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Some ideal convergence of double sequence spaces of neutrosophic
real numbers

Runu Dhar*”, Arghyadip Debroy*®

?Department of Mathematics, Maharaja BirB ikram University, Agartala-799004, Tripura, India

Abstract. We reveal idea of some new double sequence spaces, namely, ideal convergence of double
sequence spaces in neutrosophic normed spaces. With the help of neutrosophic norm,we wish to define
i, - convergence and 7, - convergence of double sequences in neutrosophic normed spaces. Several basic
properties and characterization theorems of these concepts would be investigated in neutrosophic normed
spaces. Our purpose is also to introduce 7, - Cauchy and 7, - Cauchy double sequences in neutrosophic

normed spaces. We have investigated some of the characterization theorems in neutrosophic normed
spaces.

1. Introduction

Classical methods often fail to deal with many real - life problems due to uncertainties. To overcome
such situations, Zadeh [23] talked about fuzzy set theory associated with only membership (truth) function.
Thereafter, Atanassov [1] invented the notion of intuitionistic fuzzy set theory associating with membership
& non - membership functions. For the purpose of solving naturalistic problems on decision making
under uncertainty, Smarandache [18] introduced the notion of neutrosophic set theory associating with
three independent functions, i.e., membership, non - membership & indeterminacy functions. Further,
Smarandache [19] investigated on the applications of the neutrosophic set theory.

The use of intuitionistic fuzzy set theory is found in all fields where fuzzy set theory was investigated.
George and Veeramani [4] defined fuzzy metric space and Park [14] generalized it. The hypothesis of
statistical convergence for real number sequences was first scrutinized by Fast [3] and Schoenberg [16]
individually. As a generalization of ordinary convergence and statistical convergence, Kostyrko et al. [10]
invented i-convergence. Karakaya et al. [5, 6] defined and studied 7-convergence and lacunary statistical
convergence of sequences of functions in intuitionistic fuzzy normed spaces. We can find more research
works on i-convergence in [9, 11].

Neutrosophic metric space and neutrosophic normed space (in short, NNS) were investigated by Kirisci
and Simsek [7, 8]. Tripathy and Hazarika [20] introduced paranorm 7 - convergent sequence spaces. Mur-
saleen and Edely [12] introduced statistical convergence in double sequences. Savas and Mursaleen [15] and
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Mursaleen et al. [13] scrutinized statistical and ideal convergence of double sequences for fuzzy numbers
and intuitionistic fuzzy numbers respectively. Tripathy and Das [21] investigated on class of fuzzy number
sequence spaces. The norm of i-convergent of double sequence was introduced by Tripathy and Tripathy
[22]. Das et al. [2] examined i-convergence and i*-convergence of double sequences in R. After getting
motivations of these works, we introduce the ideal convergence of double sequence spaces in NSS. We
investigate some of their basic properties and relationships with other convergence of sequence spaces. The
article is subdivided as below. The following section shortly indicates known definitions and results which
are related for investigation. In Section 3, we investigate the notion of 7}-convergence of double sequences
in a NSS. In S ection 4, we study notion of 73-convergence of double sequences in a NSS. Section 5 focuses
on the concept of i, and #;-Cauchy double sequences in a NSS. Conclusion appears in last section.

2. Preliminaries and definitions:
In this section necessary concepts and results have been procured.

Definition 2.1. ([17]) A continuous binary operation 6 : [0, 1] X [0,1] — [0, 1] satisfying associative and
commutative laws is called continuous t-norm (TN) if #6x = x and X2z < yow whenever x < y and z < w for
each x,y,z,w € [0, 1].

Definition 2.2. ([17]) Given a continuous binary operation O : [0,1] X [0,1] — [0, 1] which satisfies associative
and commutative laws. Then it is called continuous t—co-norm (TC) if

¥00=x% and xX0z<y=w whenever X< yandz<w
foreach x,1,z,w € [0,1]

Definition 2.3. ([8]) Take F as a vector space, N = {< 1, G(#), B(#}), Y(#)) : i € F} be a NS where N : Fx

R - [Q, 1]. Consider binary operations § and - as, defined in Definition 2.1 and Definition 2.2. The four
tuple V = (E,N, 6, -) is known as, neutrosophic normed space (NNS) if the below conditions hold. For all
1,0,€ Fand A, u > 0 and for each ¢ # 0,

(1) 0 <G(u,A)<1,0<B(u,A)<1,0<Y(uA) <1,YAeR",
(2) G(u,A) + B(u, A) + Y(u, A) < 3, (for A € RY),
(3) G(u,A) =1 (for A > 0) ifand only if 1 = 0,
(4) G(1,9,A) = G(0,u,A) (for A > 0),
(5) G(i,9,A)0G(0, 11, A) < G, y, A + u(VA, u >),
(6) G(u,9,~):[0,00) — [0,1] is continuous,
(7) limy—e G(#1,0,A) = L(VA > 0),
(8) B(i1,9,A) = 0 (for A > 0) if and only if it = 9,
(9) B(u,v,A) = B(6,1,A)( for A > 0),
(10) B(#,0,A) - B(®,y, 1) = B(@,y, A + w)(YA, u > 0),
(11) B, 9,) : [0, 00) — [0,1] is continuous,
(12) log, ., B(i,0,A) = 0(YA > 0),
(13) Y(u,0,A) =0 (for A > 0) if and only if 7 = 7,
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(14) Y(u,0,A) = Y(@,u,A)(VA > 0),

(15) Y(@,0,A)- Y@, y, 1) 2 Y(u,y, A+ p)(VA, u > 0),

(16) B(i1,v,-) : [0, 00) — [0,1] is continuous,

(17) limp_e Y(u, 1, A) = L(VA > 0),

(18) if A <O, then G(u,9,A) = 0,B(u,9,A) =1 and Y(ir,0,A) = 1

Then 1 = (G, B, Y) is called Neutrosophic Norm (NN).

Definition 2.4. ([3]) The asymptotic compactness of a subset C of N, represented by 1(C), is given below:

H(O) = lim 3i{k < 7 k€ C)las, B — oo
n

Consider x = (my), as, anumber sequence which is statistically convergent to the number [ if C(¢) = {k < 71
X =1l > €}} =0, for every € > 0.
Then it is denoted by st — limx = I.

Definition 2.5. ([3]) A number of sequence x = (m;) which is statistically Cauchy if, for each ¢ > 0,3 a
number M = M(¢) in order that

{f's;ﬁ:|xj—>'<M|ze}| =0as, 1 — o
fk<n:[x—-I>e}}=0
Then it is denoted by st-lim x = [.
]?eﬁnition 2.6. ([9]) Consider a nonempty set 1. Then a class 13 C P() is referred an ideal in ¢ if and only
i
(1) foreach A, B € 15, we have A U B € iy;
(2) foreach A € iy and B C A, we have B € ¢y,
where P() denotes power set of 1. {5 is called non-trivial ideal if ¢ ¢ 1.
Definition 2.7. ([9]) A nonempty group ¥y C P(1) is said to be a filter on a nonempty set ¢ if and only if
(1) 6 ¢ Yr; where 0 denotes the empty set,
(2) foreach A, B € ¢y, we have AN B € yy;
(3) every A € Yy and A C B, we have B € ;.

Definition 2.8. ([9]) A non-trivial ideal ¢; in ¢ is referred an admissible ideal if it is different from P(N) and
it contains all singletons, i.e., {x} € {4 for each x € .

Definition 2.9. ([9] An admissible ideal ¢; C P(D\I) satisfies the condition (AP) if for every sequence (A )neN
of pairwise disjoint sets from 1, there are sets B; C N, 1 € N in order that the symmetric difference A;AB;
is a finite set Vit and ey Bi € ¥1.

Definition 2.10. ([9] Let 1; C 2N be a non-trivial ideal in N. Then a sequence x = (1) is assumed to be 7
convergent to L if, Ve > O, the set
(ke N:|m—-Ll>¢}ei

In this case, we write 7 — limx = L.

Definition 2.11. ([9]) Let ¢; C 2" be an admissible ideal in N. A sequence X = (1) is assumed to be i—
Cauchy if, for every ¢ > 0,4 a number M = M(¢) such that

{keN: X —xml =€} €y
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3. i, convergence in a NNS:

In this section we introduce the notion of ideal convergence of double sequences in a NSS. In every part
of the article, we consider N;Z as, non-trivial ideal of N X N.

Definition 3.1. Let (F,N, 7, ) be a NNS and 1 be NN. A double sequence x = (sj) of elements of F is called
Nj,-convergent to L € F with regard to n if, for each ¢ > 0and t > 0, {(j, k) € NXN : N((sjx —L,t) <1—¢) or
n((sjx — L, t) > €)} € I Here N?z—limx =L

Theorem 3.2. Consider (F,N,d,-) as, a NNS and n be NN. Then, Ve > 0 and t' > 0, following are analogous to:

1 Ng —limx = L.

1°

@ {1 k) eNXN:G(su—Lt,#)<1—c €N, B(si—Lt')2e €Ny and Y (sje— L") 2 e} € Ny,.
@) (i) eENXN:G(su-Lt)>1—¢B(sp—Lt)<eand Y(sp—Lt')<e}eNy).
{ (

@ {5 eNXN:G(sp—Lt)>1-e} e F(N,),{(ik) e NXN:B(sp - L,t') < e € F(N; )} and
[ e NXN:Y(si - L,t) < e} e F(N;)}.

di : o r\ — T _ 13 > o Y — m_1; o Y —
(5) Nj ~LmG (sp—L,#') = 1,N] ~limB(sjx~L,#') = 0and N] ~limY (s ~ L, ') = 0.
Proof. The proof is a standard verification, so left. [J

Theorem 3.3. Let(F, N, d,-) be a NNS and 1 be NN. Assuming that a double sequence x = (sjk) is Ni,— convergent
with regard to 1, then N? — lim x is unique.
2

Proof. Let N'7 — lim X be not unique. Suppose that N T —limx = L; and N” —limx = L,. Given ¢ > 0,
choose ¥ > 0 such that(1-7)o(1-7)>1—cand7=7< g Then, for any ¢’ > 0 defme the following sets as,:
k(7 t) = {(j,k) ENXN: G(s]-k -1, t'/Z) <1- f},
ka2 () = () e NXN:G(sp - L 1/2) <1-7),
kpa (7, t') = {(j,k) ENXN: G(sjk -L, t’,2) > f}
ke2 () = {(9,K) EN XN : G(sje — L, t'/2) 2 #
kyi (7, 1) = {(j,k) eNXN: G(s]-k -L, t’/2) > f},
k2 () = {(iK) e N XN : G(sje — L, t'/2) 2 7
Since, NI —limx = L;, we have

ko1 (7, ) kg () and kya(F, £) € B,

Furthermore, using NZ —limx = Ly, we get

kco(F, 1), ks, (7,t') and kya (7, t') € 1. A

Next let kq (f, V) = (kG.l (f”, i") Ukgo (7, l")) N (kB.l (f, yu kB.Z (7, f’)) N (ky1 (f, F)Ukys (1\”, t')) € 1,. Then
we find that k,(#,t) € i,. This denotes that its complement kg(;’, t) is a non - empty set in F (22) If
(j, k) € kf,(f, t'), then we have three possible cases. That is, (j, k) € kg_l (F,t') Nkca (F,t') or (5,k) € kg, (7, )N
k(7 t)or(j, k) € kS, (7, ') Nky2 (7,t'). Then we have

G(Ly—Lyt) > G(sjk ~ L, %)5@(5]-,( ~ L, %) S (@ -Po-F>1—c¢
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Since, € > 0 is arbitrary, we get G (L; — L,,t’) = 1 for all ' > 0, which yields L; = L,. On the contrary, if
(j k) € ki (7, 1) Nkp2(7, 1) and (j, k) € k‘%l (7, ') N kya(#, t), then we may able to write that

. . 2\ . t2
B(L11 —Lz,t/) < B(S]'k—Ln, E)'B(Sjk—L)\z, E) <f_.=7F<e¢

and Y (L1 — L, t') < Y(Sjk - L, %) . Y(S]-k —-L,, %) <7 =7 < ¢ respectively.
Therefore, we have B(L), — L, ') = 1 for all t' > 0, which yields L; = L, and Y (L1 — Lp, t') = 1, for
all ' > 0, which yields L; = L. Therefore, in all the cases we conclude that Ng — limx is unique. This
2

completes the proof of the theorem. O
Theorem 3.4. Let (F,N,0,-) be a NNS and 1 be NN. If1, is an admissible ideal, then we have the following:
(1) Ifn - limsy =L, then N —limsj = L.
2
IfNA —limsj = Ly and N” —lim tj = Ly, then N’ - hm( Sk + t]]k> (L;1 + Lz).
3) IfN? —lim sy = L,then Ng —limaSy = aL.
2 2

Proof. (1) Suppose that Nl? —limsy = L2. Then for each € > 0 and t’' > O, there exists a positive integer ny
2
such that

G(sjk—L t)>11—e B(s]k—L t)< sandY( =L, t) < ¢, for each k > ng. Since, the set
Ae) = {(I,k) ENXN:G(@-Lt)<1-¢ orB(sjk -L ,t’) > ¢or Y(sjk —L,t’) > e} contained
in{1,2,........ ,N — 1} and the ideal ?2 is admissible, A(¢) € 1,. Hence N — limsy = Ly.
(2) Let Nr’ limsy = L, and Nr’ hmt’ =L,. For a given € > 0, choose ¥ > 0
such that (1-%o(l —%)>1- s and r- r < €. Then, for any #' > 0, we define the following sets
ke1 (1) ={(,k) e NxN:G
keo (1) = { (,k) e NXN:G
k1 (£ ) ={(i, k) e NXN: G
kpa (£,t) = {(, k) e NXN: G
ky1 (5, ) ={(,k) e NXN: G
kyz (|, 1) = {(i,k) e NXN: G

Since, N; —limsy =1;1, we have
2

kg1 (¥, 1), kg (£, 1) and kys (£, t') € 1.
Furthermore, using NZJ —limt, =Ly, we get
2

kG.Z (f/ t/) s kBZ (f/ t,) and kY.Z (f/ t,) € ,1\2~
Letk, (,t') = (kg1 (F,t') Ukga (F, 1) N (kg (F,t) Ukpa (F, ') N (ky1 (&, t') Ukyo (F, 1)) € 1. Then k; (f, 1)

€ 1, which denotes that K} (,t') is a non - empty set in P(Al). Now we have to show that Kj (f,t') C
((1,4) e NX N : G((sp + t;kk) —(Ly, + L), t) > 1— &, B((s + t].'k) —(Li1+1Ly),t) < e and Y (s + t;.kk)—
Ly + Ly),t) < el If (4, k) € Kk} (¥,t'), thenwe have G (sjk - Ly, %) >1-%,G (ti'f - L, %) >1-%B (sjk - L, %) <
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' — Lo, %) <¥, Y(sjk —L,, "5) < f,Y(t}k — Ly, %) < ¥. Therefore, G((sjk + t}k) - (L1 +Ly2) ,t') >

This shows that k, (f, t') {(j, k) € NxN: G (s + t;.k) —(Lig + L), t) > 1 — &, B((s + t;.k) — (L + Ly),t)
<eand Y ((s + t;.k) — (L1 +Lo),t') < e}. Since, k¢ (£, t') € F (L), N] —lim (s + t;.kk) = (L; + Ly).

(3) It is obvious for « = 0. Now let @ # 0. Then for a given e > 0 and ¢’ > 0,

B(e) = {(j,k) eNXN: G(sjk - LN,t’) >1—g¢, B(sjk - L,,t’> < ¢ and Y(sjk —L,t’) < e} e F (i)

It is sufficient to prove that for each ¢ > 0 and t’ > 0,

B(e) C {(i, k) e NXN: G(aS]-k —al, t’) >1 - E,B(asjk —alL, t’) < ¢ and Y(as]-k —alL, t’) < e}.

Let (j, k) € B(¢). Then we have

G(sjk - L’,t’) >1-¢B (sjk -L, t’) < eand Y(sjk - L’,t’) <e.

So, we have

G asi —al’,t) = sk ~ 1) > G5 ~L,¥)aG(0, = ~ ) = G sy ~L,t) a1

|| |a|
=G(s -Lt)>1-e
Furthermore,
. . t . . t .
B (asy — al, ¥ :B( | —L,—)sB N Y -B(O,——t’)=B L —Lt)-0
(CYS]]( o ) S]k |0(| (S]k k, ) |O(| (S]k )
= B(sjk -1, tt) < e and
t t
Y(as]-k —al,, tt) = Y(Skk -L, m) < Y(Skk - Lk,,t/) . Y(O, m - t’) = Y(Skk - Lk,,t/) -0
= Y(S]'k -L, t’) < E&.
Hence, we have
B(e) {(f, k) e NxN: G(asjk —al, t’) >1-¢,B (asjk —al, t’) < ¢ and Y(ozs]-k —al, t’) < e} and from
(2), we conclude that N?Z — lim asyc = aL.. This completes the proof of the theorem. [J

4. I;-convergence in a NNS

We have introduced the concept of f; - convergence of double sequences in a NNS in the following
section.

Definition 4.1. Let (F, N, d,-) be a NNS and 1 be NN. We say that a double sequence x = (sjk ) of elements in

F is said to be f;—convergent to L € F with respect to if 3a subset k = {(iy, ) 1 fn <f2 < ki < kp <--+}
of N x N such that k € F(fz) (i,e. NxN\ ke f; ) and 1 — limx,,k,, = L as, m — co. In this case we write

N? limx = L and Ljs is called the i; — limit of the sequence x = (sjk ) with respect to 1.
2

Theorem 4.2. Let (F,N,0,) be a NNS and 1 be NN. Let T, be an admissible ideal. IfNZ’ —limx = L, then

Nj —limx =L

2

Proof. Suppose that N?z —limx = Lj. Then define k = {(im,km) tip <<t <k < } € F(Zz) (i.e.
N x N\k = H (say) € i; ) such that  — lims; ,, = L as, m — oo.
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But then for each ¢ > 0 and t > 0, there exists a positive integer ny such that:
G (si,x, —L,t')>1—¢ B(sjx, —Lt)<e,Y(sk, —Lt)<eVm>N
We know that the set:
{Gims k) € k-
G (S, — 5 ) <L -,
B Sk, — 5 t) 2 €

or

m

Y (Si,k, — xot) = €}

is contained in {i1 <i» < -+ <in-1;f1 < T <--- < ky_1} and since, the ideal 1, is admissible, we have:

{Go Ken) € K2 G (Sj0, = L' ¥) S 1=, B(5j1, —L,t') 2 e 0r Y (5,0, — L, t') 2 &} € 5.

Hence {(j, k) e NX N : G(si,x, — La, t') <1-¢,B(st,x, —La, t') = € or
Y(Sjmkm - L,t’) > e} CHU{i1<h<--<inpfi<h <---<tyq)) el,forall e >0and t' > 0. Therefore,

we conclude that Nl” —limx=L. O
2

Remark 4.3. The following example shows that the converse of Theorem 4.2. may not be true in general.

Example 4.4. Let (R, || - ||) be denote the space of all real numbers with the usual norm and let dob = ab and
d-b=min{a, b} + 1¥4,b € [0,1] ,G (%, t') = 2 B(x,t') = 2L and Y (x, t') =

v Y Al VA
Then (R, N, 8,-) ) isa NNS and nis NN.
LetNXN = UjjA;jbe a decomposition of NXN such that, for any ( m,11) € NXN, each A;; contains infinitely

many (i,j)’s, where i > m, i > it and A N Ay = 0 for (i,i) # (m, 7). Now, we define a sequence s, = % if
(m, 1) € Ay. Then G (s, t') = t+|gmn| — 1,as, m,n — oo. B(sym, t') = % — Oand Y (s, t') = % -0,

as, m,n — oco. Hence N” —limx = 0, as, m,11 — co. Now suppose that N —limsu; = 0, as, m, it — co.
12 2

Then, dasubsetk = {my <mp <--+;1y <y <---} of N X N such thatk € P(iz) and n — lims;,;,,, = O as,

j — oo. Since, k € F (iz), thereisaset H € F (iz) such that k = N x N\H. Now, from the definition of 7,3,
say, p € N such that

p oo 14 0
m=1 \n=1 m=1 \n=1

Then we have A1).4+1) C k and therefore s, = (P++)2 >0,

for infinitely many (3, 11;) s from k. This results to n—lims,,, = 0, as, i — co. Therefore, the assumption

N;’* — lims,;n = 0, as, m, 1 — oo is incorrect. Hence the converse of the theorem may not be true. This

corznpletes the proof of the theorem.

Remark 4.5. From the above example it is clear that f; - convergence implies i, - convergence but not
necessarily converse. Now the question arises under what condition the converse may hold. For this we
define the condition (AP) and see that under this condition the converse holds.

Definition 4.6. An admissible ideal 7, C P(N X N) is said to satisfy the condition (AP) if for every sequence
(An)yen of pairwise disjoint sets from 7, there are sets By C N such that the symmetric difference A;ABy is
a finite set for every i and Uyen By € 1o.
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Theorem 4.7. Let ( F,N,8,- ) be a NNS and n be NN. The ideal i, satisfies the condition (AP). If x = ( ) is a

sequence in F, N? —limx =L, then Ng» limx = L.
2 2

Proof. Suppose i, satisfies the condition (AP) and N? —limx = L. Then foreach ¢ > 0 and t' > 0,
2
{0 e NXN:G(sj —Lat) <1—¢B(sp —Lat') 2 e or Y (s = A" t) > e} € hpone (D).
We define the set” A, forp € N,and t’ > 0 as,

Ap={1eNXN: 11 <G(si—Lt) <1- 21— <B(sp—Lt)< 2 orl— 4 <Y(su-Lt)
<l}

=p
It is obvious that {A{, A,,....... } is countable and belongs to i, and ANA =0 fqr i#i By the
condition (AP), there is a countable family of sets {A;, Ay,...... } € 1, such that "A;AB; is a finite set

for each 1 € N and B = Us j B, € 1,. From the definition of the associate filter F (iz), there is a set
keF (22) such that k = Nx N\ B.. In order to prove the theorem, we have to show that the sequence
(Sjk)(j,k)ek is convergent to L with respect to . Let 6 > 0 and t" > 0. Choose 4 € N such that }] <
5. Then {(j,k) e NXN: G (s — L, t’) <1-1,B(s) —La,t) 21 or Y(sp — L, t') 21} € (k) € NxN :
Gsg—Lat) <11 B(sic—Lat') = Lor Y(sp—Lyt) > L cUT A,

Since, "AB;,1=1,2,...... ,q+1are f1n1te, A(fo, ko) € N X N such that

(UEB) 0 {(,K) ¢ j 2 fo and k2 ke} = (ULTA) N {0 11 2 fo and k > ko}.

If i > io, k = ko and {(j, k) € k, then (j, k) ¢ U?;]l Bi. Therefore, from (1), we have (j, k) ¢ Uq+ A;. Hence,
Vi> fo,k = ko and (j, k) € k, we have

G(si—Lt)>1-06B(si—L,t') <oand Y (s — Ly, t') < 6

Since, 0 is arbitrary, we have D\I;ﬂ —limx = L. This completes the proof of the theorem. [
2

Theorem 4.8. Let (F,N,d,-) be a NNS and 1 be NN. Then the following conditions are equivalent:

(1) Nl” —limx =L.
(2) There exist two sequences y = (u]-k) and z = (ﬁjk) in F such that x = y + z,n —limy = L and the set
{G,k) : 05 # O} € 1o, where 6 denotes the zero element of F.

Proof. Let us consider that the condition (i) holds. Then 3 a set k = {(im, k) :fp <2 <+ ;fa <fr <---} of
N X N such that
keF( )andn—hmx Wk, = L, as, m — oo,

m

We define the sequence y = ( ) and Z = (\]k) as, follows:

) sk if (j, k) € k
YEEY Lif (k) ek

and iy = s — @ for all {(j, k) € Nx N. For given ¢ > 0,t' > 0 and (j, k) € k°, we have {(i, K)o #
0} e 1.

Let us consider that the condition (ii) holds and k = {(j, k) : jjk = } Clearly, k € F (1) is an infinite set.
Letk = {(im,fm) th<ip<-h<h<-o } Since, Xj,x, = ¥i,k, and n—limy; i, = L,n—lim%,x, =L as,
m — oo. Hence N} — limx = L. This completes the proof of the theorem. [
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5. 7, and i’ — Cauchy double sequences in NNS

We have defined , and 7,-Cauchy double sequences on NNS in this section and have proved that 1,
convergence and #,-Cauchy are analogous on NNS.

Definition 5.1. Let (F,N,d, - ) be a NNS and n be NN. Then a double sequence x = (sjk) is said to be iz—
Cauchy with respect to. 7 if, for every ¢ > 0 and t' > 0,AN = N(¢) and M = M(e) such that, for all
Lp>Nkgq> M,{(i,k) eNXN: G(sjk - L,t') <l-¢ orB(sjl< - LL,t’) > e or Y(sjk —Lﬁ,tl) > e}} ei,.

Definition 5.2. Let (F, N, 7,-) be a NNS and 1 be NN. Then a double sequence x = (s) is said to be I;-Cauchy
with respect to 1) if there exists a subset K = (jy, ki) : j1 < j2 <-+-;k1 <kp <---0of N X N such that K € F(I»)
and the subsequence (s;,,) is an ordinary Cauchy sequence with respect to 7.

The following theorems are analogues to our Theorems 4.2 and Theorem 4.7, respectively and can be
proved applying similar lines.

Theorem 5.3. Let (F,N,5,-) be a NNS and 1 be NN. If a double sequence x = (sjk) is 15-Cauchy with respect to 1,
then it is ip-Cauchy with respect to 1.

Theorem 5.4. Let (F,N,d,-) ) bea NNS and 1) be NN. Let the ideal 1, satisfy the condition (AP). If a double sequence
X = (sjk ) is 1p-Cauchy with respect to n, then it is also 1;-Cauchy with respect to 1.

Now, we prove the following characterization.

Theorem 5.5. Let (F,N,5,-) be a NNS and 1 be NN. Then a double sequence x = (sjk) is iz—convergent with respect
to. n if and only if it is 1,-Cauchy with respect to 1.

Proof. Let x = (sjx) be ﬁz—convergent to L with respect to 7, i.e., N?Z -lim x = L.. Choose 7 > 0 such that
(1-Mo(L—-7)>1-¢cand 7-7 < €. Then, for all ¥’ > 0., we have 'A = {(j,k) eNXN: G(sjk —L',t’) <1-¥%
orB (sjk - LA,t’) >for Y(sjk - Ll,t’) > f} €.

This denotes that

0+ A= {(j,k) ENXN: G(sjk - Ln,t’) >1- f,B(sjk - LA,t’) <¥or 1/(5jk - LA,t’) < r} € F(%).Let )
€ A°. Then we have G(qu -L, t’) >1- forB (qu -L, t’) < for Y(qu -L, t’) <r

Now let

B= {(i,k) eNxN: G(sjk —qu,t’) <l-¢or B(sjk —qu,t’) > eor Y(sjk - qu,t’) > 5} €.

We have to show that B C A. Let (j, k) € B. Then we have

G(sjk = Spg %) <1- e,B(sk = Spg, %) > & or Y(sjk = Spys %) > e

We have two possible cases. We first consider that G (skk = Spqs t’) < 1-¢. Then we have G (skk - L, %) <

1- ¥. Therefore (j, k) € "A. Otherwise, if G (sjk -k %) > 1-¥. Then

1 - &2 G(sj =50 t') 2 G55~ L', §) 3G (sp LV §) > (1= Ho(1 - 1) > 1 - ¢,

which is not possible. Hence B C "A.

Likewise, consider that B(sjk — Spg, t’) > ¢. Then we have B(sjk -L,, %) > r. Therefore (j, k) € "A.

Otherwise, if B (sjk -L, é) < 1. Then
e< B(sjk —s,,q,t’) < B(sjk - L,t’/Z) . B(qu - L,t’/2) <F-¥<¥,

which is not possible. Hence B c "A.



R. Dhar, A. Debroy / Filomat 39:8 (2025), 26132623 2622

Similarly, considering Y (sjk = Spg, t’) > ¢, we can show that B c "A.

Sufficiency. Let x = (sjk) be i,-Cauchy with respect to t but not i,-convergence with respect to. 7.
Then 3 M and N such that A(e,t) = {(j,k) eNXxN: G(sjk — SMN, t’) <1l-¢ or B(sjk — SMN, t’) > ¢ or
Y(Sjk - SMN,t,) > S} S iz and

B(e,t') = {(j,k) e NX N :

’

t
{G (Sjk - L}’l/ E

’

. t
B(sjk -L,, E) < eand

)>1—&

’

L,t
Y(Sjk— t_’ni) < 8}

~

€ 1ip.

Equivalently, B (¢, t’)} € F(fz) Since,

G(Sjk - SMN,t’) > 2G(Sjk - L;\, t2—,) >1-—g¢,

B(S]'k - SMN,t,) <2B (S]'k -1, t//Z) <€

Y(Sjk — SMN, t’) < ZY(S]'k -L, %’) <ée
if G(sjk -L, %) >(1- e)/Z,B(sjk -L, %) <¢/2and Y(sjk - L %) < €/2, respectively, we have A° (¢, t) € 1
andso A(e,t') € F (fz)

which is a contradiction to  is 7, — Cauchy with respect to. 1. Hence x must be i,-convergent with respect
to. NN 7. This completes the proof of the theorem. [

Likewise, we can prove the following theorem.

Theorem 5.6. Let (F,N,8,-)) bea NNS and 1 be NN. Then a double sequence x = (sjk) is 1} -convergent with respect
to. 1 if and only if it is iy-Cauchy with respect to. 1.

6. Conclusion:

In this article, we have investigated a more general type of convergence for double sequences, that is,

i - convergence as well as #, - Cauchy in a more general setting, i.e. in a NNS. We have also studied 7;

convergence as well as 73-Cauchy in a NNS. We have established that 7,-convergence and #,-Cauchy are
equivalent in a NNS. These definitions and results have provided new tools to deal with the convergence
problems of double sequences occurring in many branches of science and engineering.
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