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On perfectness of Zaitov metrization of the hyperspace functor
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Abstract. Recently, A. Zaitov suggested a new metric on the space of all nonempty compact subsets of
a given metric space. In the present paper we show that this metric turns the hyperspace functor exp
into a perfect metrizable functor. Further, we establish that the hyperspace functor has many remarkable
properties with respect to this metrization. In particular, this functor preserves isometric embeddings.

1. Introduction

For a topological space X we denote by exp X the set of all nonempty closed subsets of X, and by expcX
the set of all nonempty compact closed subsets of X. The set exp X is equipped with several important
topologies. The most famous, popular and investigated topology on exp X is the Vietoris topology V whose
base is the collection of sets of the form

O⟨U1, . . . , Un⟩ =
{
F ∈ exp X : F ⊂

n
∪
i=1

Ui, F ∩Ui , ∅, i = 1, 2, . . . , n
}
,

where U1, . . . , Un are open subsets of X ([2, 7, 11]).
For the space (exp X,V) we use the notation exp X and accept the name “space of closed subsets” or

“hyperspace” of X. The space expc X is considered as a subspace of exp X. For the space expc X we also
keep the name “hyperspace of X”

Remark 1.1. It is easy to see that if X is a T1-space, then the mapping i : X → exp X, which associates the
point x ∈ X with the singleton i(x) = {x}, is an embedding. So, one can assume X as a subspace of exp X or
expc X.

The preservation of “good” topological properties while passing to the space of closed subsets is one of
the most important and interesting tasks concerning hyperspaces.

It is well known that if the space X is a compact Hausdorff space, then its hyperspace exp X is also a
compact Hausdorff space.
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For compact Hausdorff spaces X and Y and a continuous mapping f : X→ Y the equality

(exp f )(A) = f (A), A ∈ exp X, (1)

defines a mapping exp f : exp X→ exp Y which is continuous. In this way we have that exp is a functor in
the category of compact Hausdorff spaces and their continuous mappings [7].

Also, it is well known that for a metrizable space X the hyperspace expcX is also metrizable. In particular,
for a compact metrizable space X its hyperspace exp X is also a compact metrizable space. For a metric
space (X, d), the space expcX is equipped with the Hausdorffmetric dH (known also as Pompeiu–Hausdorff
metric).

For a metric space (X, d), the Hausdorffmetric in the space expcX is defined by the rule

dH(A,B) = inf{ε ≥ 0 : A ⊂ Bε and B ⊂ Aε}, (A,B ∈ exp X),

where for A ⊂ X

Aε =
⋃
a∈A

{x ∈ X : d(a, x) ≤ ε}.

1.1. A new metric on the hyperspace

In [15], A. Zaitov suggested and briefly announced a new metric dZ in the space expcX of all nonempty
compact subsets of a given metric space (X, d). Some properties of this metric have been reported in the
paper [14].

For a nonempty set X we put

X1 = X2 = X3 = X,

X123 = X1 × X2 × X3(= X3),

Xi j = Xi × X j(= X2), 1 ≤ i < j ≤ 3,

πi j : X3
→ Xi × X j, 1 ≤ i < j ≤ 3,

πi j
k : Xi × X j → Xk, 1 ≤ i < j ≤ 3, k ∈ {i, j}.

Clearly, here πi j, π
i j
k are corresponding projections.

Consider now a metric space (X, d). Define the function

dZ : expc X × expc X→ R

by the formula

dZ(F1,F2) = inf
{

sup
{
d(x, y) : (x, y) ∈M

}
: M ⊂ X2, πi(M) = Fi, i = 1, 2

}
. (2)

In [14] it was shown that dZ is well defined and it is a metric on expc X whose restriction on X × X
coincides with the metric d, and that it generates the Vietoris topology on expc X. It was also shown that for
a compact metric (resp., complete metric) space (X, d), the space (expc X, dZ) is also a compact metric (resp.,
complete metric) space.

In the present paper we continue investigation of the hyperspace with the Zaitov metric, especially
functorial properties of exp. We construct direct and inverse iterations of hyperspace functor and show
that this metric turns the hyperspace functor into a uniformly metrizable functor. Then we get more strict
result: the discussed metric turns the hyperspace functor into a perfect metrizable functor. Also, we prove
that the hyperspace functor preserves isometric embeddings with respect to this metrization. At the end of
the paper we pose a question with respect to the Zaitov metric arising in a natural way.

For a subset A of a space X, the symbol [A]X denotes the closure of A in X.
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2. On properties of metrization dZ

In this section we investigate the metrization dZ.

Lemma 2.1. Let (X, d) be a compact metric space. Then for every couple F1, F2 ∈ exp X and each M ⊂ X2 with
πi(M) = Fi, i = 1, 2, we have πi ([M]X2 ) = Fi, i = 1, 2. Moreover, the set

Π(F1, F2) =
{
[M]X2 : M ⊂ X2, πi(M) = Fi, i = 1, 2

}
is closed in exp X2.

Proof. Let M ⊂ X2 be any set with πi(M) = Fi, i = 1, 2. It is easy to see that M ⊂ [M]X2 ⊂ π−1
1 (F1) ∩ π−1

2 (F2).
This proves the first part of the lemma.

Since X is a compact metric space, the closure [M]X2 is a compact set. That is why [M]X2 ∈ exp X2 and
Π(F1, F2) ⊂ exp X2. Consider any convergent sequence

Φ =
{
Mn ∈ exp X2 : πi(Mn) = Fi, i = 1, 2,n ∈N

}
,

lim
n→∞
Φ ∈ exp X2. Put M0 = lim

n→∞
Φ. We have to show that M0 ∈ Π(F1, F2), i. e. πi(M0) = Fi, i = 1, 2. Note

that M0 ⊂ π−1
1 (F1) ∩ π−1

2 (F2). Consequently, for each (x1, x2) ∈ M0 we have πi(xi) = xi, i = 1, 2. It remains to
check that πi are onto mappings, i = 1, 2.

Fix an arbitrary point x0
1 ∈ F1. For each n there exists xn

2 ∈ F2 with (x0
1, xn

2) ∈ Mn, i. e. Mn ∩ π−1
1 (x0

1) , ∅.
As limn→∞Mn = M0, we have M0 ∩ π−1

1 (x0
1) , ∅. Hence, π1(M0) = F1. In the same way, one can show the

equality π2(M0) = F2 holds. So, M0 = lim
n→∞
Φ ∈ Π(F1, F2), and Π(F1, F2) is closed.

Lemma 2.1 is proved.

According to Lemma 2.1 for a compact metric space X with a metric d formula (2) acquires the shape

dZ(F1, F2) = min{max{d(x, y) : (x, y) ∈M} : M ∈ Π(F1, F2)}, F1, F2 ∈ exp X. (3)

Equality (3) provides the following statement.

Corollary 2.2. For each couple F1, F2 ∈ exp X there exists a set M12 ∈ Π(F1, F2) such that

dZ(F1, F2) = max{d(x1, x2) : (x1, x2) ∈M12}.

The next statement is quite obvious.

Proposition 2.3. For a compact metric space (X, d) the equality

diam(exp X, dZ) = diam(X, d)

holds.

Proposition 2.4. For an isometric mapping iXY : (X, dX)→ (Y, dY) of compact metric spaces the mapping(
exp iXY

)
:

(
exp X, dX

Z

)
→

(
exp Y, dY

Z

)
is an isometry.

Proof. To prove this statement it is enough to use the definition of the metric dZ and Proposition 2.3.

In [6] it was shown the iterations of the continual hyperspace with respect to the Hausdorff metric dH.
We recall some notions and bring in certain facts and we will establish that the functor exp can be iterated
by the metric dZ.

Definition 2.5. ([12]) Recall that a functor F acting in the category C omp is called seminormal if it satisfies
the following conditions: F is continuous (i. e. F(lim S) = lim F(S)); F is monomorphic (that is, preserves

injectivity of mappings); F preserves intersections
(
of closed subsets Xα⊂X, i. e. F

(⋂
α

Xα

)
=

⋂
α

F (Xα)
)
; F

preserves a point and the empty set (i. e. F(1) = 1, F(∅) = ∅); here the symbol 1 means a singleton.
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If the functor F is seminormal, then there is a unique natural transformation ηF = η : Id → F of the
identity functor into this functor. Moreover, this transformation is a monomorphism, i. e. for every compact
Hausdorff space X the mapping ηX : X→ F(X) is an embedding [3].

Definition 2.6. ([6]) A seminormal functor F acting in the category MC omp of metrizable compact spaces
is called metrizable if each metric d = dX on an arbitrary compact space X can be associated with a metric
dF(X) on the compact space F(X) so that the conditions

(a) if a mapping i : (X, dX) → (Y, dY) is an isometric embedding, then the mapping F(i) : (F(X), dX
F(X)) →

(F(Y, dY
F(Y)) is also an isometric embedding;

(b) the embedding ηX : (X, d)→ (F(X), dF(X)) is an isometry;

(c) diam F(X) = diam X

are fulfilled.

The correspondence d = dX → dF(X) is called the metrization of the functor F [5].
For a compact Hausdorff space X, a mapping ηX : X → exp X defined as ηX(x) = {x}, with respect to

Definition 2.6, Propositions 2.3 and 2.4 we have the following important result.

Corollary 2.7. The functor exp acting in the category MC omp of compact metrizable spaces and their continuous
mapping is metrizable according to the metric dZ.

In other words, the correspondence dX = d→ dZ = dexp(X) is a metrization of the functor exp.
For a compact Hausdorff space X, we define the iterations

exp2X = exp(exp X), . . . ,expnX = exp(expn−1X), . . . ,

and for a continuous mapping f : X→ Y of compact Hausdorff spaces we set

exp2 f = exp(exp f ), . . . ,expn f = exp(expn−1 f ), . . . .

For a fixed metric d on a compact metric space X the metric dZ on its hyperspace exp X we denote by d1,
i. e. d1 = dZ. Let dn = dexpn X =

(
dexpn−1 X

)
Z

be the metric on the compact Hausdorff space expn X generated
by the metrization d→ dZ.

Next, we fix a compact Hausdorff space X and, setting η
expn−1 X

(X ) = {X }, X ∈ expn−1 X, we define an
embedding ηn−1,n = ηexpn−1 X

: expn−1 X→ expn X. A direct sequence

X
η0,1
−−→ exp X

η1,2
−−→ exp2 X

η2,3
−−→ . . .

ηn−1,n
−−−−→ expn X

ηn,n+1
−−−−→ . . . . (4)

arises. For natural numbers n, m with n < m, the embedding ηn,m : expn X → expm X is defined as the
composition

ηn,m = ηm−1,m◦. . .◦ηn+1,n+2◦ηn,n+1 .

The mappings
ηn,m : (expn X, dn)→ (expm X, dm)

are isometric embeddings. For each natural number n we set ηn(X ) = lim
m→∞

ηn,m (X ), X ∈ expn X. It is easy
to see that ηn(X ) = . . . {. . . {{X }}. . . }. . . for every X ∈ expn X. Let us introduce the notation

exp+ X = {ηn(X ) : X ∈ expn X, n = 1, 2, . . .}.

Then

exp+ X =
∞⋃

n=1

ηn(expn X).
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Since for any n the embedding ηn,n+1 is isometric, then for an arbitrary pair of elements X , Y ∈ expn X we
have

dn(X , Y ) = dn+1({X }, {Y }) =
= dn+2({{X }}, {{Y }}) = . . . =

= dn+k

(
{. . . {{︸︷︷︸

k

X }} . . .}︸︷︷︸
k

, {. . . {{︸︷︷︸
k

Y }} . . .}︸︷︷︸
k

)
= . . . . (5)

If X , Y ∈ exp+ X, then there exists n such that X , Y ∈ ηn(expn X). In turn, there are Z , T ∈ expn X
with ηn(Z ) =X and ηn(T ) = Y .

Now for an arbitrary pair of elements X , Y ∈ exp+ X we put

d+(X , Y ) = dn(Z , T ), (5′)

where Z , T ∈ expn X are elements such that ηn(Z ) = X , ηn(T ) = Y . By virtue of the equalities (5), the
function d+ : exp+ X × exp+ X→ R is defined correctly, and it is a metric on exp+ X. Thus, the metric space
(exp+ X, d+) is obtained.

For a continuous mapping f : X→ Y of metric compact spaces X and Y by the equality

(exp+ f )(X ) = ηn((expn f )(Z )), X ∈ exp+ X

we determine the mapping exp+ f : exp+ X → exp+ Y, where Z ∈ expn X, ηn(Z ) = X and ηn : expn
→

exp+ is the limit of isometric embeddings ηn,m at n < m and m→∞.

Definition 2.8. ([5]) A metrizable functor F is said to be uniformly metrizable if some of its metrizations have
the property

(d) for any continuous mapping f : (X dX)→ (Y, dY) the mapping
F+( f ) : (F+(X), dX

+)→ (F+(Y), dY
+) is uniformly continuous.

A metrization of a functor with the property (d) is called uniformly continuous.

Theorem 2.9. The functor exp is uniformly metrizable with respect to the metrization d→ dZ.

Proof. The proof of the theorem will be divided into three lemmas. The first lemma is the following
statement.

Lemma 2.10. For compact metric spaces (X, dX) and (Y, dY), a continuous mapping f : X→ Y and M12 ∈ Π(F1, F2)
such that

dX
Z(F1, F2) = max{dX(x1, x2) : (x1, x2) ∈M12}

one has

dY
Z((exp f )(F1), (exp f )(F2)) ≤ max{dY( f (x1), f (x2)) : (x1, x2) ∈M12}.

Proof. We have (exp f )(Fi) = f (Fi), i = 1, 2, and ( f1 × f2)(M12) ∈ Π( f (F1), f (F2)). Therefore,

dY
Z((exp f )(F1), (exp f )(F2)) = dY

Z
( f (F1), f (F2)) =

= min{max{dY(y1, y2) : (y1, y2) ∈ N} : N ∈ Π( f (F1), f (F2))} ≤

≤ max{dY(y1, y2) : (y1, y2) ∈ ( f1 × f2)(M12)} =

= max{dY( f (x1), f (x2)) : (x1, x2) ∈M12}.

Lemma 2.10 is proved.
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The second lemma is the following statement.

Lemma 2.11. If a mapping f : (X, dX)→ (Y, dY) is (ε, δ)-uniformly continuous then the mapping exp f : (exp X, dX
Z)→

(exp Y, dX
Z

) is also (ε, δ)-uniformly continuous.

Proof. It is enough to catch that for each σ > 0, an open σ-net {A1, . . . , An} of X and any couple of sets F1,

F2 ⊂
k
∪
j=1

Ai j where {i1, . . . , ik} ⊂ {1, . . . , n}, and F1 ∩ Ai j , ∅, F2 ∩ Ai j , ∅, j = 1, . . . , k, one has dZ(F1, F2) < σ.

Then the application of Lemma 2.10 finishes the proof of Lemma 2.11.

According to Definition 2.8, Lemma 2.11 gives the following result that is the third lemma.

Lemma 2.12. For any continuous mapping f : (X, dX)→ (Y, dY) the mapping

exp+( f ) : (exp+(X), dX
+)→ (exp+(Y), dY

+)

is uniformly continuous.

Theorem 2.9 is completely proved.

So, exp is a uniformly metrizable functor (with respect to the metrization d → dZ). Hence, by
[6, Proposition 2] for a homeomorphism f : (X, dX) → (Y, dY) of compact metric spaces, the mapping
exp+( f ) : (exp+X, dX

+) → (exp+Y,dY
+) is a uniform homeomorphism. Therefore, topologically the metric

space (exp+X, d+) does not depend on the choice of the metric d on the (compact metric) space X. Con-
sequently, the operation exp+ is a functor from the category of compact metric spaces into the category of
metrizable spaces and uniformly continuous mappings.

Let us now associate with each compact metric space (X, d) the completion (exp++X, d++) of the space
(exp+X, d+), and to every continuous mapping f : (X, dX)→ (Y, dY) a mapping exp++ f : exp++X→ exp++Y,
which is an expanding of the mapping exp+ f to the completions of the spaces (exp+X, dX

+) and (exp+Y, dY
+).

Thus, we have defined the functor exp++ acting from the category of metric compact spaces into the category
of complete metric spaces and uniformly continuous mappings. The functor exp++, like the functor exp+,
is topologically invariant under the metric, and it can be considered as a functor acting from the category
of compact metric spaces to the category of Polish spaces.

Definition 2.13. ([5]) A functor F is called monadic if there exist such natural transformations η : Id → F
(a monad unit) and ψ : F2

→F (a monad multiplication), such that for each compact Hausdorff space X the
following equalities hold:

(M1) ψX◦F(ηX ) = idF(X) ;
(M2) ψX◦ηF(X) = idF(X) ;
(M3) ψX◦F(ψX ) = ψX◦ψF(X) .

In this case, the triple F = ⟨F, η, ψ⟩ is called a monad.

If the previous definition only (M1) and (M2) hold, then the functor F is called semimonadic, and the
triple F = ⟨F, η, ψ⟩ is a semi-monad.

The exponential functor exp is monadic. Here, the mapping η : Id → exp, which for a compact
Hausdorff space X is defined by the equality ηX(x) = {x}, x ∈ X, is the unit of the monad, and the
mapping ψ : exp2

→ exp, which for a compact Hausdorff space X is given by ψX(A ) = ∪A , A ∈ exp2X,
is the multiplication of the monad, and the triple H = ⟨exp, {·}, ∪⟩ is the exponential monad. However,
M. M. Zarichny showed that the iterated exponential functor exp2 is semi-monadic, but not monadic ([4,
Remark 2.1].

Note that H = ⟨exp, {·}, ∪⟩ is the only (semi)monad including the functor exp (see [4, Theorem 2.1]).
For a natural number n let

ψn+1,n = ψexpn−1 X : expn+1 X→ expn X,
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and for natural numbers n, m with n < m we put

ψm,n = ψn+1,n◦ψn+2,n+1◦ . . . ◦ψm,m−1.

The following inverse sequence appears

exp X
ψ2,1
←−− exp2 X

ψ3,2
←−− . . .

ψn,n−1
←−−−− expn X

ψn+1,n
←−−−− expn+1 X

ψn+2,n+1
←−−−−− . . . (6)

Let expω X be the limit of this sequence. Since ψn+1,n are natural transformations, the operation expω is
functorial. The functor expω acts in the category C omp of compact Hausdorff spaces and in its subcategory
MC omp of metrizable compact spaces. The functor expω : C omp → C omp is called the infinite iteration of
the functor exp.

For 1 ≤ n < m we set qn,m = exp(ηn−1,m−1 ). From (M1) it follows

ψn,m◦qn,m = idexpn(X) . (7)

Definition 2.14. ([6]) A uniformly metrizable semimonadic functor F is called perfect metrizable if some of
its metrization, along with the properties (a), (b), (c), (d), have the properties

(e) the mapping ψ2,1 : (F2(X), d2)→ (F(X), d1) is non-expending;

( f ) for any a ∈ F2(X) and x ∈ X we have

d1(ψ2,1 (a), η0,1 (x)) = d2(a, η0,2 (x)). (8)

Theorem 2.15. The functor exp is perfect metrizable with respect to the metrization d→ dZ.

Proof. Let us check (e). Let A , B ∈ exp2 X = exp(exp X) and d2(A , B) = δ. By Corollary 2.2 there exists a
set M12 ∈ Π(A , B) ⊂ (exp X)2 = (exp X) × (exp X) such that

max{d1(F1, F2) : (F1, F2) ∈M12} = δ.

Then d1(F1, F2) ≤ δ for all (F1, F2) ∈M12, and there is a pair (F10, F20) ∈M12 such that d1(F10, F20) = δ. Let us

estimate the distance d1(ψ2,1 (A ), ψ2,1 (B)) = d1(∪A , ∪B). It is clear that
(
∪

(F1,F2)∈M12

F1×F2

)
∈ Π(∪A , ∪B) ⊂

X2. That is why

d1(ψ2,1 (A ), ψ2,1 (B)) ≤ max
{

d(x, y) : (x, y) ∈ ∪
(F1,F2)∈M12

F1×F2

}
= δ,

i. e.

d1(ψ2,1 (A ), ψ2,1 (B)) ≤ d2(A , B). (9)

Property (e) is probed.
Let us now check the condition ( f ). Note that for x ∈ X we have η0,1 (x) = {x} ∈ exp X and η0.2 (x) = {{x}} ∈

exp2 X, and also for A ∈ exp2 X we have ψ2,1 (A ) = ∪A ∈ exp X. It is easy to see that the sets Π(A , {{x}})
andΠ(∪A , {x}) consist of a single element - the products A × {{x}} and ∪A × {x}, respectively. That is why

d1(∪A , {x}) = max
{
d(y, x) : (y, x)∈ ∪A × {x}

}
,

d2(A , {{x}}) = max
{
d1(F, {x}) : , (F, {x}) ∈ A × {{x}}

}
.

Let (F0, {x}) ∈ A × {{x}} be a pair such that d2(A , {{x}}) = d1(F0, {x}). Since F0 ⊂ ∪A , then d2(A , {{x}}) ≤
d1(∪A , {x}). The reverse equality follows from the inequality (9). Condition ( f ), and thus Theorem 2.15, is
proved.
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We end the paper with one question.
Recall that every closed subset of a Tychonoff space can be represent as a unique idempotent probability

measure [8, 10, 13, 16]. Moreover, any closed subset of a Tychonoff space is a unique order-preserving
operator [9], [1]. Consequently, it arises in a natural way the following question.

Question 2.16. Is the metric dZ expendable over the space of idempotent probability measures (more widely, over the
space of order-preserving functionals)?
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[10] Lj. D. R. Kočinac, A. A. Zaitov, M. R. Eshimbetov, On the Čech-completeness of the space of τ-smooth idempotent probability measures,

Axioms 13 (2024), Art. ID 569.
[11] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
[12] E. V. Shchepin, Functors and uncountable powers of compacta, Russian Math. Surveys 36 (1981), 1–71.
[13] A. O. Tagaymurotov, A. A. Zaitov, On geometric form of a Hahn-Banach theorem’s version for idempotent probability measures,

Lobachevskii J. Math. 44 (2023), 4893–4901.
[14] A. A. Zaitov, D. R. Beshimova, A. Ya. Ishmetov, On the completeness of hyperspaces of complete metric spaces, Uzbek Math. J. 68 (2024),

192–201.
[15] A. A. Zaitov, D. R. Beshimova, D. I. Jumaev, On a metric on a hyperspace, Borubaev readings IV, Bishkek, 2022.
[16] A. A. Zaitov, D. T. Eshkobilova, Dugundji compacta and the space of idempotent probability measures, Math. Notes 114 (2023), 433–442.


	Introduction
	A new metric on the hyperspace

	On properties of metrization dZ

