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Hyers–Ulam stability of non-linear Volterra-Fredhlom
integro-differential equations via successive approximation method
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Abstract. In this work, we examine the Hyers–Ulam and Hyers–Ulam–Rassias stability of non-linear
Volterra-Fredhlom integro-differential equations of fractional order with boundary conditions using the suc-
cessive approximation approach. This study investigates a boundary value problem involving a non-linear
Volterra-Fredholm integro-differential equations of fractional order, along with its boundary conditions.
The main results are demonstrated through several examples.

1. Introduction

Hyers-Ulam stability is a concept in functional analysis that focuses on the stability of functional
equations. S. M. Ulam [1] expanded on this idea by studying how approximate solutions behave, following
the groundwork laid by D. H. Hyers [2] in 1941. The main objective is to identify the conditions under
which a functional equation is stable. Essentially, if a function closely approximates the equation, we want
to determine whether there exists an exact solution that is ”near” to this approximation. The traditional
Hyers-Ulam stability theorem states that there is a unique solution to the functional equation that remains
uniformly close to any approximate solution given specific conditions. Applications of fractional calculus
in numerical analysis and many applied disciplines, including engineering and physics, have sparked a
great deal of interest in the field in recent years ([3–6]).

The study of linear viscoelasticity is frequently the focus of fractal phenomena. The fact that fractional
calculus is essentially an enhanced version of integer-order calculus is one of its main benefits. For this rea-
son, fractional calculus can potentially do what integer-order calculus is unable to. The integro-differential
equation, which combines the differential and Volterra-Fredholm integral equations, has garnered increased
attention in recent years.In numerous fields of linear and non-linear functional analysis, as well as in the
theory of engineering, mechanics, physics, chemistry, biology, economics, and statistics, integral-differential
equations are crucial.Since the aforementioned integro-differential equations are typically challenging to
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solve analytically, approximation techniques are needed to find the solutions to the linear and non-linear
integro-differential equations [7].

Numerous reseaarchers have examined and deliberated upon the linear Volterra-Fredholm integro-
differential equations. Boabolian, et al.[8] devised a novel, direct approach for resolving non-linear Volterra
- Fredholm integral and integro-differential equations, employing operational matrix block-pulse functions.
Volterra integral equations are important because of their depth of theory and applicability in real-world
situations. The modelling of systems that display memory and reliance on previous states is made pos-
sible by these equations, which reflect relationships in which a quantityú’s future value is influenced by
its prior behaviour. This temporal feature is similar to many situations found in natural and artificial
systems, ranging from species population predictions in biological systems to the behaviour of materials
under time-dependent stresses. Solving Volterra integral equations is still a difficult task, nonetheless,
despite its amazing application and value.Due to the complex interactions between integral and differential
components and the nonlinear nature of many real-world systems, these equations are difficult to solve
analytically. Numerous numerical methods, iterative techniques, and approximation schemes have been
developed in an attempt to solve these equations; however, an all-encompassing and reliable analytical
method has not yet been discovered [9, 10].

Important properties and widespread applications in mathematics may be found in the Fredholm,
Volterra, and integro-differential equations. Generating functions, combinatorial sums of certain polyno-
mials, and integro-differentia lequations in particular have been studied by several mathematicians. Since
such integral issues may be found in a variety of mathematical models, computer algorithms, physics,
engineering difficulties, and fractional calculus theory (see other articles [11–17]). Boundary value issues
for nonlinear fractional differential equations have recently attracted the attention of several academics.
Fractional derivatives, in fact, provide a useful tool for describing the memory and genetic properties of
various materials and processes [18], making fractional-order models more realistic and grounded than
their traditional integer-order equivalents. Fractional differential equations have implications for a wide
range of scientific and technological domains, such as physics, chemistry, biology, economics, control theory,
signal and image processing, biophysics, bloodflow phenomena, aerodynamics, and fitting experimental
data [18, 19].

In mathematical studies on fractional differential equations, the notion of a fractional order derivative
γ = 0 is reached via the Riemann - Liouville technique. As the left inverse of the equivalent fractional
integral, the fractional Riemann-Liouville derivative is a natural generalisation of the Cauchy formula for
the antiderivative function u(t). Michele Caputo developed a new concept of the fractional order derivative
in 1967 to address boundary value difficulties in viscoelasticity theory [20]. The Caputo technique is
advantageous because the initial and boundary conditions for differential equations with the Caputo
fractional derivative are similar to those for integer order differential equations, allowing for consistent
interpretation. As a result, it is widely used in practical applications. A revised version of fixed point
theory and fixed point method for functional equations and control theory in Caputo contexts, which is
thought to be a generalization of the classical fundamental theorem of calculus, was presented in [21, 22],
where the authors also recovered the concepts of fractional integrals and fractional derivatives in alternative
forms. To satisfy the physical limitations, Caputo created an altered definition of the fractional differential
derivative. Caputo picked it up with Mainard.For integro-differential equations of non-integer orders, this
notion has the advantage of offering a more comprehensible solution to the beginning conditions problem.
For 0 < γ < 1, the Caputo derivative situations were referred to as the regularised fractional derivative.

There has been an increase in interest in Hyers-Ulam and Hyers-Ulam-Rassias stability for differential
equations and integro-differential equations in recent years (see [23, 28–31]). The authors of [23–31] estab-
lished many types of Hyers-Ulam-Rassias stability to the volterra integro-differential equations by applying
the fixed point theorem techniques.

Within the constraints of the following boundary value conditions, this work studies a nonlinear
Volterra-Fredhlom integro-differential equation of fractional order:

cDαu(t) = 1(t) + λ1

∫ t

0
k1(t, s) f1(s,u(s))ds + λ2

∫ 1

0
k2(t, s) f2(s,u(s))ds, (1)
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au(0) + bu(1) = 0.

where t ∈ J = [0, 1], 0 < α ≤ 1 and k1, k2 : J→ J→ R are known continuous functions, f1, f2 : J→ R→ R
are nonlinear continuous functions, 1 : J → R is a continuous functions, λ1, λ2 are parameters, and
a,b,are real constants with a + b , 0, and Dα is Caputo fractional derivative .

2. Preliminaries

Some basic concepts and lemmas that will be utilised throughout the article are presented in this section.

Lemma 2.1. Let h∈ C[0, 1], a + b , 0, then the fractional boundary value problem

cDαu(t) = h(t), 0, α ≤ 1, t ∈ J = [0, 1],

au(0) + bu(1) = 0.

has a unique solution

u(t) =
1
Γ(α)

∫ t

0
(t − s)α−1h(s)ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1h(s)ds. (2)

The boundary value problem (1) and equation (2) is equivalent to the fractional integral equation

u(t) =
1
Γ(α)

∫ t

0
(t − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds.

The remainder of this work is organized as follows: Section 3 presents the Hyers-Ulam stability of (2),
whereas Section 5 provides the Hyers-Ulam-Rassias stability of (2). The definitions of the Hyers-Ulam
stability categories that will be utilised in this article are now provided. Let first ε > 0, ψ ∈ C(J,R+), and
σ ∈ C(J,R+) be taken into consideration. We take into account the following disparities:

|υ′(t) − ρ(t)| ≤ ε, t ∈ J, (3)

and

|υ′(t) − ρ(t)| ≤ εψ(t), t ∈ J, (4)

also

|υ′(t) − ρ(t)| ≤ εσ(t), t ∈ J, (5)

where

ρ(t) =
1
Γ(α)

∫ t

0
(t − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds.
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Definition 2.2. The problem (2) is Hyers-Ulam stable if there is a constant K f > 0 such that for each ϵ > 0 and for
each solution υ ∈ C1(J,R) of (3) there is a solution u of (2) satisfying

|υ(t) − u(t)| ≤ K fε.

Definition 2.3. The problem (2) is Hyers-Ulam-Rassias stable concerning ϕ ∈ C(J,R+) if there is a constant
C f > 0 such that for each ϵ > 0 and for each solution υ ∈ C1(J,R) of (4) there is a solution u of (2) satisfying

|υ(t) − u(t)| ≤ C fεϕ.

Definition 2.4. The problem (2) is σ-semi-Hyers-Ulam stable if there is a constant K f > 0 and σ be a non-decreasing
function and for each solution υ ∈ C1(J,R) of (5) there is a solution u of (2) satisfying

|υ(t) − u(t)| ≤ K fεσ(t).

3. Hyers-Ulam stability of non-linear Volterra-Fredhlom integro-differential equations

The Hyers-Ulam stability for non-linear Volterra Fredhlom integro-differential equation of fractional
order with boundary conditions (2) will be presented in this section using the successive approximation
approach.

Remark 3.1. We note that there is a continuous function δ(t) on J such that |δ(t)| ≤ ε and that if the function υ is a
solution of 3.

υ′(t) = ρ(t) + δ(t).

Let f1 : J→ R→ R and f2 : J→ R→ R are non-linear continuous functions. We consider the following hypotheses:
(H1) There exist positive constants L1,L2 such that for each τ ∈ J and w1,w2 ∈ R one has

| f1(t,w1) − f1(t,w2)| ≤ L1|w1 − w2|,

| f2(t,w1) − f2(t,w2)| ≤ L2|w1 − w2|.

(H2) Let us consider the inequality (4) where ψ ∈ C(J,R+). Assume that C > 0 is a constant such that k Ck =
(1 − 0) C(k−1) , ∀ k ≥ 1, and 0 < CL < 1, and that, for t ∈ J, the following hypothesis is met.∫ t

0
ψ(s)ds ≤ Cψ(t).

Theorem 3.2. Assume that f1 and f2 satisfy the (H1).Then , for each ε > 0 if the function v satisfies (3), there exists
a unique solution u of (2) provided u0 = υ0 and u satisfies the following estimate

|u(t) − υ(t)| ≤ ε(1)exp((1 − 0)(1 + L)). (6)

Proof. For each ε > 0 and let the function υ satisfy 3, then basing on Remark 3.1,one has that then there is a
continuous function δ(t) on J such that |δ(t)| ≤ ε and υ′ (t)= ρ(t)+δ(t). This yields that the function υ satisfies
the integral equation

υ(t) = υ0 +

∫ t

0
ρ(s)ds +

∫ t

0
δ(s)ds, (7)
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where∫ t

0
ρ(s)ds =

∫ t

0

[ 1
Γ(α)

∫ s

0
(s − τ)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds
]
ds.

We consider the sequence (un)n≥0 defined as follows: u0(t) = υ(t) and for n = 1, 2, · · ·,

un(t) = υ0 +

∫ t

o
ρn−1(s)ds, (8)

where∫ t

0
ρn−1(s)ds =

∫ t

0

[ 1
Γ(α)

∫ s

0
(s − τ)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,un−1(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,un−1(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,un−1(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,un−1(τ))dτ

]
ds
]
ds.

by (7) and (8) , for n=1 one has

|u1(t) − u0(t)| =
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ(t)

∣∣∣∣
=
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ0 −

∫ t

0
ρ0(s)ds −

∫ t

o
δ(s)ds

∣∣∣∣
=
∣∣∣∣ ∫ t

o
δ(s)ds

∣∣∣∣ ≤ ϵ(t − 0),∀t ∈ J. (9)

For n = 1, 2, · · ·, from the hypothesis (H1) one has

|un+1(t) − un(t)| =
∣∣∣∣ ∫ t

0
ρ0(s)ds −

∫ t

0
ρn−1(s)ds

∣∣∣∣
≤ L
∫ t

0

∫ s

0
|un(s) − un−1(s)|dsds + L

∫ t

0

∫ 1

o
|un(r) − un−1(r)|drds,

where L = max {L1,L2}. In particular, for n =1 and by (9) one gets

|u2(t) − u1(t)| ≤ εL
∫ t

0

∫ s

0
(s − 0)dsds + εL

∫ t

0

∫ 1

o
(r − 0)drds

= εL
( (t − o)3

3!
+

(t − o)2

2!

)
= εL
( (t − o)2

2!
+

(t − o)3

3!

)
≤ 2εL

( (t − o)2

2!
+

(t − o)3

3!

)
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and so, for n =2, one also obtains

|u3(t) − u2(t)| ≤ εL2
∫ t

0

∫ s

0

( (s − 0)2

2!
+

(s − 0)3

3!

)
dsds + εL2

∫ t

0

∫ 1

o

( (r − 0)2

2!
+

(r − 0)3

3!

)
drds

= εL2
( (t − o)3

3!
+

(t − o)4

4!
+

(t − o)5

5!

)
≤ 3εL2

( (t − o)3

3!
+

(t − o)4

4!
+

(t − o)5

5!

)
and for n ≥ 4 we have

|un(t) − un−1(t)| ≤ εnLn−1
( (t − o)n

n!
+

(t − o)n+1

(n + 1)!
+ · · · +

(t − o)2n

(2n)!
+

(t − o)2n+1

(2n + 1)!

)
. (10)

Then, the estimation (10) can be rewritten by:

|un(t) − un−1(t)| ≤
ε(t − 0)(L(t − 0))n−1

(n − 1)!

(
1 +

(t − 0)
n + 1

+
(t − 0)2

(n + 1)(n + 2)

+ · · · +
(t − 0)n

(n + 1)(n + 2) · · ·
+

(t − 0)n+1

(n + 1)(n + 2) · · · 2n(2n + 1)

)
≤
ε(1)(L(t − 0))n−1

(n − 1)!

(
1 +

(t − 0)
1!

+
(t − 0)2

2!
+ · · · +

(t − 0)n

n!
+

(t − 0)n+1

(n + 1)!

)
≤
ε(1)(L(t − 0))n−1

(n − 1)!
exp(t − 0).

Furthermore, if we assume that

|un(t) − un−1(t)| ≤
ε(1)(L(t − 0))n−1

(n − 1)!
exp(t − 0), (11)

then one also gets

|un+1(t) − un(t)| ≤
ε(1)(L(t − 0))n

n!
exp(t − 0),∀t ∈ J.

This yields that

∞∑
n=0

|un+1(t) − un(t)| ≤ ε(1)exp(1 − 0)
∞∑

n=0

(L(t − 0))n

n!
. (12)

Since, the right-hand series is convergent to the function exp(L(t-0)), for each ε > 0 we deduce the series
u0(t) +

∑
∞

n=1[un+1(t) − un(t)] is uniformly convergent concerning the norm |.| and

∞∑
n=0

|un+1(t) − un(t)| ≤ ε(1)exp((1 − 0)(1 + L)). (13)

Assume that

u(t) = u0(t) +
∞∑

n=0

[un+1(t) − un(t)]. (14)

Then,

u j(t) = u0(t) +
j∑

n=0

[un+1(t) − un(t)] (15)
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is the jth partial of the series (14). From (14) and (15), we obtain

lim
j→∞
|u(t) − u j(t)| = 0,∀t ∈ J.

Define:= u(t) = u(t),∀t ∈ J. We observe that the limit of the above sequence is a solution to the following
equation:

u(t) = υ0 +

∫ t

0
ρ(s)ds,∀t ∈ J, (16)

where

ρ(t) :=
1
Γ(α)

∫ t

0
(t − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds.

By (8), (16) and the hypothesis (H1), one has that

|u(t) − υ0 −

∫ t

0
ρ(s)ds| = |u(t) − (u j(t) −

∫ t

0
ρ j−1(s)ds −

∫ t

o
ρ(s)ds|

≤ |u(t) − u j(t)| +
∫ t

0
|ρ j−1(s)ds − ρ(s)|ds.

≤ |u(t) − u j(t)| + L
∫ t

0

∫ s

0
|u j−1(s) − u(s)|dsds + L

∫ t

0

∫ 1

0
|u j−1(r) − u(r)|drds (17)

Combining (14) and (15), we get

|u(t) − u j(t)| ≤
∞∑

n= j+1

|un+1(t) − un(t)|

and by the estimation (12), one has

|u(t) − u j(t)| ≤ ε(1)exp(1 − 0)
∞∑

n= j+1

(L(t − 0))n

n!
,∀t ∈ J. (18)

Hence, it follows from the inequalities (17) and (18) that

|u(t) − υ0 −

∫ t

0
ρ(s)ds| ≤ ε(1)e(1−o)

∞∑
n= j+1

(L(t − 0))n

n!
+ εL(1)e(1−o)

( ∫ t

0

∫ s

0

∞∑
n= j+1

(L(s − 0))n

n!
dsds +

∫ t

0

∫ 1

0

∞∑
n= j+1

(L(r − 0))n

n!
drds
)

≤ ε(1)e(1−o)
[ ∞∑

n= j+1

(L(t − 0))n

n!
ds +

∞∑
n= j+1

Ln+1(
(t − 0)n+1

(n + 1)!
+

(t − 0)n+2

(n + 2)!
)
]
. (19)
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Taking limit as n→∞, we see that the right-hand series of (19) is convergent. Therefore, one deduces that

|u(t) − υ0 −

∫ t

0
ρ(s)ds| ≤ 0,∀t ∈ J.

This means that

u(t) = υ0 +

∫ t

0
ρ(s)ds,∀t ∈ J, (20)

which is a solution of (2). In addition, from the estimation (13), we have the estimate as follows:

|u(t) − υ(t)| ≤ ε(1)exp((1 − 0)(1 + L)).

To show the uniqueness of solution to the problem (2), we assume that u(t) is another solution of (2), which
has the form

u(t) = υ0 +

∫ t

0
ρ(s)ds,∀t ∈ J, (21)

where

ρ(t) :=
1
Γ(α)

∫ t

0
(t − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds.

By using the hypothesis (H1), one obtains

w(t) ≤ L
∫ t

0

∫ s

0
w(s)dsds + L

∫ t

0

∫ 1

0
w(r)dsds,∀t ∈ J.

where w(t) = |u(t) − u(t)|. Then by applying Grownwall′ s lemma (see Theorem 2.1 in [13]) we infer that
w(t)=0 on J. So, u(t) = u(t). This completes the proof.

4. σ -semi-Hyers-Ulam stability of non-linear Volterra-Fredhlom integro-differential equations

We will introduce the σ-semi-Hyers-Ulam stability for non-linear Volterra Fredhlom integro-differential
equation of fractional order with boundary conditions (2) in this section using the successive approximation
approach.

Theorem 4.1. Assume that f1 and f2 satisfy the (H1). Next, for any ε > 0 and σ : [a, b] → (o,∞), if the function
v satisfies (5), then there is a unique solution. Utilising u from (2), we derive u0 = υ0, and u satisfies the provided
constraint.

|u(t) − υ(t)| ≤ ε(1)exp((1 − 0)(1 + L))
σ(t)
σ(o)

. (22)

Proof. According to Remark (3.1), for any ε > 0 and given the function υ satisfying (5), there exists a
continuous function δ(t) on J such that |δ(t)| ≤ ε and υ′ (t)= ρ(t)+δ(t). This indicates that the integral
equation is satisfied by the function υ.

υ(t) = υ0 +

∫ t

0
ρ(s)ds +

∫ t

0
δ(s)ds, (23)
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where∫ t

0
ρ(s)ds =

∫ t

0

[ 1
Γ(α)

∫ s

0
(s − τ)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds
]
ds.

We consider the sequence (un)n≥0 defined as follows: u0(t) = υ(t) and for n = 1, 2, · · ·,

un(t) = υ0 +

∫ t

o
ρn−1(s)ds, (24)

where∫ t

0
ρn−1(s)ds =

∫ t

0

[ 1
Γ(α)

∫ s

0
(s − τ)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,un−1(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,un−1(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,un−1(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,un−1(τ))dτ

]
ds
]
ds.

by (23) and (24) , for n=1 one has

|u1(t) − u0(t)| =
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ(t)

∣∣∣∣
=
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ0 −

∫ t

0
ρ0(s)ds −

∫ t

o
δ(s)ds

∣∣∣∣
=
∣∣∣∣ ∫ t

o
δ(s)ds

∣∣∣∣ ≤ ε(t − 0)
σ(t)
σ(0)

,∀t ∈ J. (25)

For n = 1, 2, · · ·, from the hypothesis (H1) one has

|un+1(t) − un(t)| =
∣∣∣∣ ∫ t

0
ρ0(s)ds −

∫ t

0
ρn−1(s)ds

∣∣∣∣
≤ L
∫ t

0

∫ s

0
|un(s) − un−1(s)|dsds + L

∫ t

0

∫ 1

o
|un(r) − un−1(r)|drds,

where L = max L1,L2. In particular, for n =1 and by (25) one gets

|u2(t) − u1(t)| ≤ εL
∫ t

0

∫ s

0
(s − 0)dsds

σ(t)
σ(0)

+ εL
∫ t

0

∫ 1

o
(r − 0)drds

σ(t)
σ(0)

= εL
( (t − o)3

3!
+

(t − o)2

2!

) σ(t)
σ(0)

≤ 2εL
( (t − o)2

2!
+

(t − o)3

3!

) σ(t)
σ(0)
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and so, for n =2, one also obtains

|u3(t) − u2(t)| ≤ εL2
∫ t

0

∫ s

0

( (s − 0)2

2!
+

(s − 0)3

3!

)
dsds

σ(t)
σ(0)

+ εL2
∫ t

0

∫ 1

o

( (r − 0)2

2!
+

(r − 0)3

3!

)
drds

σ(t)
σ(0)

= εL2
( (t − o)3

3!
+

(t − o)4

4!
+

(t − o)5

5!

) σ(t)
σ(0)

≤ 3εL2
( (t − o)3

3!
+

(t − o)4

4!
+

(t − o)5

5!

) σ(t)
σ(0)

and for n ≥ 4 we have

|un(t) − un−1(t)| ≤ εnLn−1
( (t − o)n

n!
+

(t − o)n+1

(n + 1)!
+ · · · +

(t − o)2n

(2n)!
+

(t − o)2n+1

(2n + 1)!

) σ(t)
σ(0)

(26)

Then, the estimation (26) can be rewritten by:

|un(t) − un−1(t)| ≤
ε(t − 0)(L(t − 0))n−1

(n − 1)!

(
1 +

(t − 0)
n + 1

+
(t − 0)2

(n + 1)(n + 2)

+ · · · +
(t − 0)n

(n + 1)(n + 2) · · ·
+

(t − 0)n+1

(n + 1)(n + 2) · · · 2n(2n + 1)

) σ(t)
σ(0)

≤
ε(1)(L(t − 0))n−1

(n − 1)!

(
1 +

(t − 0)
1!

+
(t − 0)2

2!
+ · · · +

(t − 0)n

n!
+

(t − 0)n+1

(n + 1)!

) σ(t)
σ(0)

≤
ε(1)(L(t − 0))n−1

(n − 1)!
exp(t − 0)

σ(t)
σ(0)

.

Furthermore, if we assume that

|un(t) − un−1(t)| ≤
ε(1)(L(t − 0))n−1

(n − 1)!
exp(t − 0)

σ(t)
σ(0)

, (27)

then one also gets

|un+1(t) − un(t)| ≤
ε(1)(L(t − 0))n

n!
exp(t − 0)

σ(t)
σ(0)

,∀t ∈ J.

This yields that

∞∑
n=0

|un+1(t) − un(t)| ≤ ε(1)
σ(t)
σ(0)

exp(1 − 0)
∞∑

n=0

(L(t − 0))n

n!
. (28)

Since the right-hand series is convergent to the function exp(L(t-0)), for each ϵ > 0 we deduce the series
u0(t) +

∑
∞

n=1[un+1(t) − un(t)] is uniformly convergent concerning the norm |.| and

∞∑
n=0

|un+1(t) − un(t)| ≤ ε(1)exp((1 − 0)(1 + L))
σ(t)
σ(0)

. (29)

Assume that

u(t) == u0(t) +
∞∑

n=0

[un+1(t) − un(t)]. (30)



R. Shah et al. / Filomat 39:7 (2025), 2385–2404 2395

Then,

u j(t) = u0(t) +
j∑

n=0

[un+1(t) − un(t)] (31)

is the jth partial of the series (30). From (30) and (31), we obtain

lim
j→∞
|u(t) − u j(t)| = 0,∀t ∈ J.

Define:= u(t) = u(t),∀t ∈ J. We observe that the limit of the above sequence is a solution to the following
equation:

u(t) = υ0 +

∫ t

0
ρ(s)ds,∀t ∈ J, (32)

where

ρ(t) :=
1
Γ(α)

∫ t

0
(t − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds.

By (25), (32) and the hypothesis (H1), one has that∣∣∣∣u(t) − υ0 −

∫ t

0
ρ(s)ds

∣∣∣∣ = ∣∣∣∣u(t) −
(
u j(t) −

∫ t

0
ρ j−1(s)ds

)
−

∫ t

o
ρ(s)ds

∣∣∣∣
≤ |u(t) − u j(t)| +

∫ t

0
|ρ j−1(s)ds − ρ(s)|ds.

≤ |u(t) − u j(t)| + L
∫ t

0

∫ s

0
|u j−1(s) − u(s)|dsds + L

∫ t

0

∫ 1

0
|u j−1(r) − u(r)|drds (33)

Combining (30) and (31), we get

|u(t) − u j(t)| ≤
∞∑

n= j+1

|un+1(t) − un(t)|

and by the estimation (28), one has

|u(t) − u j(t)| ≤ ε(1)exp(1 − 0)
∞∑

n= j+1

(L(t − 0))n

n!
σ(t)
σ(0)

,∀t ∈ J. (34)

Hence, it follows from the inequalities (33) and (34) that∣∣∣∣u(t) − υ0 −

∫ t

0
ρ(s)ds

∣∣∣∣ ≤ ε(1)e(1−o)
∞∑

n= j+1

(L(t − 0))n

n!
σ(t)
σ(0)

+ εL(1)e(1−o)
( ∫ t

0

∫ s

0

∞∑
n= j+1

(L(s − 0))n

n!
dsds +

∫ t

0

∫ 1

0

∞∑
n= j+1

(L(r − 0))n

n!
drds
) σ(t)
σ(0)
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≤ ε(1)e(1−o)
[ ∞∑

n= j+1

(L(t − 0))n

n!
ds +

∞∑
n= j+1

Ln+1
( (t − 0)n+1

(n + 1)!
+

(t − 0)n+2

(n + 2)!

)] σ(t)
σ(0)

. (35)

Taking limit as n→∞, we see that the right-hand series of (35) is convergent. Therefore, one deduces that∣∣∣∣u(t) − υ0 −

∫ t

0
ρ(s)ds

∣∣∣∣ ≤ 0,∀t ∈ J.

This means that

u(t) = υ0 +

∫ t

0
ρ(s)ds,∀t ∈ J, (36)

which is a solution of (2). In addition, from the estimation (29), we have the estimate as follows:

|u(t) − υ(t)| ≤ ε(1)exp((1 − 0)(1 + L))
σ(t)
σ(0)

.

To show the uniqueness of solution to the problem (2), we assume that u(t) is another solution of (2), which
has the form

u(t) = υ0 +

∫ t

0
ρ(s)ds,∀t ∈ J, (37)

where

ρ(t) :=
1
Γ(α)

∫ t

0
(t − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds.

By using the hypothesis (H1), one obtains

w(t) ≤ L
∫ t

0

∫ s

0
w(s)dsds + L

∫ t

0

∫ 1

0
w(r)drds,∀t ∈ J.

where w(t) = |u(t) − u(t)|. Then by applying Grownwall ′s lemma (see Theorem 2.1 in [13]) we infer that
w(t)=0 on J. So, u(t) = u(t). This completes the proof.

5. Hyers-Ulam-Rassias stability of non-linear Volterra-Fredhlom integro-differential equations

The Hyers-Ulam-Rassias stability for non-linear Volterra Fredhlom integro-differential equation of frac-
tional order with boundary conditions 2 will be presented in this section using the successive approximation
approach.

Remark 5.1. We note that there exists a continuous function ξ(t) on J such that |ξ(t)| ≤ εψ(t) and that if the function
υ is a solution of (4).

υ′(t) = ρ(t) + ξ(t).

Theorem 5.2. Assume (H1) and (H2) are the true hypotheses. There exists a unique solution u of (2) with u0 = υ0
and u fulfils the following estimate, for t ∈ J, for each ε > 0 if the function υ satisfies (4).

|υ(t) − u(t)| ≤ ε
1

(1 − C)(1 − CL)
ψ(t). (38)
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Proof. Based on Remark (5.1), we have that for any ε > 0, the function υ must fulfil (4). This means that
there exists a continuous function ξ(t) on J such that |ξ(t)| ≤ εψ(t) and υ′(t) = ρ(t) + ξ(t). As a result, the
integral equation is satisfied by the function υ in the following way:

υ(t) = υ0 +

∫ t

0
ρ(s)d(s) +

∫ t

0
ξ(s)d(s), (39)

where∫ t

0
ρ(s)ds =

∫ t

0

[ 1
Γ(α)

∫ s

0
(s − τ)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds
]
ds.

Similar to the proof of Theorem (3.2), we also reconsider the sequence (un)n ≥ 0 defined as in (8) with
u0(t) = υ(t), ∀t ∈ J. Now, by (8), the hypothesis (H3) and (39), for n=1 one has

|u1(t) − u0(t)| =
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ(t)

∣∣∣∣ ≤ ε∫ t

0
ψ(s)d(s) ≤ εCψ(t),∀t ∈ J.

For n = 1, 2, · · · , and from the hypothesis (H1), one has

|un+1(t) − un(t)| ≤ L
∫ t

0

( ∫ s

0
|un(s) − un−1(s)|ds +

∫ 1

0
|un(r) − un−1(r)|dr

)
ds,

where L = max{L1,L2}. In particular for n=1 one has

|u2(t) − u1(t)| ≤ εLC
∫ t

0

∫ s

0
ψ(s)dsds + εLC

∫ t

0

∫ 1

0
ψ(r)drds

= εL(C2 + C3)ψ(t),∀t ∈ J,

≤ 2εL(C2 + C3)ψ(t),∀t ∈ J

and so, for n=2, we also obtain

|u3(t) − u2(t)| ≤ L
∫ t

0

∫ s

0
|u2(s) − u1(s)|dsds + L

∫ t

0

∫ 1

0
|u2(r) − u1(r)|drds

≤ 3εL2(C3 + C4 + C5)ψ(t).

and for n ≥ 4 we have

|un(t) − un−1(t)| ≤ nε(Cn + Cn+1 + ... + C2n + C2n+1)Ln−1ψ(t). (40)

Then by the hypothesis (H3), the estimation (10) is rewritten by:

|un(t) − un−1(t)| ≤ ε(1 − 0)(CL)n−1(1 + C1 + ... + Cn+1)ψ(t)

≤ ε(1)
(1 − Cn+1

1 − C

)
(CL)n−1ψ(t),∀t ∈ J.

In addition, if the assumption

|un(t) − un−1(t)| ≤ ε(1)
(1 − Cn+1

1 − C

)
(CL)n−1ψ(t),∀t ∈ J, (41)
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is satisfied, then by using the mathematical induction we also get

|un+1(t) − un(t) ≤ ε(1)
(1 − Cn+2

1 − C

)
(CL)nψ(t),∀t ∈ J.

This yields that

∞∑
n=0

|un+1(t) − un(t)| ≤ ε(1)
( 1
1 − C

) ∞∑
n=0

(CL)nψ(t). (42)

By the hypothesis (H3), we observe that
∑
∞

n=0(CL)n
→

1
1−CL as n → ∞. Hence for every ε > 0 we infer that

the series u0(t) +
∑
∞

n=0[un+1(t) − un(t)] is uniformly convergent on J and

∞∑
n=0

|un+1(t) − un(t)| ≤ ε
1

(1 − C)(1 − CL)
ψ(t),∀t ∈ J. (43)

With the same manner as in the proof of theorem (3.2), we also can show that u(t) is a solution of (2) which
has form

u(t) = υ0 +

∫ t

0
ρ(s)d(s),∀t ∈ J,

where

ρ(t) :=
1
Γ(α)

∫ t

0
(t − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds.

In addition, the following estimate is also satisfied

|u(t) − υ(t)| ≤ ε
1

(1 − C)(1 − CL)
ψ(t),∀t ∈ J.

This completes the proof.

6. σ-semi-Hyers-Ulam-Rassias stability of non-linear Volterra-Fredhlom integro-differential equations

Using the successive approximation method, this section will provide the σ-semi-Hyers-Ulam-Rassias
stability for non-linear Volterra Fredhlom integro-differential equation of fractional order with boundary
conditions (2).

Remark 6.1. We note that there exists a continuous function ξ(t) on J such that |ξ(t)| ≤ εσ(t)| and that if the function
υ is a solution of (4).

υ′(t) = ρ(t) + ξ(t).

Theorem 6.2. Assume that both hypothesis (H1) and hypothesis (H2) are true. There is a single solution u of (2)
with u0 = υ0 and u fulfils the following estimate, for t ∈ J, for each ε > 0 and the σ : [a, b]→ (0,∞) if the function υ
satisfies (5).

|υ(t) − u(t)| ≤ ε
(1 − 0)

(1 − C)(1 − CL)
ψ(t)

σ(t)
σ(0)

. (44)
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Proof. Let υ fulfil (5) for each ε > 0. Based on Remark (6.1), we have that there exists a continuous function
ξ(t) on J such that |ξ(t)| ≤ εσ(t) and υ′(t) = ρ(t)+ ξ(t). It may be inferred from this that the integral equation
is satisfied by the function υ.

υ(t) = υ0 +

∫ t

0
ρ(s)d(s) +

∫ t

0
ξ(s)d(s), (45)

where∫ t

0
ρ(s)ds =

∫ t

0

[ 1
Γ(α)

∫ s

0
(s − τ)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds
]
ds.

Similar to the proof of Theorem (4.1), we also reconsider the sequence (un)n ≥ 0 defined as in (24) with
u0(t) = υ(t), ∀t ∈ J. Now, by (24), the hypothesis (H3) and (45), for n=1 one has

|u1(t) − u0(t)| =
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ(t)

∣∣∣∣ ≤ ε∫ t

0
ψ(s)d(s)

σ(t)
σ(0)

≤ εCψ(t)
σ(t)
σ(0)

,∀t ∈ J.

For n = 1, 2, · · · and from the hypothesis (H1), one has

|un+1(t) − un(t)| ≤ L
∫ t

0

( ∫ s

0
|un(s) − un−1(s)|ds +

∫ 1

0
|un(r) − un−1(r)|dr

)
ds,

where L = max{L1,L2}. In particular for n=1 one has

|u2(t) − u1(t)| ≤ εLC
∫ t

0

∫ s

0
ψ(s)dsds

σ(t)
σ(0)

+ εLC
∫ t

0

∫ 1

0
ψ(r)drds

σ(t)
σ(0)

= εL(C2 + C3)ψ(t)
σ(t)
σ(0)

,∀t ∈ J,

≤ 2εL(C2 + C3)ψ(t)
σ(t)
σ(0)

,∀t ∈ J

and so, for n=2, we also obtain

|u3(t) − u2(t)| ≤ L
∫ t

0

∫ s

0
|u2(s) − u1(s)|dsds + L

∫ t

0

∫ 1

0
|u2(r) − u1(r)|drds

≤ 3εL2(C3 + C4 + C5)ψ(t)
σ(t)
σ(0)

.

and for n ≥ 4 we have

|un(t) − un−1(t)| ≤ nε(Cn + Cn+1 + · · · + C2n + C2n+1)Ln−1ψ(t)
σ(t)
σ(0)

. (46)

Then, by the hypothesis (H3), the estimation (26) is rewritten by:

|un(t) − un−1(t)| ≤ ε(1 − 0)(CL)n−1(1 + C1 + · · · + Cn+1)ψ(t)
σ(t)
σ(0)

≤ ε(1)
(1 − Cn+1

1 − C

)
(CL)n−1ψ(t)

σ(t)
σ(0)

,∀t ∈ J.
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In addition, if the assumption

|un(t) − un−1(t)| ≤ ε(1)
(1 − Cn+1

1 − C

)
(CL)n−1ψ(t)

σ(t)
σ(0)

,∀t ∈ J, (47)

is satisfied, then by using the mathematical induction we also get

|un+1(t) − un(t) ≤ ε(1)
(1 − Cn+2

1 − C

)
(CL)nψ(t)

σ(t)
σ(0)

,∀t ∈ J.

This yields that

∞∑
n=0

|un+1(t) − un(t)| ≤ ε(1)
( 1
1 − C

) ∞∑
n=0

(CL)nψ(t)
σ(t)
σ(0)

. (48)

By the hypothesis (H3), we observe that
∑
∞

n=0(CL)n
→

1
1−CL as n → ∞. Hence for every ε > 0 we infer that

the series u0(t) +
∑
∞

n=0[un+1(t) − un(t)] is uniformly convergent on J and

∞∑
n=0

|un+1(t) − un(t)| ≤ ε
1

(1 − C)(1 − CL
ψ(t)

σ(t)
σ(0)

,∀t ∈ J. (49)

With the same manner as in the proof of theorem (4.1), we also can show that u(t) is a solution of (2) which
has form

u(t) = υ0 +

∫ t

0
ρ(s)d(s),∀t ∈ J,

where

ρ(t) :=
1
Γ(α)

∫ t

0
(t − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ) f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ)

f2(τ,u(τ))dτ
]
ds −

b
(a + b)Γ(α)

∫ 1

0
(1 − s)α−1

[
1(s) + λ1

∫ s

0
k1(s, τ)

f1(τ,u(τ))dτ + λ2

∫ 1

0
k2(s, τ) f2(τ,u(τ))dτ

]
ds.

In addition, the following estimate is also satisfied

|u(t) − υ(t)| ≤ ε
1

(1 − C)(1 − CL)
ψ(t)

σ(t)
σ(0)

,∀t ∈ J.

This completes the proof.

7. Illustrative example

In this section, some examples are presented to illustrate our results.

Example 7.1. Consider the following problem
cD0.5u(t) = 1 + t2 + 1

6

∫ t

0 ts
√

s + [u(s)]2ds−
1
4

∫ 1

0 (t − s)
√

1 + [u(s)]2ds,
4u(0) + 2u(1) = 1.

(50)
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We see that υ(t) = 1, ∀t ∈ [0, 1] and α = 0.5, λ1 =
1
6 , λ2 =

−1
4 , a=4, b=2, 1(t) = 1+ t2, f1(t,u(t)) =

√
t + [u(t)]2,

f2((t,u(t)) =
√

1 + [u(t)]2, k1(s, t) = ts and k2(s, t) = t − s complies with the following inequality

|D0.5u(t) − (1 + t2) −
1
6

∫ t

0
ts
√

s + [u(s)]2ds +
1
4

∫ 1

0
(t − s)

√
1 + [u(s)]2ds| ≤ 10.

Now, we can choose υ0(t) = u(0) = 1. By using the successive approximation method as in Theorem (3.2) , we obtain
the following successive solution to (50) as

υ0(t) = 1,

u1(t) = υ(0) +
∫ t

o

[
1 + t2 +

1
6

∫ s

0
sτ
√
τ + [u(τ)]2dτ −

1
4

∫ 1

0
(t − s)

√
1 + [u(r)]2dr

]
ds

= 1 + t +
t2

2!
+

t3

3!
+

t4

4!

Then it is no difficult to see that u(t) = 1 + t + t2

2! +
t3

3! +
t4

4! forms a solution (50) and one gets the estimate

|υ(t) − u(t)| = |1 − (1 + t +
t2

2!
+

t3

3!
+

t4

4!
)| ≤

8
5
.

Next, we define the function u∗(t) = 1 + t + t2

2! +
t3

3! +
t4

4! +
t5

5! + · · · is also a solution of (50) and we also have

|υ(t) − u∗(t)| = |1 − (1 + t +
t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
)| ≤

38
42
.

Therefore, it shows the function u∗(t) is better approximate solution than the function u(t).

Example 7.2. Consider the following problem
cD1u(t) = 1 +

∫ t

0

[
1 +
∫ s

0
(t−s)

2 ds−∫ 1

0
s
4 ds
]
σ(s)ds,∀t ∈ [0, 1],

3u(0) + 5u(1) = 1

(51)

where, ρ(t) = 1 +
∫ s

0
(t−s)

2 ds −
∫ 1

0
s
4 ds is continuous and integrable for t ∈ [0, 1] and σ(s) ∈ C[0, 1].

Now, we can choose υ0(t) = u(0) = 1. By using the successive approximation method as in Theorem (4.1) , we obtain
the following successive solution to (51) as

u1(t) = υ(0) +
∫ t

0

[ ∫ s

0

(t − s)
2
−

∫ 1

0

s
4

]
σ(s)ds = 1 + [

t2

4
−

t2

8
] = 1 +

t2

8
.

There is no difficult to see that u(t) = 1 + t2

8 forms a solution (51) and one gets the estimate

|υ(t) − u(t)| = |1 − (1 +
t2

8
)| ≤

10
13
.

Next we define the function u∗(t) = 1 + t2

8 +
9t3

30 + · · · is also a solution of (51) and we also have

|υ(t) − u∗(t)| = |1 − (1 +
t2

8
+

9t3

30
)| ≤

33
45
.

Therefore , it shows the function u∗(t) is better approximate solution than the function u(t).
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Example 7.3. Consider the following problem
cDαu(t) = t2 + 1

2

∫ t

0 (s2 + [u(s)]2)ds+
1
3

∫ 1

0 t(s + [u(s)])ds,
u(0) + 2u(1) = 2

(52)

where υ(t) = 2, ∀t ∈ [0, 2] and α = 1, λ1 =
1
2 , λ2 =

1
3 , a=1 , b=2 , 1(t) = t2 , f1(t,u(t)) = t2 + [u(t)]2 ,

f2((t,u(t)) = t + [u(t)] , k1(s, t) = 1 and k2(s, t) = t complies with the following inequality∣∣∣∣cDαu(t) − t2
−

1
2

∫ t

0
(s2 + [u(s)]2ds −

1
3

∫ 1

0
t(s + [u(s)])ds

∣∣∣∣ ≤ 3et.

Now, we can υ0(t) = u(0) = 2. By using the successive approximation method as in Theorem (5.2) , we obtain the
following successive solution to (52) as

υ0(t) = 2,

u1(t) = υ(0) +
∫ t

o

[
t2 +

1
2

∫ s

0
(τ2 + (u[τ])2dτ +

1
3

∫ 1

0
t(s + u[s])ds

]
ds = 2 + t3 +

t2

2!
+

t4

3!

Then u(t) = 2 + t3 + t2

2! +
t4

3! is a solution (52) and we gets the

|υ(t) − u(t)| =
∣∣∣∣2 − (2 + t3 +

t2

2!
+

t4

3!

)∣∣∣∣ ≤ 3
7

et.

We define the function u∗(t) = 2 + t3 + t2

2! +
t4

3! +
t6

4! + · · · is also a solution of (52) and we have

|υ(t) − u∗(t)| =
∣∣∣∣2 − (2 + t3 +

t2

2!
+

t4

3!
+

t6

4!

)∣∣∣∣ ≤ 31
25

et.

Therefore, the function u∗(t) is better approximate solution than the function u(t).

Example 7.4. Consider the following problem
cDαu(t) = 3 +

∫ t

0

[ ∫ s

0
(t−s)

3 ds−∫ 1

0
(1−s)

4 ds
]
σ(s)ds,∀t ∈ [0, 3],

2u(0) + 3u(1) = 3

(53)

where, ρ(t) =
∫ s

0
(t−s)

3 ds − (1−s)
4 ds is continuous and integrable for t ∈ [0, 3] and σ(s) ∈ C[0, 3].

Now, we can υ0(t) = u(0) = 3. By using the successive approximation method as in Theorem (6.2) , we obtain the
following successive solution to (53) as

u1(t) = υ(0) +
∫ t

0

[ ∫ s

0

(t − s)
3
−

∫ 1

0

(1 − s)
4

]
σ(s)ds = 3 +

[ t2

6
+

t2

8
] = 3 +

7t2

24
.

where u(t) = 3 + 7t2

24 is a solution of (53) and we get

|υ(t) − u(t)| =
∣∣∣∣3 − (3 + 7t2

24

)∣∣∣∣ ≤ 7
8

e2t.

We define the function u∗(t) = 3 + 7t2

24 +
7t3

36 + · · · is also a solution of (53)

|υ(t) − u∗(t)| =
∣∣∣∣3 − (3 + 7t2

24
+

7t3

36

)∣∣∣∣ ≤ 29
38

e2t.

Therefore, the function u∗(t) is better approximate solution than the function u(t).
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8. Conclusion

This research focuses on solving and analysing a nonlinear Volterra-Fredhlom integro-differential equa-
tions of fractional order with boundary conditions. A new successive approximation approach is used to
solve the Hyers-Ulam stability problem. The results also demonstrate that the Ulam stability study field
finds the successive approximation to be more efficient and practical. The results demonstrate that there is
only one solution to the nonlinear Volterra-Fredhlom integro-differential equation of fractional order with
boundary conditions and that it is possible to properly restrict the approximate solutions. The investi-
gation’s findings validate relevant cases. The Volterra-Fredholm integro-fractional differential problems
are promising as a kind of highly integrated boundary value problem in integrated fractional operators;
however, our work will continue to focus on improving numerical solutions and gearbox efficiency.
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