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Abstract. The object of this paper is to study some properties of Ricci soliton structures on concircularly
ϕ -recurrent Sasakian manifolds. Initially, it is proved that a concircularly ϕ - recurrent Sasakian mani-
fold is an Einstein manifold and as a consequence of this, the Weyl conformal curvature tensor satisfies
W(ξ,X)Y = 0. Further, the characterization of the vector field admitting Ricci and Riemann soliton have
been studied. Additionally, the three-dimensional locally concircularly ϕ-recurrent Sasakian manifolds
have been considered with an example and also it has been shown that such a manifold admitting almost
Ricci soliton reduces to Ricci soliton.

1. Introduction

A concircular transformation in an n-dimensional Riemannian manifold M which maps every geodesic
circle in M to another geodesic circle. In this context, a geodesic circle [12] is defined as a curve whose first
curvature is constant and the second curvature is identically zero. The geometry of concircular transforma-
tions, i.e. the concircular geometry provides a more general framework for studying transformation than
the conformal geometry or inversive geometry of the Euclidean space in the sense that change of metric and
preservation is focused on the geodesic circles rather than circle diffeomorphism. One important invariant
in concircular transformation is the concircular curvature tensor.

Definition 1.1. The concircular curvature tensor C in a Riemannian manifold (M2n+1, 1) is given by [27]

C(X,Y)Z = R(X,Y)Z −
r

2n(2n + 1)
[1(Y,Z)X − 1(X,Z)Y] (1)

where R is the Riemann curvature tensor and r is the scalar curvature.

Many authors ([5], [22], [21]) have studied the notion of local symmetry of a Riemannian manifold to a
different extent. As a weaker version of local symmetry, T. Takahashi [23] introduced the notion of locally
ϕ-symmetry on a Sasakian manifold. Generalizing the notion of ϕ-symmetry, De et al. [7] introduced the
notion of ϕ-recurrent Sasakian manifold. Since then several works have been done by many authors ([18],
[1],[20],[8], [9]) on different types of Riemannian manifolds.
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The notion of Ricci flow was introduced by [13] in 1982 to find a canonical metric on a smooth manifold.
The Ricci flow is an evolution equation for metrics on a Riemannian manifold defined as follows:

∂
∂t
1i j = −2Ri j

A Ricci soliton is a natural generalization of an Einstein metric and is defined on a Riemannian manifold.
On the manifold M, a Ricci soliton is a triple (g, V, λ) defined by

£V1 + 2S = 2λ1 (2)

where £V is the Lie derivative along the vector field V, called the potential vector field V, g is the Riemannian
metric, S is a Ricci tensor, and λ is a constant. A Ricci soliton is a generalization of an Einstein metric. It
will be called Shrinking, steady or expanding according as λ < 0, λ = 0 and λ > 0. Otherwise, it will be called
indefinite. When the vector field V is the gradient of a smooth function f : Mn

→ R, then the manifold will
be called gradient Ricci Soliton.

Ricci solitons have been studied by several authors such as ([17], [6], [16], [10], [11]) and many others.
Recently, almost Ricci soliton was introduced by Pigola et.al [19], where they modified the definition of
Ricci soliton by adding the condition on the parameter λ to be a variable in (1).
A triplet (1,X, λ) on Riemannian manifold (Mn, 1) is called a Riemann soliton [15] if there exists a real
constant λ such that

1
2

£X1 ∧ 1 + R = λG (3)

where G = 1
21 ∧ 1, £X denotes the Lie derivative operator in the direction of the vector field X, and ∧ is the

Kulkarni Nomizu product.

A vector field φ on Riemannian manifold (Mn, 1) is called a φ(Ric) vector field if it satisfies [14]

∇Xφ = µQX (4)

where µ is a constant and Q is the Ricci operator defined by Ric(X,Y) = 1(QX,Y).

Motivated by the above studies, in this paper, we study Ricci soliton structures in a concircularly ϕ-
recurrent Sasakian manifold. The paper is organized as follows: In sections 2 and 3, we give a brief
introduction to concircularly ϕ-recurrent Sasakian manifold and some features of it. Sections 4 and 5 deal
with the study of Ricci Soliton and Riemann Soliton in concircularly ϕ-recurrent Sasakian manifolds. In
section 6, we study 3-dimensional locally concircularlyϕ-recurrent Sasakian manifolds, and in section 7, we
show that an almost Ricci soliton reduces to a Ricci soliton in a concircularly ϕ-recurrent Saskian manifold.
Finally, in section 8, we constructed an example to show the existence of a three-dimensional concircularly
ϕ-recurrent Sasakian manifold.

2. Preliminaries

Let M2n+1(ϕ, ξ, η, 1) be a Sasakian manifold with the structure (ϕ, ξ, η, 1), Then the following relations
hold [2]:

ϕ2X = −X + η(X)ξ, (5)

a) η(ξ) = 1, b) 1(X, ξ) = η(X), c) η(ϕX) = 0, (6)

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y), (7)
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R(ξ,X)Y = (∇Xϕ)Y = 1(X,Y)ξ − η(Y)X, (8)

a)∇Xξ = −ϕX b) (∇Xη)(Y) = 1(X, ϕY), (9)

R(X,Y)ξ = η(Y)X − η(X)Y, (10)

R(X, ξ)Y = η(Y)X − 1(X,Y)ξ, (11)

η(R(X,Y)Z = 1(Y,Z)η(X) − 1(X,Z)η(Y) (12)

S(X, ξ) = 2n η(X) (13)

S(ϕX, ϕY) = S(X,Y) − 2n η(X)η(Y) (14)

for all vector fields X, Y, Z, where ∇ denotes the operator of covariant differentiation with respect to g. ϕ
is a skew-symmetric tensor field of type (1,1) and ξ is called the characteristic vector field. S is the Ricci
tensor of type (0,2) and R is the Riemannian curvature tensor of the manifold.

Definition 2.1 A Sasakian manifold is said to be a locally ϕ-symmetric manifold if

ϕ2((∇WR)(X,Y)Z) = 0 (15)

for all vector fields X, Y, Z, W orthogonal to ξ.

Definition 2.2 A Sasakian manifold is said to be a locally concircularly ϕ-symmetric manifold if

ϕ2((∇WC)(X,Y)Z) = 0 (16)

for all vector fields X, Y, Z, W orthogonal to ξ.

Definition 2.3 A Sasakian manifold is said to be a concircularly ϕ-recurrent Sasakian manifold if there exists a
non-zero 1-form A such that

ϕ2((∇WC)(X,Y)Z) = A(W)C(X,Y)Z (17)

for arbitrary vector fields X,Y,Z,W.

If the 1-form A vanishes, then the manifold reduces to a ϕ-symmetric manifold.

3. Concircularly ϕ-recurrent Sasakian manifold

Let us consider a concircularly ϕ-recurrent Sasakian manifold. Then by virtue of (5) and (17), we get

−(∇WC)((X,Y)Z + η((∇WC)(X,Y)Z)ξ = A(W)C(X,Y)Z (18)

from which it follows that

−1(∇WC)((X,Y)Z,U) + η((∇WC)(X,Y)Z)η(U) = A(U)1(C(X,Y)Z,U) (19)

Let {ei}, i=1,2,...,2n+1 be an orthonormal basis of the tangent space at any point of the manifold. Then
putting X = U = ei in (19) and taking summation over i, 1 ≤ i ≤ 2n + 1 we get

(∇WS)(Y,Z) =
dr(W)

(2n + 1)
1(Y,Z) −

dr(W)
2n(2n + 1)

[1(Y,Z) − η(Y)η(Z)] + A(W)[S(Y,Z) −
r

(2n + 1)
1(Y,Z)] (20)

Replacing Z=ξ in (20) and using (6) and (13), we have

(∇WS)(Y, ξ) =
dr(W)

(2n + 1)
η(Y) + A(W)[2n −

r
(2n + 1)

]η(Y) (21)
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Now we have

(∇WS)(Y, ξ) = (∇WS)(Y, ξ) − S(∇WY, ξ) − S(Y,∇Wξ) (22)

From equations (9) and (13), we have

(∇WS)(Y, ξ) = −2n1(Y, ϕW) + S(Y, ϕW) (23)

In view of (21) and (23), we obtain

S(Y, ϕW) = 2n1(Y, ϕW) +
dr(W)

(2n + 1)
η(Y) + A(W)[2n −

r
(2n + 1)

]η(Y) (24)

Replacing Y by ϕY in (24) and using (6), we have

S(ϕY, ϕW) = 2n1(ϕY, ϕW) (25)

Using (7) and (14) in (25), we have

S(Y,W) = 2n1(Y,W) ∀Y,W (26)

Hence we can state the following theorem:

Theorem 3.1. A concircularly ϕ - recurrent Sasakian manifold is an Einstein manifold.

Weyl ([25], [26]) constructed a generalized curvature tensor on Riemannian manifold which vanishes
whenever the metric is (locally) conformally equivalent to a flat metric. The Weyl conformal curvature
tensor is defined by

W(X,Y)Z = R(X,Y)Z −
1

(2n − 1)
[1(QY,Z)X − 1(QX,Z)Y + 1(Y,Z)QX − 1(X,Z)QY]

+
r

(2n)(2n − 1)
[1(Y,Z)X − 1(X,Z)Y]

(27)

for X, Y, Z ∈ TM, where TM is the Lie algebra of differentiable vector fields in (M2n+1, 1). R and r are the
Riemann curvature tensor and scalar curvature of M respectively and Q is the Ricci operator satisfying the
relation S(X,Y) = 1(QX,Y).

From the above definition, it can be seen that

(div W)(X,Y)Z = (
2n − 2
2n − 1

)[{(∇XS)(Y,Z) − (∇YS)(X,Z)} −
1

4n
{1(Y,Z)dr(X) − 1(X,Z)dr(Y)}] (28)

Since the manifold becomes Einstein, therefore div W = 0, where W denotes the Weyl conformal curvature
tensor.
In [4], authors proved that if a Sasakian manifold satisfies div W = 0, then W(ξ,X)Y = 0.
Thus we obtain the following:
Corollary 3.1. In a concircularly ϕ-recurrent Sasakian manifold, the Weyl conformal curvature tensor satisfies
W(ξ,X)Y = 0.

4. Ricci Soliton

Suppose that a concircularly ϕ-recurrent Sasakian manifold admits a Ricci soliton (1, ξ, λ).
Then (2) holds and using Theorem 3.1, we have

(£ξ1)(X,Y) + 4n1(X,Y) = 2λ1(X,Y) (29)
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Substituting Y = ξ in (29), we get

1(∇ξξ,X) + 4nη(X) = 2λη(X) (30)

Putting X=ξ in (30), we obtain

λ = 2n (31)

Thus from (30) we have,

1(∇ξξ,X) = 0 ∀X. (32)

which implies∇ξξ= 0, the integral curves of the vector field ξ are geodesic. Therefore we have the following
proposition:

Proposition 4.1. Let (M2n+1, 1) be a concircularly ϕ-recurrent Sasakian manifold with a Ricci Soliton (1, ξ, λ)
such that the vector field ξ is the characteristic vector field of M. Then the integral curves of ξ are geodesic on M and
the soliton is expanding.

Next, we consider the vector field ξ to be a ξ(Ric) vector field, then from the Lie derivative and (4) we
have,

(£ξ1)(X,Y) = 1(∇Xξ,Y) + 1(∇Yξ,X) = 2µRic(X,Y) (33)

Combining (2) and (33), we obtain

(µ + 1)Ric(X,Y) = λ1(X,Y) (34)

Putting X = ξ in (34), we obtain

(µ + 1)Ric(ξ,Y) = λη(Y) (35)

Substituting Y = ξ in (35), we have

2n(µ + 1) = λ (36)

From (36),
if µ = -1, then λ = 0 which implies the Ricci soliton is steady.
If µ > -1, then λ > 0 which implies the Ricci soliton is expanding.
If µ < -1, then λ < 0 which implies the Ricci soliton is shrinking.

So we can state the following theorem:

Theorem 4.2 Let (M2n+1, 1) be a concircularly ϕ-recurrent Sasakian manifold with a Ricci Soliton (g,ξ,λ) and
the vector field ξ is a ξ(Ric) vector field. Then the Ricci soliton is steady, expanding or shrinking according to whether
µ = -1, 1 or < 1.

5. Riemann Soliton

The Riemann soliton equation in (3) can be expressed as

2R(X,Y,Z,W) + {1(X,W)(£ξ1)(Y,Z) + 1(Y,Z)(£ξ1)(X,W) − 1(X,Z)(£ξ1)(Y,W) − 1(Y,W)(£ξ1)(X,Z)}
= 2λ[1(X,W)1(Y,Z) − 1(X,Z)1(Y,W)]

(37)
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Contracting (37) over X and W, we obtain

(£ξ1)(Y,Z) +
2

(2n − 1)
S(Y,Z) −

2
(2n − 1)

[2nλ − div ξ]1(Y,Z) = 0 (38)

Putting Y = ξ in (38),

(£ξ1)(ξ,Z) +
2

(2n − 1)
S(ξ,Z) −

2
(2n − 1)

[2nλ − div ξ]1(ξ,Z) = 0 (39)

Now using Theorem 3.1 and (39), we have

1(∇ξξ,Z) =
2

(2n − 1)
[2n(λ − 1) − div ξ] (40)

Replacing Z by ξ in (40), it becomes

div ξ = 2n(λ − 1) (41)

Substituting (41) in (40), we find

1(∇ξξ,Z) = 0 f or all Z (42)

Thus we have the following theorem:

Theorem 5.1. In a concircularly ϕ-recurrent Sasakian manifold with Riemann Soliton (1, ξ.λ), div ξ = 2n(λ − 1)
and the integral curves of ξ are geodesic.

6. On a 3-dimensional locally concircular ϕ-recurrent Sasakian manifolds

The curvature tensor in a three-dimensional Sasakian manifold has the following form [3]

R(X,Y)Z =
(r − 4)

2
[1(Y,Z)X − 1(X,Z)Y]

+
(6 − r)

2
[1(Y,Z)η(X)ξ − 1(X,Z)η(Y)ξ + η(Y)η(Z)X − η(X)η(Z)Y]

(43)

Taking covariant differentiation of (43), we get

(∇WR)(X,Y)Z =
dr(W)

2
[1(Y,Z)X − 1(X,Z)Y]

−
dr(W)

2
[1(Y,Z)η(X)ξ − 1(X,Z)η(Y)ξ + η(Y)η(Z)X − η(X)η(Z)Y]

+
(6 − r)

2
[1(Y,Z)(∇Wη)(X)ξ + 1(Y,Z)η(X)(∇Wξ) − 1(X,Z)(∇Wη)(Y)ξ − 1(X,Z)η(Y)(∇Wξ)

+ (∇Wη)(Y)η(Z)X + (∇Wη)(Z)η(Y)X − (∇Wη)(X)η(Z)Y − (∇Wη)(Z)η(X)Y]

(44)

Taking X,Y,Z,W orthogonal to ξ, and using (9), we have

(∇WR)(X,Y)Z =
dr(W)

2
[1(Y,Z)X − 1(X,Z)Y] +

(6 − r)
2

[1(Y,Z)1(X, ϕW)ξ − 1(X,Z)1(W, ϕY)ξ] (45)

From (45), it follows that

ϕ2(∇WR)(X,Y)Z =
dr(W)

2
[1(Y,Z)ϕ2X − 1(X,Z)ϕ2Y] (46)
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Now taking X, Y, Z, W orthogonal to ξ and using (5) and (6), we obtain

ϕ2(∇WR)(X,Y)Z = −
dr(W)

2
[1(Y,Z)X − 1(X,Z)Y] (47)

Now differentiating covariantly (1) with respect to W (for n = 3), we get

(∇WC)(X,Y)Z = (∇WR)(X,Y)Z −
dr(W)

6
[1(Y,Z)X − 1(X,Z)Y] (48)

Applying ϕ2 to both sides of (48), we have

ϕ2(∇WC)(X,Y)Z = ϕ2(∇WR)(X,Y)Z −
dr(W)

6
[1(Y,Z)ϕ2X − 1(X,Z)ϕ2Y] (49)

Using (17), (47) and (5) in (49), we obtain

A(W)C(X,Y)Z = −
dr(W)

2
[1(Y,Z)X − 1(X,Z)Y]

−
dr(W)

6
[−1(Y,Z)X + 1(X,Z)η(X)ξ + 1(X,Z)Y − 1(X,Z)η(Y)ξ]

(50)

Taking X, Y, Z, W orthogonal to ξ in (50), we get

C(X,Y)Z = −
dr(W)
3A(W)

[1(Y,Z)X − 1(X,Z)Y] (51)

Putting W = {ei} in (51), where {ei}, i = 1, 2, 3 is an orthonormal basis of the tangent space at any point of the
manifold and taking summation over i, 1 ≤ i ≤ 3, we obtain

C(X,Y)Z = −
dr(ei)
3A(ei)

[1(Y,Z)X − 1(X,Z)Y] (52)

Using (1) in (52), we have

R(X,Y)Z = λ1[1(Y,Z)X − 1(X,Z)Y] (53)

where λ1 = ( r
6 −

dr(ei)
3A(ei)

) is a scalar, since A is a non-zero 1-form. Then by Schur’s theorem λ1 will be a constant
on the manifold. Therefore, M3 is of constant curvature λ1.

Thus we can state the following theorem:

Theorem 6.1. A 3-dimensional locally concircularly ϕ − recurrent Sasakian manifold is of constant curvature.

If the scalar curvature is constant then from (47) and (49), we can say that
ϕ2(∇WC)(X,Y)Z = 0

i.e. A locally three-dimensional concircularly ϕ - recurrent Sasakian manifold becomes ϕ - symmetric.

It is known from Watanabe’s result [24] that a three dimensional Sasakian manifold is locally ϕ-symmetric
if and only if the scalar curvature is constant. Hence we can state the following theorem:

Theorem 6.2. A 3-dimensional Sasakian manifold is locally concircualrly ϕ-recurrent if and only if it is locally
ϕ-symmetric.
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7. Almost Ricci Soliton

Suppose that a 3-dimensional locally concircularly ϕ-recurrent Sasakian manifold admits an almost
Ricci Soliton defined by (2) where λ is a smooth function. Using Theorem 6.1 and equation (53) we have,

S(Y,Z) = λ11(Y,Z) (54)

where λ1 is a constant.

From equation (2) and (54) we get,

(£V1)(Y,Z) = 2(λ − λ1)1(Y,Z) (55)

Differentiating the above equation with respect to X and using (6) we have,

(∇X£V 1) = 2dλ(X)1(Y,Z) (56)

Now we recall the following formula [28],

(£V∇X1 − ∇X£V1 − ∇[V,X]1)(Y,Z) = −1((£V∇)(X,Y)Z) − 1((£V∇)(X,Z)Y) (57)

for any vector fields X, Y, and Z on M. From this we can easily deduce

(∇X£V1)(Y,Z) = 1((£V∇)(X,Y)Z) + 1((£V∇)(X,Z)Y) (58)

Since £V∇ is a symmetric tensor of type (1, 2) it follows from (58) that

1((£V∇)(X,Y)Z =
1
2

(∇X£V1)(Y,Z) +
1
2

(∇Y£V1)(X,Z) −
1
2

(∇Z£V1)(X,Y) (59)

Using (56) in (59), we have

1((£V∇)(X,Y)Z) = dλ(X)1(Y,Z) + dλ(Y)1(X,Z) − dλ(Z)1(X,Y) (60)

Substituting X = Y = ei in the above equation and removing Z from both sides, where {ei} is an orthonormal
basis of the tangent space at each point of the manifold and taking Σi, 1 ≤ i ≤ 3, we get

(£V∇)(ei, ei) = −Dλ (61)

where dλ(X) = 1(Dλ,X), D denotes the gradient operator with respect to g. Now differentiating (2) and
using (58) we determine

1(£V∇)(X,Y)Z) = (∇ZS)(X,Y) − (∇XS)(Y,Z) − (∇YS)(X,Z) (62)

Taking X = Y = ei (where {ei} is an orthonormal frame) in (62) and summing over i, we obtain

(£V∇)(ei, ei) = 0 (63)

Combining (61) and (63), we have

Dλ = 0 (64)

This implies that λ is constant which leads to the following theorem:

Theorem 7.1. An almost Ricci soliton on a 3-dimensional locally concircularly ϕ - recurrent Sasakian manifold
reduces to Ricci soliton.
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8. Example

In this section we give an example to show the existence of a three dimensional concircularly ϕ - recur-
rent Sasakian manifold.

We consider the three dimensional manifold M = {(x, y, z) ∈ R3, (x, y, z) , 0} are standard coordinates
of R3.

The vector fields

e1 =
∂
∂y

, e2 = −
∂
∂z

, e3 =
∂
∂x
− y
∂
∂y
− z
∂
∂z

are linearly independent at each point of M. Let g be the Riemannian metric defined by

1(e1, e1) = 1(e2, e2) = 1(e3, e3) = 1
1(e1, e2) = 1(e2, e3) = 1(e1, e3) = 0

Let η be the 1-form defined by η(Z) = 1(Z, e3) for any Z ∈ χ(M)
Further, let ϕ be the (1,1) tensor field defined by

ϕ(e1) = −e2, ϕ(e2) = e1, ϕ(e3) = 0

So, using the lineartiy of ϕ and 1, we have

η(e3) = 1,
ϕ2Z = −Z + η(Z) e3,

1(ϕZ, ϕW) = 1(Z,W) − η(Z)η(W)

for any Z, W ∈ χ(M).
Thus for ξ = e3, the structure M(ϕ, ξ, η, 1) defines an almost contact metric manifold.
Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g and R be the curvature tensor
of g. Then we have,

[e1, e2] = 0, [e1, e3] = −e1, [e2, e3] = −e2.

The Riemannian connection of the metric g which is known as Koszul’s formula is given by

21(∇XY,Z) = X1(Y,Z) + Y1(Z,X) − Z1(X,Y) + 1([X,Y],Z) − 1([Y,Z],X) + 1([Z,X],Y) (65)

From (65) we can have,

∇e1 e2 = 0, ∇e1 e1 = e3, ∇e1 e3 = −e1

∇e2 e2 = e3, ∇e2 e1 = 0, ∇e2 e3 = −e2

∇e3 e2 = 0, ∇e3 e1 = 0, ∇e3 e3 = 0
(66)

From (66), we can easily verify that the structure (ϕ, ξ, η, 1) satisfies the relation (8). Hence M(ϕ, ξ, η, 1) is a
three dimensional Sasakian manifold. It is known that,

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z (67)

Using (67) and (66) the components of Riemann curvature tensor are given by,

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1

R(e1, e2)e2 = −e1, R(e2, e3)e2 = e2, R(e1, e3)e2 = 0
R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3

(68)
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From the definition of the Ricci tensor in three dimensional manifold we get,

S(X,Y) =
3∑

i=1

1(R(ei,X)Y, ei) (69)

From the components of the curvature tensor and (69), we obtain the following results,

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2 and S(ei, e j) = 0 f or i , j

Therefore,

r = S(e1, e1) + S(e2, e2) + S(e3, e3) = −6

Hence, we obtain the scalar curvature is constant.

It is well known from Watanabe’s result [24] that a three dimensional Sasakian manifold is locally ϕ-
symmetric if and only if the scalar curvature is constant.

Hence the manifold is locally ϕ - symmetric. Thus Theorem 6.2 is verified.
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