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Some remarks on generalized Schwarz-Pick type inequality for
harmonic quasiconformal mappings with simply connected ranges
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Abstract. The main result of this paper is a generalized Schwarz-Pick type inequality for ordinary harmonic
quasiconformal mappings of the unit disk onto arbitrary simply connected domains in the complex plane.
This result extends some of our earlier findings, as well as those presented in the excellent article [2]. Additi-
onally, by analyzing the properties of the hyperbolic metric on simply connected hyperbolic domains in the
complex plane, we establish the co-Lipschitz continuity of these mappings and determine the corresponding
bi-Lipschitz constant with respect to the hyperbolic metric.

1. Introduction

Let R be an arbitrary Riemannian surface with a complex structure defined by the atlas (Uν, hν). Denote
by zν ∈ Vν = hν(Uν) ⊂ C the local parameter on that surface associated with the chart (Uν, hν). Assume
that the surface R is also equipped with a Riemannian metric, represented in terms of the local parameters
as ds2 = ρν(zν)|dzν|2, where ρν is a positive C2 function on Vν compatible with the complex structure on
R. Specially, whenever zµ ∈ Vµ = hµ(Uµ) ⊂ C and zν ∈ Vν = hν(Uν) ⊂ C are local parameters on R with
Uµ ∩Uν , ∅, then ρµ(zµ) = ρν(A(zµ))|A′(zµ)|2, zµ ∈ Uµ ∩Uν, where zν = A(zµ) = (hν ◦ h−1

µ )(zµ) is the mapping
describing a conformal (one-to-one and analytic) transition between local parameters zµ and zν on R.

Note that in the neighborhood of each point on a Riemann surface R, the Riemannian metric can be
viewed as a positive multiple of the Euclidean metric. To emphasize the conformal invariance of this metric
under changes in local parameters, we will refer to it as the conformal metric on R and, whenever convenient,
denote it by ds2 = ρ(z)|dz|2. Additionally, the associated representative, i.e., the function ρ : z 7→ ρ(z), will
be referred to as the density of the conformal metric on R.

It is well known that if γ : [0, 1] → R is an arbitrary rectifiable curve on the surface R, then the length
of that curve with respect to the given conformal metric ds2 = ρ(z)|dz|2 on R is defined as the nonnegative

quantity |γ|ρ =
∫
γ

√
ρ(z)|dz|. If we choose any two points P1 and P2 on R and define dR(P1,P2) = inf |γ|ρ,

where the infimum is taken over all rectifiable curves γ on R that join P1 and P2, then a distance function
dR, induced by the conformal metric ds2 = ρ(z)|dz|2, is defined on R. This implies that the surface R can also
be regarded as a metric space.
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Let ds2 = ρ(z)|dz|2 be a conformal metric on the Riemann surface R. Consider a chart (U, h) and the local
parameter z ∈ V = h(U) ⊂ C around an arbitrary point P0 ∈ R, h(P0) = z0 ∈ V, on R and, without loss of
generality, denote by ρ the representation of the given metric in terms of the local parameter z. The real
number

Kρ(z0) = −
1
2

(△ logρ)(z0)
ρ(z0)

(1)

is referred to as the Gaussian curvature of the conformal metric ds2 = ρ(z)|dz|2 at the point P0 on R. It can
be shown that this definition is independent of the choice of local parameter on R near P0. Indeed, if a
different chart (Ũ, h̃) also contains P0, with corresponding local parameter z̃ ∈ Ṽ = h̃(Ũ) ⊂ C around P0 and
h̃(P0) = z̃0, i.e. if ds2 = ρ̃(z̃)|dz̃|2 represents the conformal metric in terms of that parameter, then it holds that

(△ logρ)(z) = (△ log((ρ̃ ◦ A)|A′(z)|2))(z)
= (△ log(ρ̃ ◦ A))(z) + 2(△ log |A′|)(z)

= (△ log ρ̃)(A(z))|A′(z)|2,

in a suitably chosen neighborhood V′ ⊂ V of the point z0, as the function z 7→ log |A′(z)|, z ∈ V′, is harmonic,
where z̃ = A(z) is the mapping establishing the conformal transition between parameters. Thus, since
z̃0 = A(z0) and ρ(z0) = ρ̃(A(z0))|A′(z0)|2, it follows that Kρ(z0) = Kρ̃(z̃0). Therefore, regardless of the choice
of local parameter used, we refer to the Gaussian curvature of the conformal metric ds2 = ρ(z)|dz|2 as the
function defined on R by formula (1).

Example 1.1. Let D = {z ∈ C : |z| < 1} denote the open unit disk in C. Consider the conformal metric ds2 =
λD(z)|dz|2 onD, where the density function λD is defined as

λD(z) =
(

2
1 − |z|2

)2

, z ∈ D. (2)

For any z ∈ D, we have

(△ logλD)(z) = 4(logλD)zz̄(z) = −8(log(1 − |z|2))zz̄(z)

= 8
(

z̄
1 − |z|2

)
z̄

(z) =
8

(1 − |z|2)2 ,

which implies that (△ logλD)(z) = 2λD(z). Thus, KλD (z) = −1, for all z ∈ D. Consequently, the conformal
metric ds2 = λD(z)|dz|2 has constant negative Gaussian curvature on D. Moreover, the associated distance
function for this metric onD is given by

dD(z1, z2) = log
1 +

∣∣∣ z1−z2
1−z̄2z1

∣∣∣
1 −

∣∣∣ z1−z2
1−z̄2z1

∣∣∣ , z1, z2 ∈ D. (3)

Definition 1.2. The hyperbolic metric on the unit disk is a conformal metric ds2 = λD(z)|dz|2, where the density
function λD is given by (2). The function dD is called the hyperbolic distance on the unit diskD.

For more details on the hyperbolic metric see [1, 2, 6, 7, 9, 14].

Let Ω and Ω′ be domains (open and connected) in the complex plane C.

Definition 1.3. A mapping f : Ω → Ω′, of class C2 in Ω, is called harmonic with respect to a conformal metric
ds2 = ρ(w)|dw|2 on Ω′ (where ρ is a positive function of the class C2 on Ω′) if

fzz̄(z) +
ρw( f (z))
ρ( f (z))

fz(z) fz̄(z) = 0, (4)

for all z ∈ Ω. Here, fz and fz̄ denote the partial derivatives of f with respect to z and z̄, respectively, and fzz̄ represents
the mixed second-order partial derivative of f in Ω, with fzz̄ = ( fz)z̄ = ( fz̄)z.
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In the special case when the conformal metric on Ω′ is the Euclidean metric, i.e. when ρ ≡ 1 on Ω′, the
condition (4) reduces to the usual harmonicity condition (△ f )(z) = 4 fzz̄(z) = 0, for all z ∈ Ω. Thus, f is a
Euclidean harmonic (or just harmonic) mapping in this case.

Definition 1.4. A orientation-preserving C1 diffeomorphism f : Ω → Ω′ = f (Ω) is said to be a regular k-
quasiconformal mapping (or simply k-quasiconformal) if there exists a constant k ∈ [0, 1) such that

|µ f (z)| =
∣∣∣∣∣ fz̄(z)

fz(z)

∣∣∣∣∣ ⩽ k, (5)

for all z ∈ Ω, where µ f (z) = fz̄(z)
fz(z) , z ∈ Ω, is the complex dilatation of f .

Remark 1.5. Note that the previous definition is correct since the mapping f is orientation-preserving, i.e. the
Jacobian of that mapping is positive. Hence, J f (z) = | fz(z)|2 − | fz̄(z)|2 = | fz(z)|2(1 − |µ f (z)|2) > 0, which implies
that fz(z) , 0. The smallest constant k satisfying property (5) is referred to as the quasiconformality constant of the
mapping f . Additionally, many authors use the constant K instead of k to represent the quasiconformal constant of

a k-quasiconformal mapping f , where K =
1 + k
1 − k

⩾ 1. Throughout the text, if f is a k−quasiconformal mapping, the

constant K will always be equal to K = 1+k
1−k and be a number not less then 1.

Note that when K = 1, i.e. k = 0, the mapping f is conformal, because in this case fz̄ ≡ 0 on Ω.
An initial partial characterization of harmonic quasiconformal diffeomorphisms of the unit disk onto

itself was provided in [11], where it was shown that such mappings are co-Lipschitz. Furthermore, a
complete characterization of these diffeomorphisms in terms of their boundary functions was established in
[15] (see also [8]), using Mori′s inequality for quasiconformal mappings. Specifically, every quasiconformal
mapping of the unit disk onto itself extends to a homeomorphism of their corresponding closures. Notably,
these mappings have been proven to be bi-Lipschitz with respect to the Euclidean metric and, more
significantly for our purposes, they are also quasi-isometries with respect to the hyperbolic metric (see
[9, 17]).

Theorem 1.6 ([9]). Let f be a k-quasiconformal harmonic diffeomorphism of the unit discD onto itself. Then f is a
quasi-isometry of the unit discD with respect to the hyperbolic metric. In addition, f is a (K−1,K) bi-Lipschitz with
respect to the hyperbolic metric.

Theorem 1.7 ([9]). Let f be a k-quasiconformal harmonic diffeomorphism of the upper half planeH = {z ∈ C : Im z > 0}
onto itself. Then f is a quasi-isometry of H with respect to the hyperbolic metric on H. More specifically, f is a
(K−1,K) bi-Lipschitz with respect to the hyperbolic metric on H, but also with respect to the Euclidean metric, i.e.

|z1 − z2|/K ⩽ | f (z1) − f (z2)| ⩽ K|z1 − z2|,

for all z1, z2 ∈H. The estimates are sharp.

For further properties and characterizations of the harmonic quasiconformal mappings, that act between
various subdomains of the complex plane C, we refer to [2, 5, 7–9, 11–14].

Let R be an arbitrary Riemann surface of hyperbolic type, meaning that its universal covering surface
is the unit disk. By using the Uniformization theorem, the surface R can be uniquely equipped with a
conformal metric of constant Gaussian curvature equal to −1, which we shall refer to as the hyperbolic
metric on the surface R. In that case we will use the notation ds2 = λR(z)dz2, for the hyperbolic metric on R,
and dR for the corresponding hyperbolic distance function on R, which is induced by the hyperbolic metric
with the density λR. Moreover, if τ : D → R is the projection that realizes the covering of the surface R
by the unit disk D, then the mapping τ is a local isometry with respect to the distances induced by the
corresponding hyperbolic metrics.
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Example 1.8. It is trivial to deduce that the metric density function of the hyperbolic metric on the upper half plane
H is given by the formula λH(z) = 1

y2 , where z = x + iy, x ∈ R, y > 0, is a point inH. Thus, the conformal metric
ds2 = 1

y2 |dz|2, z = x+ iy, y > 0, is the hyperbolic metric on the upper half planeH. On the other hand, if we consider
the mapping

s(z) =
ei π2 z
− 1

ei π2 z + 1
= i tan

(
π
4

z
)
, z ∈ S = (−1, 1) ×R,

which establishes a conformal isomorphism between the strip S and the unit disk D (the mapping s−1 could be
considered as a covering mapping), then it is straightforward to compute that

λS(z) =
4|s′(z)|2

(1 − |s(z)|2)2 =

(
π

2(| cos(π4 z)|2 − | sin(π4 z)|2)

)2

=
(
π
2

)2 1

cos2
(
π
2 Re z

) ,
for every z ∈ S, so the hyperbolic metric on S is given by ds2 =

(
π
2

)2 1
cos2( π2 Re z) |dz|2, z ∈ S.

In [2] authors formulated and proved the following result that is important in our approach.

Theorem 1.9 ([2]). Let Ω be a simply connected convex domain of the hyperbolic type in the complex plane C. If f
is a harmonic and k-quasiconformal mapping of the unit diskD onto Ω, then the inequalities

K + 1
2K

⩽

√
λΩ( f (z))
λD(z)

| fz(z)| ⩽
K + 1

2

hold, for all z ∈ D, where λΩ is the hyperbolic metric density function on Ω. The estimates are sharp.

2. Hyperbolic partial derivatives of a C1 mapping and some estimates

Let G ⊂ C be an arbitrary simply connected domain in C, distinct from C, i.e. its boundary in C contains
at least two points. By the Riemann mapping theorem, the domain G is conformally equivalent to the unit
diskD. Denote by 1 : G→ D the mapping that establishes this conformal isomorphism. Then, it is easy to
verify that the corresponding hyperbolic metric on G is given by

ds2 = λG(w)|dw|2, where λG(w) =
4|1′(w)|2

(1 − |1(w)|2)2 , w ∈ G.

Observe that if 1̃ : G→ D is another mapping that establishes a conformal isomorphism between G andD,
then

|1̃′(w)|
1 − |1̃(w)|2

=
|1′(w)|

1 − |1(w)|2
,

because 1̃ ◦ 1−1 is a conformal automorphism of the disk D. Hence, the hyperbolic metric defined in this
way does not depend on the choice of the mapping 1. For simplicity, we will always use such a domain G
in the following text.

Definition 2.1. Let G,G′ ⊂ C be simply connected domains, distinct from C, and let f : G→ G′ be a C1 mapping.
The hyperbolic partial derivatives of f , with respect to z and z̄, in the domain G are defined as

||∂ f ||(z) =

√
λG′ ( f (z))
λG(z)

| fz(z)|, ||∂̄ f ||(z) =

√
λG′ ( f (z))
λG(z)

| fz̄(z)|. (6)
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It follows directly from the classical Schwarz-Pick lemma that if f is an analytic mapping between G
and G′, then ||∂z f ||(z) ⩽ 1, for all z ∈ G, with equality holding if and only if f is a conformal isomorphism.
Similarly, if f : G→ G′ is a C1 mapping and h : D→ G is the Riemann mapping, i.e. a one-to-one analytic
mapping of the unit diskD onto the domain G, then

||∂( f ◦ h)||(ζ) =

√
λG′ (( f ◦ h)(ζ))
λD(ζ)

|( f ◦ h)ζ(ζ)|

=

√
λG′ ( f (z))
λG(z)

√
λG(z)
λD(ζ)

| fz(z)||h′(ζ)|

=

√
λG′ ( f (z))
λG(z)

| fz(z)|
|(h−1)′(z)|(1 − |ζ|2)

1 − |h−1(z)|2
|h′(ζ)| = ||∂ f ||(z),

because h is a conformal isomorphism. Similarly, we have ||∂̄z( f ◦ h)||(ζ) = ||∂̄z f ||(z). Therefore, it suffices to
restrict our attention to a mappings f : D→ G, where G , C is a simply connected domain in C.

Our goal now is to utilize estimates of the hyperbolic derivatives to characterize the behavior of harmonic
quasiconformal mappings from the unit disk to certain hyperbolic target domains in the complex plane.

Lemma 2.2. Let f : D→ G, where G is a simply connected hyperbolic domain in C, be a C1 mapping that preserves
orientation. If there exists some M > 0 such that ||∂ f ||(z)(1 + |µ f (z)|) ⩽M for every z ∈ D, then

dG( f (z1), f (z2)) ⩽M dD(z1, z2),

for every z1, z2 ∈ D.

Proof. Let z1 and z2 be arbitrary points in the diskD, and let γ : [0, 1]→ D be the geodesic line with respect
to the hyperbolic metric inD connecting z1 and z2. Then,

dG( f (z1), f (z2)) ⩽
∫

f◦γ

√
λG(w)|dw|

⩽

∫
γ

√
λG( f (z))
λD(z)

√
λD(z)(| fz(z)| + | fz̄(z)|)|dz|

=

∫
γ
||∂ f ||(z)

√
λD(z)(1 + |µ f (z)|)|dz|

⩽M
∫
γ

√
λD(z)|dz| =M dD(z1, z2),

which proves the statement.

Using a similar argument, namely that |dw| ⩾ (| fz(z)| − | fz̄(z)|)|dz| holds because f is orientation-preserving,
it can be easily shown that the following lemma holds.

Lemma 2.3. Let f : D → G, where G is a simply connected hyperbolic domain in C, be an orientation-preserving
C1 homeomorphism. If there exists some m > 0 such that ||∂ f ||(z)(1 − |µ f (z)|) ⩾ m for every z ∈ D, then

dG( f (z1), f (z2)) ⩾ m dD(z1, z2),

for every z1, z2 ∈ D.
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3. Further results and comments

Among the numerous generalizations of the Schwarz-Pick lemma, we now highlight one of the most
elegant and remarkable results, which applies specifically to mappings between Riemann surfaces. This
result follows directly from the Schwarz lemma for Kähler manifolds, established by S. T. Yau (see [18])
and further discussed in the excellent article [16].

Theorem 3.1 ([16]). Let R and S be two Riemann surfaces without boundary, with conformal metrics ds2 = ρ(z)|dz|2

and ds2 = σ(w)|dw|2, respectively. If the metric ds2 = ρ(z)|dz|2 on the surface R is complete metric, and if for the
corresponding Gaussian curvatures the conditions Kρ(z) ⩾ −a1 and Kσ(w) ⩽ −a2 hold, for some real constants a1 ⩾ 0
and a2 > 0, then for any analytic mapping F : R→ S between these surfaces we have

σ(F(z))|F′(z)|2 ⩽
a1

a2
ρ(z),

for each z ∈ R. In particular, if a1 = 0, then F is a locally constant mapping.

Example 3.2. Let Ω = C ∖ [0,+∞). Denote by s the regular branch of the multivalued function S : z 7→
√

z,
in the region Ω, determined by the condition s(−1) = i. Then, by the mapping 1(z) = s(z)−i

s(z)+i , z ∈ Ω, which is a
conformal isomorphism from the region Ω onto the unit disk D, the hyperbolic metric is induced on Ω. Thus, the
hyperbolic metric on Ω has the form ds2 = λΩ(z)|dz|2 = |dz|2

4|z| Im(s(z)) , z ∈ Ω. Consider the mappings f (z) = Kx + iy
and f̃ (z) = 1

K x + iy, z = x + iy ∈ Ω, K > 1. These mappings are obviously k-quasiconformal, with k = K−1
K+1 , and

harmonic in Ω. Obviously, f (Ω) = f̃ (Ω) = Ω. It is also not difficult to verify that fz(z) = K+1
2 and f̃z(z) = K+1

2K
hold, for each z ∈ Ω. However, a simple inspection (see [2]) reveals that ||∂z f ||(z) > K+1

2 , as well as ||∂z f̃ ||(z) < K+1
2K ,

whenever z = x + iy ∈ Ω and x > 0, y > 0.

The previous example illustrates that, by applying the comment following Definition 2.1, for simply
connected domains in the complex plane of hyperbolic type that are not convex, we may anticipate results
differing from those presented in [2] (see also Theorem 1.9). So, let G ⊂ C be a simply connected region
distinct from C. We further examine the properties of the hyperbolic metric on G, demonstrating that the
previous statements, with modified constants, also hold in the case of arbitrary hyperbolic domains in C.
To this end, we highlight a result that addresses this (see [4]).

Lemma 3.3. Let G ⊂ C be a simply connected region distinct fromC. Then, for the density function of the hyperbolic
metric λG, that is defined on G, the following inequality holds:

∣∣∣(logλG)zz(z)
∣∣∣ ⩽ 16 + 9

√
3

8
λG(z), z ∈ G. (7)

Now we are ready to state and to prove the main result of this paper.

Theorem 3.4. Let f be a k-quasiconformal harmonic mapping of the unit disk D onto G, where G ⊂ C is an
arbitrary simply connected region distinct from C. If the conformal metric ds2 = λG( f (z))| fz(z)|2|dz|2 is complete

on D, then ||∂ f ||(z) ⩾
(
1 + k2 + 16+9

√
3

2 k
)−1/2

, for each z ∈ D. Additionally, dG( f (z1), f (z2)) ⩾ m(k) dD(z1, z2),

for each z ∈ D, meaning the mapping f is m(k) co-Lipschitz mapping with respect to the hyperbolic metric, where

m(k) =
1 − k√

1 + k2 + 16+9
√

3
2 k

.

Proof. For the density of the conformal metric σ(z) = λG( f (z))| fz(z)|2, z ∈ D, we find that

Kσ(z) = −

1 + |µ f (z)|2 + 4Re

 (logλG)ww( f (z))
λG( f (z))

fz̄(z)

fz(z)

 , (8)
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for each z ∈ D. Therefore, by applying inequality (7), we conclude that∣∣∣∣∣∣∣Re

 (logλG)ww( f (z))
λG( f (z))

fz̄(z)

fz(z)


∣∣∣∣∣∣∣ ⩽ 16 + 9

√
3

8
|µ f (z)|, (9)

for each z ∈ D. Thus, using (8), we obtain

Kσ(z) ⩾ −
(
1 + |µ f (z)|2 +

16 + 9
√

3
2

|µ f (z)|
)
⩾ −

(
1 + k2 +

16 + 9
√

3
2

k
)
, (10)

for every z ∈ D. Finally, since the density σ(z) = λG( f (z))| fz(z)|2, z ∈ D, induces a complete metric on D,
applying Theorem 3.1 to the identity mapping and the corresponding metric densities, we find that

λD(z) ⩽ (1 + k2 +
16 + 9

√
3

2
k)λG( f (z))| fz(z)|2, z ∈ D. (11)

Consequently, when we calculate the corresponding hyperbolic derivative,

||∂ f ||(z) =

√
λG( f (z))
λD(z)

| fz(z)| ⩾
(
1 + k2 +

16 + 9
√

3
2

k
)−1/2

, (12)

for each z ∈ D. The rest is trivial consequence of the Lemma 2.3 and the inequality |µ f (z)| ⩽ k, z ∈ D.

Remark 3.5. Determining when equality in inequality (10) holds, and whether the best lower bound for the curvature
Kσ is always negative, is challenging. However, Kσ cannot be non-negative on D. If it were, by Theorem 3.1, if
we consider identity map F : D ∋ z 7→ w = F(z) = z ∈ D and chose conformal metrics ds2 = σ(z)|dz|2 =
λG( f (z))| fz(z)|2|dz|2 and ds2 = λD(w)|dw|2, where z, w ∈ D, than, trivially we will obtain that F is constant, which
is not true. Thus, inf{Kσ(z) : z ∈ D} < 0.

It would be of particular interest, under the same conditions, to determine the corresponding Lipschitz
constant for the hyperbolic metric using an alternative approach. The result in [6], obtained by the author
and to be elaborated in a forthcoming paper, provides such a constant only for small values of 0 ⩽ k <
k0 ≈ 0.06331. Fundamentally, these results represent variations of the Schwarz-Pick type theorems adapted
to surfaces equipped with a conformal metric of non-positive Gaussian curvature. A significantly more
challenging problem, however, would be to derive appropriate bi-Lipschitz constants in the Euclidean case.
Since the Euclidean metric has Gaussian curvature identically equal to zero, this case lies beyond the scope
of the present work.
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[6] M. Knežević, Harmonijska i kvazikonformna preslikavanja, kvazi-izometrije i krivina, Doktorska disertacija, Univerzitet u
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