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Double-toroidal, triple-toroidal and quadruple-toroidal nilpotent graph
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Abstract. In this paper, all finite non-nilpotent groups whose nilpotent graphs can be embedded on the
double-torus, triple-torus or quadruple-torus are classified.

1. Introduction

Let G be a group and nil(G) = {y ∈ G | ⟨x, y⟩ is nilpotent for all x ∈ G}. The nilpotent graph of G, denoted
by Γnil(G), is a simple undirected graph in which the vertex set is G \ nil(G), and two vertices x and y are
adjacent if and only if ⟨x, y⟩ is a nilpotent subgroup of G. This graph is precisely the complement of the
non-nilpotent graph of a group considered in [1], and may be regarded as a generalization of the commuting
graph Γc(G). In [5], Das and Nongsiang, studied the nilpotent graphs of groups. They determine (up to
isomorphism) all finite non-nilpotent groups whose nilpotent graphs are planar or toroidal.

In the present paper, we deal with a topological aspect, namely, the genus of the nilpotent graphs of finite
non-nilpotent groups. The primary objective of this paper is to determine (up to isomorphism) all finite
non-nilpotent groups whose nilpotent graphs are double-toroidal, triple-toroidal or quadruple toroidal.

2. Some prerequisites

In this section, we recall certain graph theoretic terminologies (see, for example, [9] and [10]) and some
well-known results which have been used extensively in the forthcoming sections. All graphs in this paper
are undirected, with no loops or multiple edges.

Let Γ be a graph with vertex set V(Γ) and edge set E(Γ). Let x, y ∈ V(Γ). Then x and y are said to be
adjacent if x , y and there is an edge x − y in E(Γ) joining x and y. A walk between x and y is a sequence
of adjacent vertices, often written as x − x1 − x2 − · · · − xn − y. A walk between x and y is called a path if
the vertices in it are all distinct. The graph Γ is said to be connected if there is a path between every pair
of distinct vertices in Γ. If in a path x − x1 − x2 − · · · − xn − y, x and y are adjacent in Γ, then the walk
x − x1 − x2 − · · · − xn − y − x is called a cycle. The number of edges in a path or a cycle, is called its length.
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The girth of a graph Γ is the minimum of lengths of all cycles in Γ, and is denoted by gr(Γ). We now have
the following inequality (see [2, Section 2.3]).

Lemma 2.1. Let Γ be a connected graph (but not acyclic) having n vertices and m edges. If the girth of Γ is equal to
k, then we have,

γ(Γ) ≥
m(k − 2)

2k
−

n
2
+ 1.

A graph Γ is said to be complete if there is an edge between every pair of distinct vertices in Γ. We denote
the complete graph with n vertices by Kn. The complete bipartite graph is the one whose vertex set can be
partitioned into two disjoint parts and two vertices are adjacent if and only if they lie in different parts. The
complete bipartite graph, with parts of size m and n, is denoted by Km,n.

Given a graph Γ, let U be a nonempty subset of V(Γ). Then the induced subgraph of Γ on U is defined
to be the graph Γ[U] in which the vertex set is U and the edge set consists precisely of those edges in Γ
whose endpoints lie in U. If {Γα}α∈Λ is a family of subgraphs of a graph Γ, then the union ∪

α∈Λ
Γα denotes the

subgraph of Γ whose vertex set is ∪
α∈Λ

V(Γα) and the edge set is ∪
α∈Λ

E(Γα). The graph obtained by taking the

union of graphs Γ1 and Γ2 with disjoint vertex sets is the disjoint union or sum, written Γ1 + Γ2. In general,
mΓ is the graph consisting of m pairwise disjoint copies of Γ. Further, given a graph Γ, its complement Γ,
is defined to be the graph in which the vertex set is the same as the one in Γ and two distinct vertices are
adjacent if and only if they are not adjacent vertices in Γ. The join of two graphs Γ1 and Γ2, denoted by
Γ1 ∨ Γ2, is the graph obtained from Γ1 + Γ2 by joining each vertex of Γ1 to each vertex of Γ2.

The genus of a graph Γ, denoted by γ(Γ), is the smallest non-negative integer n such that the graph can
be embedded on the surface obtained by attaching n handles to a sphere. Clearly, if Γ̃ is a subgraph of Γ,
then γ(Γ̃) ≤ γ(Γ). The surface with one, two, three and four handles is the torus, double-torus, triple-torus
and quadruple-torus respectively. The graphs embeddable on the surfaces of genus 0, 1, 2, 3 or 4 are the
planar, toroidal, double-toroidal, triple-toroidal or quadruple-toroidal graphs, respectively.

A block of a graph Γ is a connected subgraph B of Γ that is maximal with respect to the property that
removal of a single vertex (and the incident edges) from B does not make it disconnected, that is, the graph
B \ {v} is connected for all v ∈ V(B). Given a graph Γ, there is a unique finite collectionB of blocks of Γ, such
that Γ = ∪

B∈B
B. The collection B is called the block decomposition of Γ. In [3, Corollary 1], it has been proved

that the genus of a graph is the sum of the genera of its blocks.
We conclude the section with the following two useful results.

Lemma 2.2 ([10], Theorem 6-38). If n ≥ 3, then

γ(Kn) =
⌈

(n − 3)(n − 4)
12

⌉
.

Lemma 2.3 ([10], Theorem 6-37). If m,n ≥ 2, then

γ(Km,n) =
⌈

(m − 2)(n − 2)
4

⌉
.

3. Nilpotent Graph

An ascending series 1 = G0 ◁ G1 ◁ . . .Gβ = G in a group G is said to be central if Gα ◁ G and Gα+1/Gα
lies in the center of G/Gα for every α < β. A group which possesses a central ascending series is called
hypercentral. If G is any group and α an ordinal, the terms Zα(G) of the upper central series of G are defined
by the rules

Z0(G) = {1} and Zα+1(G)/Zα(G) = Z(G/Zα(G))

together with the completeness condition

Zλ(G) =
⋃
α<λ

Zα(G)
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where λ is a limit ordinal. Since the cardinality of G cannot be exceeded, there is an ordinal β such that
Zβ(G) = Zβ+1(G) =, etc., a terminal subgroup called the hypercenter of G and is denoted by Z∗(G).

Given a group G with x ∈ G, the nilpotentizer of x in G is defined as nilG(x) = {y ∈ G | ⟨x, y⟩ is nilpotent}.
As in [5], a group G is said to be an nn-group if nilG(x) is a nilpotent subgroup of G for every x ∈ G \ nil(G).

In this section, we shall determine all finite non-nilpotent groups whose nilpotent graphs are of genus
at most 4. The following proposition of Das and Nongsiang gives all planar and toroidal nilpotent graphs.

Proposition 3.1. ([5, Proposition 5.1]). Let G be a finite non-nilpotent group. Then, the following assertions hold:

1. The nilpotent graph of G is planar if and only if G is isomorphic to S3, D10, D12, Q12, A4, A5, or Sz(2).

2. The nilpotent graph of G is toroidal if and only if G is isomorphic to SL(2, 3), D14,Z7⋊Z3,Z2×A4, orZ3×S3.

The following lemma enables us to use Z∗(G) and nil(G) interchangeably whenever the group G is finite.

Lemma 3.2. ([5, Lemma 3.1]). Let G be a finite group. Then, the following assertions hold:

1. ⟨x,Z∗(G)⟩ is nilpotent for all x ∈ G;

2. Z∗(G) = nil(G).

Lemma 3.3. γ(3K3 ∨ K2) ≥ 2.

Proo f : We know that (3K3 ∨ K2) is a subgraph of (3K3 ∨ K2). By [13, Theorem 3], γ(3K3 ∨ K2) ≥ 2. Hence
the result follows.

The quadruple torus can be constructed from a polygon of 16 sides by identifying pairs of edges ([12,
p-5]) as shown in the following figure. The 16 edges of the polygon become a union of 8 circles in the
surface, all intersecting at a single point.
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Lemma 3.4. The genus of the nilpotent graph of S4 is 4.
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Proof. Note that in Γnil(S4), any vertex of the form (i, j, k) is only adjacent to (i, k, j). Therefore, these vertices
does not contribute anything to the genus. Thus, they can be neglected.

Let
P = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)},

X1 = {(3, 4), (1, 2), (1, 3, 2, 4), (1, 4, 2, 3)},

X2 = {(1, 4), (2, 3), (1, 2, 4, 3), (1, 3, 4, 2)},

X3 = {(1, 3), (2, 4), (1, 2, 3, 4), (1, 4, 3, 2)}.

Any two vertices in P are adjacent. The induced subgraph of Γnil(S4) by Xi is isomorphic to K4 for
i = 1, 2, 3. Any vertex from P is adjacent to any vertex from X1 ∪ X2 ∪ X3 and any vertex from Xi is not
adjacent to any vertex from X j for i , j, i, j ∈ {1, 2, 3}. Thus K3,12 is a subgraph of the nilpotent graph of S4
and so genus of the nilpotent graph of S4 is greater than or equal to 3.

If γ(Γnil(S4)) = 3, then a triangular embedding can be found for Γnil(S4). By [14, Theorem 3], Γnil(S4) has
a property that if x is a vertex of degree y in Γnil(S4), then there exists a wheel subgraph in Γnil(S4) of order y
with center x. In Γnil(S4), the vertex (1, 2)(3, 4) is of degree 14 but there does not exists a wheel subgraph in
Γnil(S4) of order 14 with center (1, 2)(3, 4), which is a contradiction. Hence, γ(Γnil(S4)) > 3. Let P = {1, 2, 3},
H = {x1, x2, x3, x4}, I = {x5, x6, x7, x8}, and J = {x9, x10, x11, x12}. The graph Γnil(S4) can be embedded on the
quadruple-torus as shown in Figure 1 and thus γ(Γnil(S4)) = 4.
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Figure 1: Embedding of Γnil(S4) on the quadruple-torus
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Theorem 3.5. Let G be a finite non-nilpotent group. Then the nilpotent graph of G is double-toroidal if and only if
G is isomorphic to one of the following groups:

1. D18,D20,Z4 × S3,D24,Z2 ×Z2 × S3,

2. ⟨x, y, z : x3 = y3 = z2 = 1, [x, y] = 1, xz = x−1, yz = y−1
⟩ � (Z3 ×Z3) ⋊ Z2,

3. ⟨x, y : y10 = e, y5 = x2, xyx−1 = y−1
⟩ � Z5 ⋊ Z4,

4. ⟨x, y : y3 = x8 = 1, yx = y−1
⟩ � Z3 ⋊ Z8,

5. ⟨x, y, z : x6 = y2 = z2 = xyz = 1⟩ � Z3 ⋊Q8,

6. ⟨x, y, z : x6 = y4 = z2 = 1, x3 = y2, yxy−1 = x−1, zx = xz, zy = yz⟩ � (Z3 ⋊ Z4) ×Z2,

7. ⟨x, y, z : x2 = y2 = z3 = (xz)2 = (xy)4 = 1, yz = y−1
⟩ � (Z6 ×Z2) ⋊ Z2,

8. ⟨x, y : x4 = y3 = (yx2)2 = [x−1yx, y] = 1⟩ � (Z3 ×Z3) ⋊ Z4.

Theorem 3.6. There is no triple-toroidal nilpotent graph.

Proof. [Proof of Theorem 3.5 and Theorem 3.6] Let G be a finite non-nilpotent group, whose nilpotent
graph is double-toroidal or triple-toroidal. Then, Γnil(G) has no subgraph isomorphic to K10. Let x ∈
G \ Z∗(G) such that x2 < Z∗(G). Such element exists; otherwise G is nilpotent. Then by [7, Lemma 3.13],
A = xZ∗(G) ∪ x2Z∗(G) ⊂ G \ Z∗(G) and any two elements of A generates a nilpotent subgroup. Therefore,
Γnil(G)[A] � K2|Z∗(G)| and so 2|Z∗(G)| ≤ 9. Thus |Z∗(G)| ≤ 4.

(1) |Z∗(G)| = 4. Suppose p | |G|, p a prime, p ≥ 5. Let x ∈ G, such that ◦(x) = p. Then, by Lemma 3.2,
⟨x,Z∗(G)⟩ is a nilpotent subgroup of G of order at least 20, a contradiction to the fact that Γnil(G) has no
subgraph isomorphic to K10. So |G| = 2m3n. Suppose, n ≥ 2, then ⟨P3,Z∗(G)⟩ is a nilpotent subgroup of G of
order at least 36, a contradiction. Similarly, m ≥ 4 is impossible. Therefore |G| = 24 and so G is isomorphic
to one of the following groups:

• Z3 ⋊ Z8,

• Z3 ⋊Q8,

• Z4 × S3,

• D24,

• (Z3 ⋊ Z4) ×Z2,

• (Z6 ×Z2) ⋊ Z2,

• Z2 ×Z2 × S3.

All these groups are nn-groups, with one nilpotentizer of size 12 and three nilpotentizers of order 8.
Thus by [5, Proposition 4.2], the nilpotent graphs of these groups are double-toroidal.

(2) |Z∗(G)| ≤ 3. In this case, we have Z∗(G) = Z(G). Thus the commuting graph Γc(G) is a subgraph of the
nilpotent graph Γnil(G) and thus Γc(G) is of genus at most 3. Suppose Γc(G) is planar. Then by [4, Theorem
5.7], noting the fact that G is a non-nilpotent group, we have G � S3,D10,A4,D12,Q12,Sz(2),S4,SL(2, 3),A5.
By Proposition 3.1, the nilpotent graph of S3, D10, A4, D12, Q12, Sz(2) and A5 are planar, whereas, the
nilpotent graph of SL(2, 3) is toroidal. By Lemma 3.4, the genus of the nilpotent graph of S4 is equal to 4.

Again, if Γc(G) is toroidal, then by [4, Theorem 6.6], noting the fact that G is a non-nilpotent group,
we have G � D14,S3 × Z3,A4 × Z2,Z7 ⋊ Z3. By Proposition 3.1, the nilpotent graphs of all these groups
are toroidal. Hence, we are left with the case when Γc(G) is double-toroidal or triple-toroidal. If Γc(G) is
double-toroidal, then by [6, Theorem 3.6] and since |Z(G)| ≤ 3, G is isomorphic to one of the following
groups:
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• D18,D20,Q20

• (Z3 ×Z3) ⋊ Z2,

• (Z3 ×Z3) ⋊ Z4,

• (Z3 ×Z3) ⋊Q8.

If G is one of the groups D18 or (Z3 ×Z3) ⋊ Z2, then G is an nn-group, with |Z∗(G)| = 1 and G consist of
one nilpotentizer of order 9 and nine nilpotentizers of order 2. If G is one of the groups D20 or Q20, then
G is an nn-group, with |Z∗(G)| = 2 and G consist of one nilpotentizer of order 10 and five nilpotentizers of
order 4. If G = (Z3 ×Z3) ⋊ Z4, then G is an nn-group, with |Z∗(G)| = 1 and G consist of one nilpotentizer of
order 9 and nine nilpotentizers of order 4. Thus if G is any of these groups, then by [5, Proposition 4.2], the
nilpotent graphs of any of these groups is double-toroidal. The group (Z3 ×Z3) ⋊Q8 is an nn-group, with
Z∗((Z3 ×Z3)⋊Q8) = {1}, one nilpotentizer of size 9 and nine nilpotentizers of size 8. The intersection of any
two of these nilpotentizers is trivial. Thus by [5, Proposition 4.2], the nilpotent graph of (Z3 ×Z3) ⋊ Q8 is
of genus 11.

If Γc(G) is triple-toroidal, then by [6, Theorem 3.7] G � SL(2, 3) ◦Z2 or GL(2, 3). Both these groups has a
nilpotent subgroup of order 16. This completes the proof.

Lemma 3.7. Let G be a finite non-abelian group whose nilpotent graph is quadruple-toroidal. If |G| = 7m, where
m ≥ 2 and 7 ∤ m, then m = 2, 3 or 6.

Proof. Let H be a Sylow 7-subgroup of G. Note that if |Z(G)| > 1, then K = ⟨H,Z(G)⟩ is a nilpotent subgroups
of G of order at least 14. Let L = K \Z∗(G). Then |L| ≥ 12 and so Γnil(G)[L] has a subgraph isomorphic to K11,
which is a contradiction to the fact that Γnil(G) is quadruple-toroidal. Thus Z(G) = 1. Let n be the number of
sylow 7−subgroups of G. Suppose n , 1. Then n ≥ 8. Let S1,S2, . . . ,S8, be sylow 7−subgroups of G. Then it
is easy to see that the induced subgraph Γc(G)[Si \Z(G)] � K6, for i = 1, 2, . . . , 8. Thus γ(Γnil(G)) ≥ 8γ(K6) = 8,
a contradiction. Therefore, H is the unique (hence, normal) Sylow 7-subgroup of G. Note that CG(H) = H;
otherwise CG(H) (hence, G) would have an element (hence, an abelian subgroup) of order at least 14, which
would imply that Γnil(G)[L] has a subgraph isomorphic to K11, a contradiction. Therefore, by N/C Lemma
[8, Theorem 7.1(i)], G/H is isomorphic to a subgroup of the cyclic group Z6 � Aut(H). Since |G/H| = m, it
follows that m|6 and so m = 2, 3 or 6.

Theorem 3.8. Let G be a finite non-nilpotent group. Then, the nilpotent graph of G is quadruple-toroidal if and only
if G is isomorphic to D22, S4 and Z11 ⋊ Z5.

Proof. Let G be a finite non-nilpotent group whose nilpotent graph has genus 4. Then Γnil(G) has no
subgraph isomorphic to K11. Let x ∈ G \ Z∗(G) such that x2 < Z∗(G). Such element exists; otherwise G is
nilpotent. Then by [7, Lemma 3.13], A = xZ∗(G)∪ x2Z∗(G) ⊂ G \Z∗(G) and any two elements of A generates
a nilpotent subgroup. Therefore, Γnil(G) � K2|Z∗(G)| and so 2 | Z∗(G) |⩽ 10. Thus, | Z∗(G) |⩽ 5.

(1). |Z∗(G)| = 5. Suppose p | |G|, p a prime and p ≥ 7. Let x ∈ G such that ◦(x) = p. Then by Lemma 3.2,
< x,Z∗(G) > is a nilpotent subgroup of G of order at least 35, a contradiction to the fact that Γnil(G) has no
subgraph isomorphic to K11. So, |G| = 2p3q5r. Suppose r ≥ 2, then G has a nilpotent subgroup of order at
least 25, a contradiction. So r ∈ {0, 1}. Suppose q ≥ 2. Let P be a sylow 3−subgroup of G. By [7, Lemma
3.13], any two elements of PZ∗(G) \Z∗(G) are adjacent to each other. Thus Γnil(G) has a subgraph isomorphic
to K11, a contradiction. So q ∈ {0, 1}. Similarly, p ∈ {0, 1}. Thus, |G| = 30 and so G is isomorphic to Z5 × S3.
This is an nn-group with three nilpotentizers of size 10 and one nilpotentizer of size 15 and thus, by [5,
Proposition 4.2], γ(Γnil(Z5 × S3)) = 3γ(K5) + γ(K10) = 7.

(2). |Z∗(G)| = 4. Suppose p | |G|, p a prime and p ≥ 5. Let x ∈ G such that ◦(x) = p. Then, < x,Z∗(G) > is
a nilpotent subgroup of G of order at least 20, a contradiction. So, |G| = 2m3n. Suppose n ≥ 2. Let P be a
sylow 3−subgroup of G. By [7, Lemma 3.13], any two elements of PZ∗(G) \Z∗(G) are adjacent to each other.
Thus Γnil(G) has a subgraph isomorphic to K11, a contradiction. So n ∈ {0, 1}. Suppose m ≥ 4, then G has a
nilpotent subgroup of order at least 16, a contradiction. So, m ∈ {0, 1, 2, 3}. Therefore, | G |= 24 and so G is
isomorphic to one of the following groups:
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• Z3 ⋊ Z8

• Z3 ⋊Q8

• Z4 × S3

• D24

• Z2 × (Z3 ⋊ Z4)

• (Z6 ×Z2) ⋊ Z2

• Z2 ×Z2 × S3

By Theorem 3.5, the nilpotent graphs of these groups are double-toroidal.
(3). |Z∗(G)| = 3. Suppose p | |G|, p a prime and p ≥ 5. Let x ∈ G such that ◦(x) = p. Then, < x,Z∗(G) > is

a nilpotent subgroup of G of order at least 15, a contradiction. So, |G| = 2m3n. Suppose m ≥ 3. Let P be a
sylow 2−subgroup of G. By [7, Lemma 3.13], any two elements of PZ∗(G) \Z∗(G) are adjacent to each other.
Thus Γnil(G) has a subgraph isomorphic to K11, a contradiction. So, m ∈ {0, 1, 2}. Suppose n ≥ 3, then G has
a nilpotent subgroup of order at least 27, a contradiction. So n ∈ {0, 1, 2}. Therefore, |G| ∈ {18, 36} and so G
is isomorphic to one of the following groups:

• Z3 × S3

• (Z2 ×Z2) ⋊ Z9

• Z3 × A4

By Proposition 3.1, the nilpotent graph of Z3 × S3 is toroidal. The groups (Z2 × Z2) ⋊ Z9 and Z3 × A4
are nn-groups with each having four nilpotentizers of size 9 and one nilpotentizer of size 12. Thus by [5,
Proposition 4.2], the genus of the nilpotent graph of each these groups is 4γ(K6) + γ(K9) = 7.

(4). |Z∗(G)| = 2. Suppose p | |G| and p ≥ 7. Let x ∈ G such that ◦(x) = p. Then, < x,Z∗(G) > is a nilpotent
subgroup of G of order at least 14, a contradiction. So, |G| = 2p3q5r. Suppose r ≥ 2 and q ≥ 2. Let P be a
sylow 3−subgroup or a sylow 5−subgroup of G. By [7, Lemma 3.13], any two elements of PZ∗(G) \ Z∗(G)
are adjacent to each other. Thus Γnil(G) has a subgraph isomorphic to K11, a contradiction. So, r, q ∈ {0, 1}.
Suppose p ≥ 4, then G has a nilpotent subgroup of order at least 16, a contradiction. So, p ∈ {0, 1, 2, 3}.
Therefore, |G| ∈ {12, 20, 24, 30, 40, 60, 120}.

There are two groups of order 12 with hypercenter of size 2. Namely D12 and Q12 and the nilpotent
graph of these groups are planar. There are two groups of order 20 with hypercenter of size 2. Namely D20
and Q20 and the nilpotent graph of these groups are double-toroidal. There are two groups of order 24 with
hypercenter of size 2. Namely SL(2, 3) and Z2 × A4 and the nilpotent graph of these groups are toroidal.

If |G| = 40, then since G cannot have an abelian subgroup of order 20, we have, G is isomorphic to one
of the following groups:

• Z5 ⋊ Z8

• Z2 × (Z5 ⋊ Z4)

The groupsZ5⋊Z8 andZ2×(Z5⋊Z4) are nn-groups with five nilpotentizers of size 8 and one nilpotentizers of
size 10. Thus by [5, Proposition 4.2], the genus of the nilpotent graph of each these groups is 5γ(K6)+γ(K8) =
7.

By [4, Lemma 5.4], if |G| = 30 or if G is a solvable group of order 60 or 120, then G has a nilpotent
subgroup of order 15. Thus G is non-solvable and so G is isomorphic to one of the following groups:

• SL(2, 5)

• Z2 × A5
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The groups SL(2, 5) andZ2 ×A5 are nn-groups with six nilpotentizers of size 10, five nilpotentizers of size 8
and ten nilpotentizers of size 6. Thus by [5, Proposition 4.2], the genus of the nilpotent graph of each these
groups is 6γ(K8) + 5γ(K6) + 10γ(K4) = 17.

(5). |Z∗(G)| = 1. Suppose p | |G|, p a prime and p ≥ 13. Let x ∈ G such that ◦(x) = p. Then,
< x > is a nilpotent subgroup of G of order at least 13, a contradiction. So, | G |= 2p3q5r7s11t. Suppose
p ≥ 4,q ≥ 3,r ≥ 2,s ≥ 2 or t ≥ 2, then G has a nilpotent subgroup of order at least 16, 27, 25, 49 or 121
respectively, a contradiction. By Lemma 3.7, if |G| = 7m, then m = 2, m = 3 or 6. Suppose 11 | |G|. Let
K be a sylow 11−subgroup of G and H be a sylow p′−subgroup of G, p′ = 2, 3, 5. Then Γnil(G)[K \ Z∗(G)]
and Γnil(G)[H \ Z∗(G)] are two distinct subgraphs of Γnil(G). Thus γ(Γnil(G)[K \ Z∗(G)]) + γ(Γnil(G)[H \
Z∗(G)]) ≤ γ(Γnil(G)) = 4. It follows that γ(Γnil(G)[H \ Z∗(G)]) = 0 and so |H| ≤ 5. Therefore if 11 | |G|,
then p ≤ 2, q ≤ 1, r ≤ 1 and s = 0. Note that groups of order 15 and 33 are nilpotent. Thus |G| ∈
{6, 10, 12, 14, 18, 20, 21, 22, 24, 30, 36, 40, 42, 44, 45, 55, 60, 66, 72, 90, 110, 120, 132, 165,
180, 220, 330, 360, 660}.

The nilpotent graphs of the non-nilpotent groups of order 6, 10 and 12 are planar. The nilpotent graphs
of the non-nilpotent groups of order 14 and 21 are toroidal. The nilpotent graphs of the non-nilpotent
groups of order 20 are either planar or double-toroidal.

There are two non-nilpotent groups of order 18 with trivial center, namely D18 and (Z3 ×Z3) ⋊Z2. The
nilpotent graphs of both these groups are double-toroidal.

There is only one non-nilpotent group of order 22 with trivial center, namely D22 and by [5, Proposition
4.4] the nilpotent graph of this group is quadruple-toroidal.

There is only one non-nilpotent group of order 24 with trivial center, namely S4 and by Lemma 3.4,
γ(Γnil(S4)) = 4.

There is only one non-nilpotent group of order 30 with trivial center, namely D30 and by [5, Proposition
4.4] the nilpotent graph is of genus 10.

There are two non-nilpotent group of order 36 with trivial center, namely S3 × S3 and

⟨x, y : x4 = y3 = (yx2)2 = [x−1yx, y] = 1⟩ � (Z3 ×Z3) ⋊ Z4.

The non-nilpotent graph of the group (Z3×Z3)⋊Z4 is double-toroidal. Let G′ = S3×S3. Since Z(G′) = 1,
the commuting graph Γc(G′) is a subgraph of Γnil(G′) and so γ(Γc(G′)) ≤ γ(Γnil(G′)). By [6, Remark 3.3]
γ(Γc(G′)) ≥ 4. Let a = (1, 2), b = (4, 5), c = (4, 5, 6) and d = (1, 2, 3). Let A = {c, c2, a, ac, ac2, ad, acd, ac2d, ad2, acd2,
ac2d2

}, B = {c, d, cd, c2d, cd2, c2d2
} and C = {d, d2, b, bd, bd2,bc, bcd, bc2d, bc2, bcd2, bc2d2

}. Note that A ∩ B = {c}
and B∩C = {d}. If A′ = Γnil(G′)[A], B′ = Γnil(G′)[B] and C′ = Γnil(G′)[C], then A′ � C′ � 3K3∨K2 and B′ � K6.
By Remark 3.3, γ(A′) = γ(C′) ≥ 2. The graph A′ ∪ B′ ∪ C′, as depicted in Figure 2, has three blocks A′, B′

and C′. Thus, γ(G′) ≥ γ(A′ ∪ B′ ∪ C′) = γ(A′) + γ(B′) + γ(C′) ≥ 2 + 1 + 2 = 5.
There are no groups of order 40, 44 and 45 with trivial center.
There are two non-nilpotent group of order 42 with trivial center, namely D42 and (Z7 ⋊ Z3) ⋊ Z2. By

[5, Proposition 4.4], the nilpotent graph of D42 has genus greater than 4. The group (Z7 ⋊ Z3) ⋊ Z2 has
7 nilpotent subgroups of size 6 and the intersection of these subgroups is the trivial subgroup. Thus the
nilpotent graph of (Z7 ⋊ Z3) ⋊ Z2 is not quadruple-toroidal

There is only one non-nilpotent group of order 55 group with trivial center, namelyZ11 ⋊Z5. This is an
nn-group with eleven nilpotentizers of size 5 and one nilpotentizer of size 11. Thus by [5, Proposition 4.2],
γ(Γnil(Z11 ⋊ Z5)) = 11γ(K4) + γ(K10) = 4. Hence the nilpotent graph of this group is quadruple-toroidal.

There are three non-nilpotent group of order 60 with trivial center, namely A5,Z15 ⋊ Z4 and S3 × D10.
The nilpotent graph of A5 is planar. The group Z15 ⋊ Z4 and S3 ×D10 has a cyclic group of order 15 and so
their nilpotent graphs are not quadruple-toroidal.

There is only one non-nilpotent group of order 66 group with trivial center, namely D66. By [5, Proposi-
tion 4.4], the nilpotent graph of this group has genus greater than 4.

There are six non-nilpotent groups of order 72, namely ((Z2×Z2)⋊Z9)⋊Z2, (Z3×Z3)⋊Q8, (S3×S3)⋊Z2,
(Z3 ×Z3) ⋊ Z8, (Z3 × A4) ⋊ Z2 and A4 × S3.

The group ((Z2×Z2)⋊Z9)⋊Z2, (Z3×A4)⋊Z2 and A4×S3 has an abelian subgroup of order 12. The group
(Z3 ×Z3) ⋊ Q8 and (Z3 ×Z3) ⋊ Z8 are nn-groups with nine nilpotentizers of size 8 and one nilpotentizers



D. Lyngdoh, D. Nongsiang / Filomat 39:7 (2025), 2357–2366 2365

a

ac

ac2

ad

acd

ac2d

ad2

acd2

ac2d2

c2

c

cd

c2d2

cd2

c2d

d2

d

b

bd

bd2

bc

bcd

bc2d

bc2

bcd2

bc2d2

Figure 2: A′ ∪ B′ ∪ C′

of size 9. By [5, Proposition 4.2], the nilpotent graph of these groups has genus 12. The nilpotent graph of
S3×S3 is a subgraph of the nilpotent graph of (S3×S3)⋊Z2 and thus γ(Γnil((S3×S3)⋊Z2)) ≥ γ(Γnil(S3×S3)) ≥ 5.

There are two non-nilpotent groups of order 90 with trivial center, namely D90 and (Z15×Z3)⋊Z2. Both
these groups has an abelian subgroup of order 45 and so their nilpotent graphs are not quadruple-toroidal.

There are two non-nilpotent groups of order 110 with trivial center, namely (Z11 ⋊ Z5) ⋊ Z2 and D110.
The group (Z11 ⋊Z5)⋊Z2 is an nn-group with eleven nilpotentizers of size 10 and one nilpotentizer of size
11. Thus, by [5, Proposition 4.2] the nilpotent graph of this group is of genus 37. By [5, Proposition 4.4], the
nilpotent graph of D110 is of genus 23.

Let G be a group of order 120 with trivial center. If G is solvable, then by Theorem of Hall (see [8,
Theorem 5.28]), G has a subgroup of order 15, which is abelian. Thus G is not solvable and so G � S5. The
group S5 has 10 abelian subgroups of order 6 and the intersection of any two of these subgroups is trivial.
Thus the nilpotent graph of S5 is not quadruple-toroidal.

There is only one non-nilpotent groups of order 132 with trivial center, namely S3 ×D22 and this group
has an abelian subgroup of order 33. Thus its nilpotent graph is not quadruple-toroidal.

There are no non-nilpotent groups of order 165 with trivial center.
Let G be a group of order 180 with trivial center. Then G is solvable. So by [8, Theorem 5.28], G has a

subgroup of order 45 which is abelian. Thus the nilpotent graph of G is not quadruple-toroidal.
Let G be a group of order 220. Then G is solvable and so G has a subgroup H of order 55. Thus

H � Z55 or Z11 ⋊ Z5. It follows that γ(Γnil(G)) ≥ γ(Γnil(G)[H \ {1}] > 4. Thus the nilpotent graph of G is not
quadruple-toroidal.

Let G be a group of order 330 with trivial center. Then G is solvable. Thus by [8, Theorem 5.28], G has a
subgroup of order 15, which is abelian. Thus the nilpotent graph of G is not quadruple-toroidal.

Let G be a group of order 360. If G is solvable, then by [8, Theorem 5.28], G has a subgroup of order 45
which is abelian. It follows that G is not solvable. There are three non-solvable group of order 360 with
trivial center, namely A6, GL(2, 4) ⋊ Z2 and A5 × S3. The group GL(2, 4) ⋊ Z2 and A5 × S3 has an abelian
subgroup of order 15. The group A6 has three subgroups of order 9 whose intersection of any two is
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the trivial subgroup, namely A = ⟨(1, 2, 3), (4, 5, 6)⟩, B = ⟨(1, 2, 6), (3, 4, 5)⟩ and C = ⟨(1, 2, 5), (3, 4, 6)⟩. Thus
γ(Γnil(A6)) ≥ γ(Γnil(A6)[(A ∪ B ∪ C) \ {1}]) ≥ 6. Thus Γnil(A6) is not quadruple-toroidal.

Let G be a group of order 660. If G is solvable then by [8, Theorem 5.28], G has a subgroup of order 15,
which is abelian. Thus G is non-solvable and so G � PSL(2, 11). This group has 12 subgroups of order 11.
Thus γ(Γnil(PSL(2, 11))) ≥ 12γ(K10) = 48. Thus Γnil(PSL(2, 11)) is not quadruple-toroidal.

This completes the proof.
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