2k − 1]0 and j1 ∈ [2k] with
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2(i1 + 2)k + i21 + 5i1 + 2 = 2 j1k + j21 + 3 j1, then j1 > i1 with 4k + 2i1 + 2 = ( j1 − i1)(2k + j1 + i1 + 3). If j1 − i1 = 1,
we have 4k + 2i1 + 2 = 2k + 2i1 + 4, that is, k = 1, contradicting with the assumption k ≥ 2. Therefore
j1 − i1 ≥ 2. It follows that 4k + 2i1 + 2 ≥ 2(2k + 2i1 + 5) = 4k + 4i1 + 10, that is, 2i1 + 8 ≤ 0, as a clear
contradiction. Therefore A1 ∩ A3 = ∅. If there are two distinct numbers i2 ∈ [2k − 2]0 and j2 ∈ [2k] with
2(i2 + 2)k + i22 + 7i2 + 6 = 2 j2k + j22 + 3 j2, then j2 > i2 with 4k + 4i2 + 6 = ( j2 − i2)(2k + j2 + i2 + 3). If j2 − i2 = 1,
we have 4k + 4i2 + 6 = 2k + 2i2 + 4, that is, k + i2 = −1, which is impossible. Thus j2 − i2 ≥ 2, which implies
that 4k + 4i2 + 6 ≥ 2(2k + 2i2 + 5), that is, 6 ≥ 10 as a contradiction. Note that m(A3) = 2k + 4 > 2k + 2 > 2k.

Thus A2 ∩ A3 = ∅. Therefore
3⋃

j=1
A j is a partition set as desired.

Next we consider the partition property of the set B ∪ (
3⋃

j=1
A j). Let A =

3⋃
j=1

A j. For k = 2, we have

A = {4, 6, 8, 10, 14, 18, 20, 26, 30, 32, 40, 44, 46} and B = {0, 24, 28}. Then B ∩ A = ∅ as desired. In the following
we assume that k ≥ 3. For the set A1, we have 6k+ 8 < 10k+ 4 < 10k+ 8 < 10k+ 26. Moreover, 8k+ 16 ∈ B if
and only if k ∈ {4, 6}. Equivalently, B∩A1 = ∅ if and only if k < {4, 6}. Similarly as above, we have B∩A2 = ∅
if and only if k < {8, 10}, and B ∩ A3 = ∅ if and only if k < {10, 12}. Thus we conclude that B ∩ A = ∅ if and
only if k < {4, 6, 8, 10, 12}. This completes the proof.

To further determine the three-branching TI trees, we first prove the following result. Let T∗ = T(2, k −
2, k− 3) with v as its center. Denote by H(k) with k ≥ 7 a tree obtained from T∗ by attaching a pendent vertex
at the vertex w1 with distance 3 to the leaf on the (k − 2)-arm of T∗ and another pendent vertex at the vertex
w2 with distance 3 to the leaf on the (k − 3)-arm of T∗. See Figure 5 for the structure of H(9).

Figure 5: Tree H(9).

Lemma 4.2. Let H(k) be a tree defined as above with k ≥ 10. If neither 2k − 4 nor 4k − 6 is of the form m2 + m or
m2 + 3m where m is a positive integer, then H(k) is TI.

Proof. By the structure of H(k), we have n(H(k)) = 2k. Assume that v is the central branching vertex in H(k)
with Tr(v) = x. Let P′ = vu1u2 · · · uk−6w1 and P′′ = vv1v2 · · · vk−7w2 be two internal paths of H(k) with natural
adjacency relations. By Lemma 2.5, we have Tr(ui) = x + i2 + i with i ∈ [k − 6], Tr(w1) = x + (k − 5)(k − 4)

and Tr(v j) = x + j2 + 3 j with j ∈ [k − 7], Tr(w2) = x + (k − 6)(k − 3). Then Tr(H(k)) − x = B ∪
2⋃
ℓ=1

(Aℓ ∪ A∗ℓ)

with B = {0, 2k − 4, 4k − 6}, A1 = {i2 + i|i ∈ [k − 5]}, A∗1 = {2k − 6, 2k − 2, 4k − 10, 6k − 12} + (k − 5)(k − 4),
A2 = { j2 + 3 j| j ∈ [k − 6]} and A∗2 = A∗1 − 2. Next it suffices to prove that Tr(H(k)) − x is a partition set.

Set A =
2⋃
ℓ=1

(Aℓ ∪A∗ℓ). Obviously, we have A∗ℓ ∩Aℓ = ∅ for ℓ ∈ {1, 2} because of the fact that m(A∗ℓ) >M(Aℓ).

Furthermore, we claim that A1∩A2 = ∅ since m2 +m = r2 + 3r for two positive integers m and r will result in
a clear contradiction 2r = (m− r)(m+ r+ 1) ≥ 2r+ 1. Moreover, m(A∗1) = k2

− 7k + 14 > k2
− 9k + 18 =M(A2),

m(A∗2) = k2
− 7k + 12 > k2

− 9k + 20 = M(A1) yield that A∗1 ∩ A2 = ∅ = A∗2 ∩ A1. Note that the minimum
difference between any numbers in A∗1 is 4 > 2. Combining this fact with A∗2 = A∗1 − 2, we have A∗1 ∩A∗2 = ∅.
Thus A is a partition set.
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From the assumption, we have B ∩ (A1 ∪ A2) = ∅. Further, by the definitions of A∗1 and A∗2, we have
m(A∗1 ∪ A∗2) = k2

− 7k + 12 > 4k − 6 for k ≥ 10. Then B ∩ (A∗1 ∪ A∗2) = ∅. Therefore B ∩ A = ∅, implying that
B ∪ A is a partition set. This completes the proof.

Theorem 4.3. There is a TI tree in TB3
n for each n ≥ 16 with n ≡ 4 (mod 6).

Proof. By Lemma 4.1, we only need to prove the existence of TI trees of order n ∈ {28, 40, 52, 64, 76}. For
n ∈ {28, 40, 52, 64}, we assume that n = 2k, that is, k ∈ {14, 20, 26, 32}. By Lemma 4.2, we conclude that H(k)
of order 2k with exactly three branching vertices is TI for k ∈ {14, 20, 26, 32}. It suffices to construct a TI tree
of order 76 with exactly three branching vertices.

Let T be a tree obtained from T0 = T(2, 35, 36) with center v by attaching a pendent vertex to the
vertex on the 35-arm with distance 9 to v in T0 and another pendent vertex to the vertex on the 36-arm
with distance 7 to v in T0. Assume that Tr(v) = x in T. From the structure of T, we have Tr(T) − x =
{0, 72, 146, 130, 182} ∪A1 ∪A2 ∪B∪ (B+ 8)}with A1 = {x2 + 3x|x ∈ [9]}, A2 = {y2 + y|y ∈ [7]} ∪ {74, 94, 116} and
B = {x2 + 23x|x ∈ [26]} + 108. It can be routinely checked that Tr(T) − x is a partition set, that is, T ∈ TB3

76 is
TI. This completes the proof.

In general, the determination of TI trees of even order is more difficult since their respective transmissions
have the same parity. Although constructing a TI tree of even order is tricky work, it turns more reachable
if we extend to the general TI graphs of even order. Let BK be the bowknot graph which consists of two
triangles sharing one vertex (which is called the universal vertex in it). Let BKa,b,c be the graph obtained
by attaching a pendent path of length a at the universal vertex and attaching a pendent path of length b
at one vertex u of degree 2 in BK and attaching at another vertex v of degree 2 in BK with dBK(u, v) = 2 a
pendent path of length c. The structure of BK(a, b, c) is shown in Figure 6. Denote by T∗ the tree obtained
from T0 = T(2, 6, 7) with the center w by attaching a pendent vertex to each vertex in T0 with distance 4 to
w. By a routine check we find that T∗ ∈ TB3

18 is a TI tree. Moreover, H(10) ∈ TB3
20 is a TI tree from Lemma

4.2. So we assume that n ≥ 24 in the following result.

· · · · · ·

· · · · · · · · · · · ·

u v

w

a

b c

︷                                     ︸︸                                     ︷
︷                                 ︸︸                                 ︷ ︷                                 ︸︸                                 ︷

Figure 6: Graph BK(a, b, c).

Theorem 4.4. Let n ≥ 24 be an even integer. If n ≡ t (mod 6) with t ∈ {0, 2}, then there is a TI graph in GB3
n.

Proof. We first consider the case when n ≡ 0 (mod 6). Assume that n = 6k + 6 with k ≥ 3. Let G1 =
BK(2k, 2k, 2k+1) with n(G1) = 6k+6 where the vertex w is of degree 5 and two vertices u and v are of degrees
3 such that there exist a pendent path of length 2k attached at u and a pendent path of length 2k+1 attached
at v.

Assume that Tr(w) = x in G1 ∈ GB
3
n. By the structure of G1 and Lemma 2.1, we have Tr(u) = x + 2k + 3,

Tr(v) = x+2k+1 and Tr(G1)−x =
3⋃

i=0
Ai where A0 = {0, 2k+1, 2k+3, 4k+2, 4k+3}, A1 = {y2+ (2k+5)y|y ∈ [2k]},

A2 = A1 + (2k + 3) and A3 = {y2 + (2k + 3)y|y ∈ [2k + 1]} + (2k + 1). Since k ≥ 3, we have A0 ∩ (
3⋃

j=1
A j) = ∅.

Next we prove that Ai ∩A j = ∅ for any two distinct i, j ∈ [3]. Note that A1 is even, while A2 and A3 are both
odd. So we have A1 ∩ (A2 ∪ A3) = ∅, that is, A1 ∩ A2 = ∅ = A1 ∩ A3. If there exist p ∈ [2k] and q ∈ [2k + 1]
such that p2 + (2k + 5)p + (2k + 3) = q2 + (2k + 3)q + (2k + 1), then q > p with (q − p)(q + p + 2k + 3) = 2p + 2.
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But (q − p)(q + p + 2k + 3) ≥ 2p + 2k + 4 > 2p + 2 as a clear contradiction. So A2 ∩A3 = ∅. Thus Tr(G1) − x is a
partition set, that is, G1 is TI as desired.

For n ≡ 2 (mod 6), we assume that n = 6k + 2 with k ≥ 4. Let G2 = BK(2k − 2, 2k − 1, 2k). Then G2 ∈ GB
3
n

with n(G2) = 6k+2. Assume that Tr(r) = z where r is the vertex of degree 5 in G2. Similarly as above, we have

Tr(G2)−z =
3⋃

i=0
Bi where B0 = {0, 2k−1, 2k+1, 4k−1, 4k, 4k+5}, B1 = {y2+(2k+5)y|y ∈ [2k−2]}, B2 = B1+(4k+5)

and B3 = {y2+(2k+1)y|y ∈ [2k]}+(2k−1). Note that k ≥ 4, which implies that B0∩(
3⋃

j=1
B j) = ∅. Since B1 is even,

while B2 and B3 are both odd, we have B1∩(B2∪B3) = ∅, that is, B1∩B2 = ∅ = B1∩B3. If there exist p ∈ [2k−2]
and q ∈ [2k] such that p2+ (2k+5)p+ (4k+5) = q2+ (2k+1)q+ (2k−1), then (q−p)(q+p+2k+1) = 4p+2k+6.
Clearly, we have q > p. If q− p = 1, we get 2p+ 2k+ 2 = 4p+ 2k+ 6, that is, p = −2 as a clear contradiction. If
q − p ≥ 2, we have (q − p)(q + p + 2k + 1) ≥ 2(2p + 2k + 3) = 4p + 4k + 6 > 4p + 2k + 6 as a contradiction again.
Therefore B2 ∩ B3 = ∅. Thus Tr(G2) − z is a partition set, that is, G2 is TI as desired.

Combining Theorems 4.3, 4.4 with the existence of TI trees in TB3
n with n ∈ {18, 20}, we arrive at the

following result.

Corollary 4.5. There is a TI graph in GB3
n for each even integer n ≥ 16.

5. Concluding remarks

In this paper we prove the existence of TI trees in TB3
n for each odd n ≥ 11 and even n ≥ 16 with

n ≡ 4 (mod 6), respectively. Also, the TI graphs GB3
n are constructed for each n ≥ 16 with n ≡ ℓ (mod 6)

where ℓ ∈ {0, 2}. Thus there is a TI graph in GB3
n for each n ≥ 11 such that n < {12, 14}. What about the

existence of TI trees in TB3
n for n ≡ ℓ (mod 6) with ℓ ∈ {0, 2}? Before formally presenting the corresponding

problem, we prove the following result.

Lemma 5.1. There is no TI tree in TB3
14.

Proof. To the contrary, we suppose that T ∈ TB3
14 is TI. Assume that v ∈ V(T) is the central branching vertex

with other two branching vertices u and w of T. Let T − v =
t⋃

k=1
Tk with n(Tk) = nk for k ∈ [t] such that

nt ≥ nt−1 ≥ · · · ≥ n2 ≥ n1. Then
t∑

k=1
nk = 13. By Corollary 2.2 (1) and the structure of T, we have nt > nt−1 ≥ 4.

Taking into account that v is a branching vertex, we have 3 ≤ t ≤ 4.

If t = 4, we have n1 = 1. Otherwise, we have
4∑

k=1
nt ≥ 14 as a contradiction. Moreover, 2 ≤ n2 ≤ 3. If

n2 = 2, then (n3,n4) = (4, 6). Assume that u ∈ V(T4) with n(T4) = 6. Then w ∈ T3 with n(T3) = 4. If d(u, v) = 1,
then, from the structure of T, there is a vertex x ∈ V(T)\V(T4) and y ∈ V(T4) with Tr(x) = Tr(y). If d(v,w) ≥ 2,
then there is a vertex z ∈ V(T4) with Tr(z) = Tr(w). These are both contradictions to the fact that T is TI.
If n2 = 3, we have (n3,n4) = (4, 5). Then there is a pendent path P4 = vv1v2v3 with the natural adjacency
relation attached at v with w ∈ V(T3), u ∈ V(T4). Moreover, there is a leaf w′ attached at w. Regardless of
the structure of T4, we have Tr(w′) = Tr(v2) as a contradiction again.

For t = 3, we have n3 , 7 from Corollary 2.2 (2). Then n3 ∈ {6, 8}. Assume that u ∈ V(T3) and w ∈ V(T2).
If n3 = 8, then (n1,n2) = (1, 4). If d(u, v) ≥ 2, then there is a vertex x ∈ V(T3) with Tr(x) = Tr(v). If
d(u, v) = 1, based on the degree of u in T, we conclude that there is a vertex y ∈ V(T3) and z ∈ V(T) \ V(T3)
with Tr(y) = Tr(z). These two contradictions show that n3 , 8. If n3 = 6, then (n1,n2) ∈ {(2, 5), (3, 4)}. If
(n1,n2) = (2, 5), then a pendent path P3 = vv1v2 is attached at v and another pendent path P4 = ww1w2w3
is attached at w in T. From the structure of T, we have Tr(v2) = Tr(w2) independent of the subtree T3. For
(n1,n2) = (3, 4), there must be a pendent path P∗ of length 3 attached at v and a leaf w′ attached at w. Let
v∗ ∈ V(P∗) with d(v, v∗) = 2. Then, regardless of the structure of subtree T3, we have Tr(w′) = Tr(v∗). These
above contradictions complete the proof.



A. Xu / Filomat 39:7 (2025), 2347–2356 2356

By a similar but shorter reasoning than that in the proof of Lemma 5.1, we can get the following result,
but omit its proof here.

Remark 5.2. There is no TI tree in TB3
12.

In [13] Dobrynin constructed an infinite family of TI trees of order n = m(m+ 1)+ 6 with m = 3 or m ≥ 8.
Taking the above fact into account with Theorem 4.3, we only need to consider the case when n ≡ ℓ (mod 6)
with ℓ ∈ {0, 2}. Despite the fact that we have some examples of TI trees of order n with n ≡ ℓ (mod 6) where
ℓ ∈ {0, 2}, combining Lemma 5.1 with Remark 5.2, we would like to pose the following problem.

Problem 5.3. Is there a TI tree inTB3
n for each n ≥ 24 with n ≡ k (mod 6) where k ∈ {0, 2} such that n , m(m+1)+6

for any m ≥ 8?

It can be checked via computer that there are at least 6 TI trees in TB3
24. We end this paper with the

following natural problem.

Problem 5.4. Determine the number of TI trees in TB3
n with n ≥ 11.
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