Filomat 39:8 (2025), 2625–2637 https://doi.org/10.2298/FIL2508625B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some topological properties of *e*-space and description of τ -closed sets

R. B. Beshimov^a, D. N. Georgiou^{b,*}, R. M. Juraev^a, R. Z. Manasipova^a, F. Sereti^c

^aNational University of Uzbekistan, University st. 4, Tashkent, 100174, Uzbekistan ^bUniversity of Patras, Department of Mathematics, 26504 Patra, Greece ^cUniversity of Western Macedonia, Department of Mathematics, 52100 Kastoria, Greece

Abstract. In this paper we study preserving properties of the *e*-space under the normal functors Π^n , SP^n and \exp_n . We prove that when a topological space *X* is an *e*-space, the spaces X^n , SP^nX and \exp_nX are also *e*-spaces. We also study the behavior of *e*-continuity of mappings, proving that the functors Π^n , SP^n and \exp_n preserve the *e*-continuity. In addition, we introduce the notions of τ -boundary points, τ -cluster points and τ -boundary of a set and study many of their properties.

1. Introduction and preliminary notes

Throughout the paper all spaces are assumed to be T_1 -spaces. The paper [1] introduced and investigated *e*-spaces and *e*-continuous mappings. In what follows, we enrich such related studies of *e*-spaces, investigating preserving properties of the *e*-space under some normal functors. We consider the following functors: Π^n , SP^n and \exp_n .

For a given finite number *n*, the operation of raising spaces to the *n*-th power extended to a covariant functor in the category of topological spaces and their continuous mappings. This *n*-th power denoted by Π^n , i.e. $\Pi^n(X) = X^n$ for a topological space *X*. For a mapping $f: X \to Y$ we obtained the mapping

$$\Pi^n f \colon X^n \to Y^n$$

defined by the formula

$$\Pi^{n} f(x_{1}, x_{2}, \dots, x_{n}) = (f(x_{1}), f(x_{2}), \dots, f(x_{n})).$$

The functor Π^n is a normal functor in the category of compact spaces and their continuous mappings [9].

It is known that a permutation group is the group of all permutations, that is one-to-one mappings $X \rightarrow X$. A permutation group of a set *X* is usually denoted by *S*(*X*). Especially, if $X = \{1, 2, ..., n\}$, then *S*(*X*) is denoted by *S*_n.

Let X^n be the *n*-th power of a compact space X. The permutation group S_n of all permutations acts on the *n*-th power X^n as permutation of coordinates. The set of all orbits of this action with the quotient topology is denoted by SP^nX . The orbit of $(x_1, x_2, ..., x_n) \in X^n$ is denoted by $[(x_1, x_2, ..., x_n)]$. Thus, points

²⁰²⁰ Mathematics Subject Classification. Primary 54C05; Secondary 54B20.

Keywords. e-open set, *e*-space, *e*-continuity, τ -closed set, τ -boundary points, τ -cluster points, τ -boundary of a set.

Received: 28 July 2024; Revised 21 December 2024; Accepted: 11 January 2025

Communicated by Ljubiša D. R. Kočinac

^{*} Corresponding author: D. N. Georgiou

Email addresses: rbeshimov@mail.ru (R. B. Beshimov), georgiou@math.upatras.gr (D. N. Georgiou), rmjurayev@mail.ru (R. M. Juraev), rezidabadrutdinova@gmail.com (R. Z. Manasipova), seretifot@gmail.com (F. Sereti)

of the space SP^nX are finite subsets (equivalence classes) of the product X^n . The space SP^nX is called the *n*-permutation degree of the space X. The *n*-th permutation degree is a quotient of X^n . Therefore, the quotient mapping is denoted by $\pi_n^s: X^n \to SP^nX$ and defined by the rule

$$\pi_n^s(x_1, x_2, \ldots, x_n) = [(x_1, x_2, \ldots, x_n)],$$

where $(x_1, x_2, \dots, x_n) \in X^n$ [2, 3, 5, 6].

Let *G* be a subgroup of the permutation group S_n . The group *G* acts on the *n*-th power of the space *X* as permutation of coordinates. The set of all orbits of this action with the quotient topology is denoted by $SP_G^n X$. The space $SP_G^n X$ is called *G*-permutation degree of the space *X*. Similar to the above discussion, the orbit of $(x_1, x_2, ..., x_n) \in X^n$ is denoted by $[(x_1, x_2, ..., x_n)]_G$ and the corresponding quotient mapping is denoted by $\pi_{n,G}^s: X^n \to SP_G^n X$ and defined by the rule

$$\pi_{n,G}^{s}(x_1, x_2, \ldots, x_n) = [(x_1, x_2, \ldots, x_n)]_G,$$

where $(x_1, x_2, ..., x_n) \in X^n$. Consider any continuous mapping $f: X \to Y$. For an equivalence class $[(x_1, x_2, ..., x_n)] \in SP_G^n X$ we put

$$SP_G^n f[(x_1, x_2, \dots, x_n)] = [(f(x_1), f(x_2), \dots, f(x_n))].$$

Thereby, a mapping $SP_G^n f: SP_G^n X \to SP_G^n Y$ is defined. It is easy to check that the operation SP_G^n so constructed is a normal functor in the category of compact spaces and their continuous mappings. This functor is called the *functor of G-permutation degree* [9].

Denote by exp *X* the set of all nonempty closed subsets of a T_1 -space *X*. The family \mathcal{B} of all sets in the form of

$$O\langle U_1, U_2, \ldots, U_n \rangle = \{F: F \in \exp X, F \subset \bigcup_{i=1}^n U_i, F \cap U_i \neq \emptyset, i = 1, 2, \ldots, n\},\$$

where $U_1, U_2, ..., U_n$ is a sequence of open subsets of *X*, generates the topology on exp *X*. This topology is called the *Vietoris topology*. The set exp *X* with the Vietoris topology is called *the exponential space* or *the hyperspace of the space X* [10]. Denote by exp_n *X* the set of all non-empty closed subsets of *X* of cardinality not greater than the natural number *n*, i.e.

$$\exp_n X = \{F : F \in \exp X, |F| \le n\}.$$

Put

$$\exp_{\omega} X = \cup \{\exp_n X : n = 1, 2, \ldots\}$$

and

$$\exp_c X = \{F \in \exp X : F \text{ is compact in } X\}.$$

It is clear that $\exp_n X \subset \exp_\omega X \subset \exp_c X \subset \exp X$ for any topological T_1 -space X.

In this paper, we study the properties of *e*-spaces and *e*-continuity mappings under the normal functors Π^n , SP^n and \exp_n . Also, based on the notion of τ -closure, we insert the new meanings of τ -boundary points, τ -cluster points and τ -boundary of a set and study many of their properties. Especially, in Section 2, we study the preserving properties of *e*-spaces under the normal functors Π^n , SP^n and \exp_n , that is we prove that if *X* is an *e*-space, then the spaces X^n , SP^nX and \exp_nX are also *e*-spaces. In Section 3, we study the meaning of *e*-continuity under the view of the above functors, proving that they preserve such kind of continuity and finally, in Section 4, we introduce and study the notions of τ -boundary points, τ -cluster points and τ -boundary of a set.

2. Main results on *e*-spaces

Let *X* be a topological space and let *A* be a subset of *X*. We denote the closure of *A* in *X* by $cl_X A$ or [*A*]. If there is no confusion with the considered space, we simply write clA. A set *G* in a topological space *X* is

called *extremely open* (briefly *e-open*) if *G* and its closure $cl_X G$ are open subsets of *X*. A subset of a topological space is called *e-closed* if its complement is an *e*-open [1]. Clearly every clopen set in a topological space is an *e*-open set, but not conversely. For example $\mathbb{R} \setminus \{a\}$ is an *e*-open subset of \mathbb{R} (for each $a \in \mathbb{R}$) which is not a clopen set.

The following lemma showed that the intersection of every two *e*-open sets is an *e*-open set.

Lemma 2.1. [1] Suppose that V is an e-open and U is an open subset of a topological space X. Then

$$cl_X(V \cap U) = cl_X V \cap cl_X U.$$

Since the intersection of two *e*-open sets in a topological space (X, τ) is an *e*-open set by Lemma 2.1, the set of all *e*-open subsets of X forms a base for a topology τ_e on X. This means that τ_e is weaker topology with respect to the original topology τ . Whenever τ_e coincides with τ (i.e., $\tau = \tau_e$), we call the space X an *e-space*.

It is known that every homeomorphic image of an *e*-space is an *e*-space (see [1, Proposition 2.11]). We generalized this proposition as follows.

Proposition 2.2. Let X and Y be topological spaces and let $f: X \to Y$ be a clopen and onto mapping. If X is an *e-space*, then Y is so.

Proof. Take an arbitrary open subset *U* of *Y*. Since *f* is continuous, $f^{-1}(U)$ is an open subset of *X*. Since *X* is an *e*-space, $f^{-1}(U)$ can be represented as a union of *e*-open subsets G_a , $a \in M$, of *X*, i.e.

$$f^{-1}(U) = \bigcup_{\alpha \in M} G_{\alpha}.$$

(Each G_a and the closures $cl_X G_a$, $a \in M$, are open in X.) Then

$$U = \bigcup_{\alpha \in M} f(G_{\alpha}).$$

By condition of the proposition f is an open mapping and so all $f(G_\alpha)$ and $f(cl_X G_\alpha)$, $a \in M$, are open subsets of Y. It suffices to prove that $cl_Y f(G_\alpha)$, $a \in M$, are open subsets of Y. Let $a \in M$. Since f is closed mapping we have

$$cl_Y f(G_\alpha) = f(cl_X G_\alpha)$$

This means that *Y* is an *e*-space. Proposition 2.2 is proved. \Box

Example 2.3. In Proposition 2.2 the condition of clopenness of mapping is essential. We consider the mapping $f: \mathbb{R}_d \to \mathbb{R}_{st}$ defined by the formula f(x) = x, where \mathbb{R}_d is the set of all real numbers with a discrete topology and \mathbb{R}_{st} is the real line. Clearly, f is a continuous mapping and \mathbb{R}_d is an e-space. But \mathbb{R}_{st} is not e-space.

Lemma 2.4. Let X be a topological space and let $G_1, G_2, ..., G_n$ be e-open subsets in X. Then the Cartesian product $G_1 \times G_2 \times ... \times G_n$ is an e-open in X^n .

Proof. Put $G = G_1 \times G_2 \times \ldots \times G_n$. We show that *G* and [*G*] are open subsets in X^n . Since G_1, G_2, \ldots, G_n (respectively, $[G_1], [G_2], \ldots, [G_n]$) are open, the set *G* (respectively $[G_1] \times [G_2] \times \ldots \times [G_n]$) is open in X^n too. It is known that the following equality holds:

$$[G] = [G_1] \times [G_2] \times \ldots \times [G_n].$$

It is easy to verify that [G] is an open in X^n . Lemma 2.4 is proved. \Box

Theorem 2.5. Let (X, τ) be a topological space and let *n* be a natural number. If X is an e-space, then X^n is an e-space.

Proof. Let *U* be an arbitrary nonempty open subset of X^n . For every $x = (x_1, x_2, ..., x_n) \in U$ there exist open neighborhoods $U_1(x), U_2(x), ..., U_n(x)$ of $x_1, x_2, ..., x_n$ respectively, such that

$$x \in U_1(x) \times U_2(x) \times \ldots \times U_n(x) \subset U.$$

We have

$$\bigcup_{x\in U} (U_1(x) \times U_2(x) \times \ldots \times U_n(x)) = U.$$

Let $B = \{G_{\alpha} : \alpha \in M\}$ be a base for the topology τ_e . Since *X* is an *e*-space there is an index subset M_i of *M*, such that

$$U_i(x) = \bigcup_{\alpha_i \in M_i} G_{\alpha_i}$$

for each i = 1, 2, ..., n. By virtue of property of Cartesian product we have

$$U_1(x) \times U_2(x) \times \ldots \times U_n(x) = \bigcup_{\alpha_i \in M_i, i=1, \ldots, n} (G_{\alpha_1} \times G_{\alpha_2} \times \ldots \times G_{\alpha_n}).$$

By Lemma 2.4 the set $G_{\alpha_1} \times G_{\alpha_2} \times \ldots \times G_{\alpha_n}$ is an *e*-open. Thus *U* can be represented as a union of e-open subsets of X^n . Therefore X^n is an *e*-space. Theorem 2.5 is proved. \Box

Theorem 2.6. Let X be an e-space and n be a natural number. Then the space of n-permutation degree SP^nX is an *e-space*.

Proof. Let *X* be an *e*-space. Then by Theorem 2.5 the space X^n is also *e*-space. It is known that the mapping π_n^s : $X^n \to SP^n X$ is clopen, i.e. the image of every open (closed) subset of X^n under the mapping π_n^s is open (respectively closed) in $SP^n X$ [8]. By virtue of Proposition 2.2, the space of *n*-permutation degree $SP^n X$ is an *e*-space. Theorem 2.6 is proved. \Box

Corollary 2.7. Let X be an e-space and n be a natural number. Then the space of G-permutation degree $SP_G^n X$ is an *e-space*.

Lemma 2.8. Let U_1, U_2, \ldots, U_n be e-open subsets of a topological space X. Then the subset $O(U_1, U_2, \ldots, U_n)$ is e-open in exp X.

Proof. It is enough to show that the subset $[O \langle U_1, U_2, ..., U_n \rangle]$ is open in exp *X*, because by definition of Vietoris topology the subset $O \langle U_1, U_2, ..., U_n \rangle$ is open in exp *X*. For every subsets $U_1, U_2, ..., U_n$ of *X* the following equality is true [7]:

$$O\langle [U_1], [U_2], \ldots, [U_n] \rangle = [O\langle U_1, U_2, \ldots, U_n \rangle].$$

Since the subsets $U_1, U_2, ..., U_n$ of X are *e*-open, the subset $O\langle [U_1], [U_2], ..., [U_n] \rangle$ is open in exp X. Then the subset $[O\langle U_1, U_2, ..., U_n \rangle]$ is also open in exp X. Lemma 2.8 is proved. \Box

Theorem 2.9. If a topological space X is an e-space, then the exponential space $\exp_{\omega} X$ is an e-space.

Proof. Consider the family

 $\mathcal{B} = \{O \langle V_1, V_2, \dots, V_k \rangle : V_i \text{ is e-open subset in } X \text{ for each } i = 1, \dots, k \text{ and } k \in \mathbb{N} \}.$

By virtue of Lemma 2.8 all elements of \mathcal{B} are *e*-open subsets of $\exp_n X$. It is sufficient to show that the family \mathcal{B} is a base of $\exp_{\omega} X$. Let U_1, U_2, \ldots, U_k be open subsets of X. Take an arbitrary point $F \in \exp_{\omega} X$ of $O(U_1, U_2, \ldots, U_k)$. Put

$$M_1 = F \cap U_1 = \{x_{11}, x_{12}, \dots, x_{1r_1}\}$$
$$M_2 = F \cap U_2 = \{x_{21}, x_{22}, \dots, x_{2r_2}\}$$

$$\dots$$
$$M_k = F \cap U_k = \{x_{k1}, x_{k2}, \dots, x_{kr_k}\}.$$

It is clear that $F = \bigcup_{i=1}^{k} M_i$. Since *X* is an *e*-space there exist *e*-open subsets $V_{11}, V_{12}, \ldots, V_{1r_1}$ of *X* such that $x_{1i} \in V_{1i} \subset U_1$ for all $i = 1, 2, \ldots, r_1$. Put

$$V_1 = \bigcup_{i=1}^{r_1} V_{1i}, V_2 = \bigcup_{i=1}^{r_2} V_{2i}, \dots, V_k = \bigcup_{i=1}^{r_k} V_{ki}.$$

In this case $V_1, V_2, ..., V_k$ are *e*-open subsets of *X* as a union of *e*-open subsets. It is easy to check that $F \in O(V_1, V_2, ..., V_k) \subset O(U_1, U_2, ..., U_k)$. Theorem 2.9 is proved. \Box

Corollary 2.10. If a topological space X is an e-space, then for each $n \in \mathbb{N}$ the exponential subspace $\exp_n X$ is an *e*-space.

3. *e*-continuity of mappings

Definition 3.1. [1] Let X and Y be topological spaces and $f: X \to Y$ be a mapping. We say that f is e-continuous at a point $x \in X$ if for each open set V in Y containing f(x) there exists an e-open set U in X containing x such that $f(U) \subset V$. A mapping $f: X \to Y$ is called e-continuous if it is e-continuous at each point of X.

Clearly every *e*-continuous mapping is continuous, but the converse is not necessarily true in general. In fact if the mapping $id: \mathbb{R} \to \mathbb{R}$ is the identity, then it is continuous but not *e*-continuous. Whenever *X* is an *e*-space, then every continuous mapping on *X* is *e*-continuous.

Theorem 3.2. Let X and Y be topological spaces and n be a natural number. If a mapping $f: X \to Y$ is an *e-continuous, then the mapping* $\Pi^n f: X^n \to Y^n$ *is e-continuous.*

Proof. Let $f: X \to Y$ be an *e*-continuous mapping. For any point $x = (x_1, x_2, \dots, x_n) \in X^n$ we have

$$\Pi^{n} f(x) = (f(x_{1}), f(x_{2}), \dots, f(x_{n})).$$

Choose an arbitrary open neighborhood *V* of $(f(x_1), f(x_2), ..., f(x_n)) \in Y^n$. In this case there is an open subset V_i of *Y* containing of $f(x_i)$ such that

$$V_1 \times V_2 \times \ldots \times V_n \subset V.$$

Since $f: X \to Y$ is *e*-continuous there is an *e*-open subset G_i of X such that $x_i \in G_i$ and $f(G_i) \subset V_i$ for all i = 1, 2, ..., n. We have

$$\Pi^n f(G_1 \times G_2 \times \ldots \times G_n) = f(G_1 \times G_2 \times \ldots \times G_n) \subset V.$$

By Lemma 2.4 the set $G_1 \times G_2 \times \ldots \times G_n$ is an *e*-open in X^n . On the other hand the point *x* belongs to $G_1 \times G_2 \times \ldots \times G_n$. Therefore, $\prod^n f$ is an *e*-continuous. Theorem 3.2 is proved. \Box

Corollary 3.3. The functor Π^n preserves the e-continuity of mappings.

Theorem 3.4. Let X and Y be topological spaces and n be a natural number. If a mapping $f: X \to Y$ is an *e-continuous, then the mapping* $SP^n f: SP^n X \to SP^n Y$ is also *e-continuous.*

Proof. Let $f: X \to Y$ be an *e*-continuous mapping. For any orbit $[x] = [(x_1, x_2, ..., x_n)] \in SP^n X$ we have

$$SP^n f([x]) = [(f(x_1), f(x_2), \dots, f(x_n))].$$

2629

Take an arbitrary open neighborhood *V* of $SP^n f([x])$. In this case for each i = 1, ..., n there is an open subset V_i of *Y* containing of $f(x_i)$ such that

$$[V_1 \times V_2 \times \ldots \times V_n] \subset V,$$

where

$$[V_1 \times V_2 \times \ldots \times V_n] = \{[z]: \text{ there exists } \sigma \in S_n \text{ such that } z_i \in V_{\sigma(i)} \text{ for all } i = 1, \ldots, n\}$$

By *e*-continuity of *f* there exists an *e*-open subset G_i of *X* such that $x_i \in G_i$ and $f(G_i) \subset V_i$ for all i = 1, 2, ..., n. Hence

$$SP^n f([G_1 \times G_2 \times \ldots \times G_n]) = [f(G_1) \times f(G_2) \times \ldots \times f(G_n)] \subset [V_1 \times V_2 \times \ldots \times V_n] \subset V.$$

Clearly, $[G_1 \times G_2 \times ... \times G_n]$ is an open neighborhood of [x]. We state that $cl([G_1 \times G_2 \times ... \times G_n])$ is open in SP^nX . Since π_n^s is closed mapping we have

$$cl([G_1 \times G_2 \times \ldots \times G_n]) = cl(\pi_n^s(G_1 \times G_2 \times \ldots \times G_n)) = \pi_n^s(cl(G_1 \times G_2 \times \ldots \times G_n)).$$

Therefore $cl([G_1 \times G_2 \times ... \times G_n])$ is an open subset as the image of an open set under the open mapping π_n^s . Theorem 3.4 is proved. \Box

Corollary 3.5. *The functor SPⁿ preserves the e-continuity of mappings.*

Theorem 3.6. Let X and Y be topological spaces and n be a natural number. If a mapping $f: X \to Y$ is an *e-continuous, then* $\exp_n f: \exp_n X \to \exp_n Y$ *is an e-continuous mapping.*

Proof. Take an arbitrary point $F \in \exp_n X$ with $F = \{x_1, x_2, \dots, x_n\}$. Let

$$\Phi = \exp_n f(F) = \{f(x_1), f(x_2), \dots, f(x_m)\} \ (m \le n).$$

Choose an arbitrary neighborhood $O(V_1, V_2, ..., V_k)$ of Φ , where $V_1, V_2, ..., V_k$ are open subsets of *Y*. Consider the following subsets of *Y*:

$$M_{1} = \Phi \cap V_{1} = \{f(x_{11}), f(x_{12}), \dots, f(x_{1r_{1}})\};$$
$$M_{2} = \Phi \cap V_{2} = \{f(x_{21}), f(x_{22}), \dots, f(x_{2r_{2}})\};$$
$$\dots$$

 $M_k = \Phi \cap V_k = \{f(x_{k1}), f(x_{k2}), \ldots, f(x_{kr_k})\},\$

where $\bigcup_{i=1}^{k} M_i = F$. Since *f* is *e*-continuous there exits an *e*-open set U_{1i} in X with $\{x \in F : f(x) = f(x_{1i})\} \subset U_{1i}$

such that $f(U_{1i}) \subset V_1$ for each $i = 1, 2, ..., r_1$. For the *e*-open set $U_1 = \bigcup_{i=1}^{r_1} U_{1i}$ we have $f(U_1) \subset V_1$. Similarly, we will construct *e*-open sets $U_2, U_3, ..., U_k$ as above such that $f(U_j) \subset V_j$ for all j = 2, 3, ..., k. By Lemma 2.8 the set $O \langle U_1, U_2, ..., U_k \rangle$ is *e*-open in $\exp_n X$. It is easy to check that $F \in O \langle U_1, U_2, ..., U_k \rangle$. In addition the following inclusion holds:

$$\exp_n f(O\langle U_1, U_2, \ldots, U_k\rangle) \subset O\langle V_1, V_2, \ldots, V_k\rangle.$$

Thus the mapping $\exp_n f$ is *e*-continuous. Theorem 3.6 is proved. \Box

Corollary 3.7. *The functor* exp_n *preserves the e-continuity of mappings.*

4. On τ -boundary points of a set

 τ -closed sets were introduced by I. Juhasz in 1980 in his book [11]. In 2016, O. Okunev [12] introduced the concept of τ -closure of a set and connected its properties with τ -continuous mappings introduced by A. Arkhangelsky in [13]. In 2023, the definitions of τ -open sets and τ -interiors of a set are introduced and new properties of τ -continuous mappings are studied [2]. In this section we introduce the definitions of τ -boundary points, τ -cluster points and τ -boundary of a set and study several of their properties.

Definition 4.1. [11] Let X be a topological T_1 -space. A set $F \subset X$ is called τ -closed in X if for each $B \subset F$ such that $|B| \leq \tau$, the closure of the set B in X lies in F.

It is known that every closed subset of a topological space is τ -closed. But the opposite is not always true and the following Example 4.2 verifies this claim. Moreover, I. Juhasz in his work [11] proved that the tightness of a topological space X does not exceed τ if and only if every τ -closed subset is closed.

Example 4.2. [2] On the real line \mathbb{R} we will assume that all sets whose complement is countable are open, and we will also declare the empty set is open, i.e. the set of all real numbers \mathbb{R} has the following topology:

$$\theta = \{\emptyset\} \cup \{U : U \subset \mathbb{R}, |\mathbb{R} \setminus U| \le \omega\}$$

Since every set whose cardinality of its complement does not exceed ω is open in this topological space, then an arbitrary countable set $B \subset X$ is closed. Let's choose an arbitrary subset $M \subset \mathbb{R}$. Then every subset $B \subset M$, whose cardinality does not exceed ω , coincides with its closure, which means that $cl_X B \subset M$ for all $|B| \leq \omega$. From the arbitrariness of the set M it follows that each subset of this space is ω -closed. In particular, the set of all irrational numbers in this space is ω -closed, but not closed.

Definition 4.3. [2] A set $F \subset X$ is called τ -open in X if its complement $X \setminus F$ is τ -closed. Any τ -open set containing a point $x \in X$ is called a τ -neighborhood of this point.

Definition 4.4. [2] Let X be a topological T_1 -space. The τ -interior of a subset A of X is the union of all τ -open subsets of A, i.e.,

$$Int_{\tau}A = \bigcup \{U : U \subset A \text{ and } U \text{ is } \tau\text{-open}\}.$$

It is known that the set $Int_{\tau}A$ is a τ -open subset. In general, for a subset A of a topological space X τ -interior of A is not open in X, i.e. $Int_{\tau}A \neq IntA$. We consider the topological space in Example 4.2. As a subset A we take the set of all rational numbers \mathbb{Q} . Then $Int_{\omega} \mathbb{Q} = \mathbb{Q}$, but $Int\mathbb{Q} = \emptyset$.

Proposition 4.5. [2] Let X be a topological T_1 -space. Then for every subset $A \subset X$ we have the following equality

$$Int_{\tau}A = X \setminus [X \setminus A]_{\tau}.$$

Definition 4.6. [2] *The* τ *-closure of a subset A of a* T_1 *-space X is defined as follows:*

$$[A]_{\tau} = \bigcup \{ \operatorname{cl}_X B : B \subset A, |B| \le \tau \}.$$

Recall that a subset *A* is τ -*dense* in *X* if $[A]_{\tau} = X$ [12]. For any subsets *A* and *B* of the space *X* the following relation holds: if $A \subset B$, then $[A]_{\tau} \subset [B]_{\tau}$.

Example 4.7. On the set of real numbers with the natural topology, we choose the set of all rational numbers. Let's find its ω -closure

$$[\mathbb{Q}]_{\omega} = \bigcup \{ cl_{\mathbb{R}}B : B \subset \mathbb{Q}, |B| \le \omega \}.$$

As a subset $B \subset \mathbb{Q}$, $|B| \leq \omega$ we take the set itself \mathbb{Q} , the closure of which coincides with the set of real numbers. This means $[\mathbb{Q}]_{\omega} = \mathbb{R}$, and we can conclude that the set of rational numbers on the Euclidean line is ω -dense.

Definition 4.8. [13] A mapping $f : X \to Y$ is called τ -continuous if for every set $A \subset X$ such that $|A| \leq \tau$ the mapping $f|_A : A \to Y$ is continuous.

Theorem 4.9. [4] For a mapping $f : X \to Y$ of arbitrary topological T_1 -spaces X and Y the following statements are equivalent:

1) $f: X \rightarrow Y$ is τ -continuous;

- 2) For every closed F of Y, the preimage $f^{-1}(F)$ is τ -closed in X;
- 3) For every τ -closed F of Y, the preimage $f^{-1}(F)$ is τ -closed in X;
- 4) $f([A]_{\tau}) \subset [f(A)]_{\tau}$, for every $A \subset X$;
- 5) $[f^{-1}(B)]_{\tau} \subset f^{-1}([B]_{\tau})$, for every $B \subset Y$.

Theorem 4.10. Let X be a topological T_1 -space. The operator of τ -closure has the following properties:

1) $[X]_{\tau} = X;$ 2) $[\emptyset]_{\tau} = \emptyset;$ 3) $A \subset [A]_{\tau};$ 4) $[A \cup B]_{\tau} = [A]_{\tau} \cup [B]_{\tau};$ 5) $[[A]_{\tau}]_{\tau} = [A]_{\tau}.$

Proof. Any space *X* can be covered by its subsets, the cardinality of which does not exceed the cardinal number τ . This means that every space coincides with its τ -closure. The only subset of the empty set is the empty set whose closure is equal to itself. And this means that it is equal to its τ -closure. Properties 1) and 2) have been proven.

Property 3) is true, since any set A can be covered by subsets B whose cardinality does not exceed τ , i.e.

$$A = \bigcup \{B : B \subset A, |B| \le \tau\} \subset \bigcup \{cl_X B : B \subset A, |B| \le \tau\} = [A]_{\tau}.$$

For property 4), since $A \subset A \cup B$ and $B \subset A \cup B$, we have $[A]_{\tau} \subset [A \cup B]_{\tau}$ and $[B]_{\tau} \subset [A \cup B]_{\tau}$. It follows that

$$[A]_{\tau} \cup [B]_{\tau} \subset [A \cup B]_{\tau}.$$

Due to the fact that every set is a subset of its τ -closure, $A \subset [A]_{\tau}$, $B \subset [B]_{\tau}$ (property 3)), we have $A \cup B \subset [A]_{\tau} \cup [B]_{\tau}$. Thus, $[A \cup B]_{\tau} = [A]_{\tau} \cup [B]_{\tau}$.

Let us prove property 5). Let us represent the τ -closure of the subset A as $[A]_{\tau} = \bigcup \{ cl_X B : B \subset A, |B| \le \tau \}$ and denote it by M. Then

$$[[A]_{\tau}]_{\tau} = [M]_{\tau} = \bigcup \{ cl_X C : C \subset M, |C| \le \tau \}.$$

Any subset $C \subset M$ whose cardinality does not exceed a cardinal number τ can be expressed through its elements, i.e.,

$$C = \{x_s : s \in S, |S| \le \tau\}.$$

Since $C \subset \bigcup \{cl_X B : B \subset A, |B| \le \tau\}$, then from the family $\{cl_X B : B \subset A, |B| \le \tau\}$ we can select a subfamily

$$\{\mathrm{cl}_X B_s: x_s \in \mathrm{cl}_X B_s, s \in S\}$$

We denote the union of all elements of the family $\{B_s : x_s \in cl_X B_s, s \in S\}$ by B^* . Since the cardinality of the set B_s does not exceed the cardinal number τ for each $s \in S$, then the cardinality of B^* does not exceed the cardinal number τ . In this case, we have $C \subset cl_X B^*$. By properties of the closure of a set, we have $cl_X C \subset cl_X B^*$. It means that $cl_X C \subset [A]_{\tau}$ for all $C \subset M$ with $|C| \leq \tau$. Therefore

$$[[A]_{\tau}]_{\tau} \subset [A]_{\tau}.$$

The reverse inclusion $[A]_{\tau} \subset [[A]_{\tau}]_{\tau}$ follows from property 3). Theorem 4.10 is proved. \Box

Theorem 4.11. Let X and Y be topological spaces and $A \subset X$, $B \subset Y$. Then the following equality is valid:

$$[A \times B]_{\tau} = [A]_{\tau} \times [B]_{\tau}.$$

Proof. Let $z_0 = (x_0, y_0) \in [A \times B]_{\tau}$. Consider the projection mappings $pr_X \colon X \times Y \to X$ and $pr_Y \colon X \times Y \to Y$. Then $pr_X(z_0) = x_0 \in pr_X([A \times B]_{\tau})$. By virtue of property 4) of Theorem 4.9,

$$pr_X([A \times B]_{\tau}) \subset [pr_X(A \times B)]_{\tau} = [A]_{\tau}.$$

Hence, $x_0 \in [A]_{\tau}$. Similarly $pr_Y(z_0) = y_0 \in pr_Y([A \times B]_{\tau}) \subset [pr_Y(A \times B)]_{\tau} = [B]_{\tau}$. Based on this, $z_0 \in [A]_{\tau} \times [B]_{\tau}$ and

$$[A \times B]_{\tau} \subset [A]_{\tau} \times [B]_{\tau}$$

On the other side, let $z_0 = (x_0, y_0) \in [A]_{\tau} \times [B]_{\tau}$. We prove that $z_0 \in [A \times B]_{\tau}$. By definition of τ -closure

$$(x_0, y_0) \in (\bigcup \{ \operatorname{cl}_X C : C \subset A, |C| \le \tau \}) \times (\bigcup \{ \operatorname{cl}_Y D : D \subset B, |D| \le \tau \}).$$

This means that there are sets $cl_X C_0 \in \{cl_X C : C \subset A, |C| \le \tau\}$, which contains the element x_0 , and similarly $cl_Y D_0 \in \{cl_Y D : D \subset B, |D| \le \tau\}$, which in turn contains y_0 . Hence, $(x_0, y_0) \in cl_X C_0 \times cl_Y D_0 = cl_{X \times Y} (C_0 \times D_0)$. Then,

$$(x_0, y_0) \in \left| \left| \{ cl_{X \times Y}(C \times D) : C \times D \subset A \times B, |C \times D| \le \tau \} \right|,$$

which coincides with $(x_0, y_0) \in [A \times B]_{\tau}$. It follows from this that

$$[A]_{\tau} \times [B]_{\tau} \subset [A \times B]_{\tau}$$

and therefore, $[A]_{\tau} \times [B]_{\tau} = [A \times B]_{\tau}$. Theorem 4.11 is proved. \Box

Corollary 4.12. The product of two sets is τ -closed if and only if it's factors are τ -closed.

Corollary 4.13. The product of two sets is τ -dense if and only if it's factors are τ -dense.

Definition 4.14. Let X be a topological space. A point $x \in X$ is called a τ -cluster of a subset A of X if each τ -neighborhood of the point x has a non-empty intersection with A.

Theorem 4.15. The set of all τ -cluster points of a subset A of X coincides with the τ -closure of the set A.

Proof. Put

 $A^* = \{x \in X : x \text{ is } \tau \text{-cluster point of } A\}.$

Firstly, we prove the inclusion $A^* \subset [A]_{\tau}$. Assume that there is a τ -cluster point x of A such that $x \notin [A]_{\tau}$, i.e., $x \in X \setminus [A]_{\tau}$. The set $X \setminus [A]_{\tau}$ is τ -open, which means that it is a τ -neighborhood of the point x. But the set $X \setminus [A]_{\tau}$ don't meet with the set A. This is a contradiction that x is cluster point of A. Therefore, the set of all τ -cluster points of a set A is a subset of the τ -closure of the set A.

Now we will show $[A]_{\tau} \subset A^*$. Let us assume that there is a point $x \in [A]_{\tau}$ and there exists its τ -neighborhood $O_{\tau}(x)$ that does not intersect with A. Hence, $A \subset X \setminus O_{\tau}(x)$. Since $X \setminus O_{\tau}(x)$ is a τ -closed subset then $X \setminus O_{\tau}(x) = [X \setminus O_{\tau}(x)]_{\tau}$ and $x \notin [X \setminus O_{\tau}(x)]_{\tau}$. By property 3) of Theorem 4.10 we have $[A]_{\tau} \subset [X \setminus O_{\tau}(x)]_{\tau}$. This means that $x \notin [A]_{\tau}$, which contradicts the choice of point x. Theorem 4.15 is proved. \Box

Definition 4.16. For a topological space X the τ -density defines the smallest cardinal number of the form |A|, where A is a τ -dense subset X, *i.e.*

$$d_{\tau}(X) = \min\{|A| : A \text{ is a } \tau \text{-dense in } X\}.$$

The density of a topological space X does not always coincide with the τ -density of the space X. The following example verifies this claim.

Example 4.17. Let X be a set of cardinality of a hypercontinuum on which a countably closed topology is given, i.e., let us declare closed all subsets of the set X whose cardinality does not exceed ω . Then the subset $A \subset X$ is everywhere dense in X if and only if $|A| > \omega$, that is $d(X) = \omega_1$, while the only ω -dense subset X is itself X, that is, $d_{\omega}(X) = \omega_2$.

Definition 4.18. [14] The largest cardinal number $\kappa \ge \omega$ such that any family of pairwise disjoint nonempty open subsets of a space X has cardinality $\le \kappa$ is called the Suslin's number or the cellularity of the space X and is denoted by c(X). If $c(X) = \omega$, then we say that the space X has the Suslins property.

Definition 4.19. The largest cardinal number $\kappa \ge \omega$ such that any family of pairwise disjoint non-empty τ -open subsets of a space X has cardinality $\le \kappa$ is called the Suslins τ -number or the τ -cellularity of the space X and is denoted by $c_{\tau}(X)$.

The Suslin's number does not coincide with the Suslin's τ -number, in general. The following example verifies this claim.

Example 4.20. Let X be a set with $|X| = \omega_1$. Let us define a topology on this set by declaring closed all subsets of the set X whose cardinality does not exceed ω . Let us choose a system $\gamma = \{U_\alpha : \alpha \in A\}$ of pairwise disjoint non-empty open subsets of the space X. Let us also assume that the cardinality of the indexed set A is ω_1 . Then there are elements such as $\alpha \in A$ and $\beta \in A$ with $U_\alpha \cap U_\beta = \emptyset$ and $X \setminus (U_\alpha \cap U_\beta) = X$. But due to De Morgan's laws $X \setminus (U_\alpha \cap U_\beta) = (X \setminus U_\alpha) \cup (X \setminus U_\beta)$. According to the condition of taking the topology, the cardinality of the sets $X \setminus U_\alpha$ and $X \setminus U_\beta$ is at most countable, and hence their union $(X \setminus U_\alpha) \cup (X \setminus U_\beta)$ does not exceed ω . Then $|X| = |X \setminus (U_\alpha \cap U_\beta)| = |(X \setminus U_\alpha) \cup (X \setminus U_\beta)| = \omega$, which contradicts the condition. The last means that $c(X) = \omega$.

Let's check the Suslin's ω -number of this space. As a system of ω -open disjoint subsets, we choose all single-point sets of the space X. The last means that $c_{\omega}(X) = \omega_1$.

Definition 4.21. We say that a point $x \in X$ is τ -boundary point of a subset A, if any τ -open neighborhood of x has a non-empty intersection with both the set A and its complement $X \setminus A$. The set of all τ -boundary points of a set $A \subset X$ is called the τ -boundary of a set A and denoted by $Fr_{\tau}A$.

The following result derived easily by Definition 4.21.

Proposition 4.22. The τ -boundary of a set $A \subset X$ is the intersection of the τ -closure of the set and τ -closure of its complement, *i.e.*,

$$Fr_{\tau}A = [A]_{\tau} \cap [X \setminus A]_{\tau}$$

Theorem 4.23. The operator Fr_{τ} has the following properties:

1) $Int_{\tau}A = A \setminus Fr_{\tau}A;$ 2) $[A]_{\tau} = A \cup Fr_{\tau}A;$ 3) $Fr_{\tau}(A \cup B) \subset Fr_{\tau}A \cup Fr_{\tau}B;$ 4) $Fr_{\tau}(A \cap B) \subset Fr_{\tau}A \cap Fr_{\tau}B;$ 5) $Fr_{\tau}(X \setminus A) = Fr_{\tau}A;$ 6) $X = Int_{\tau}A \cup Fr_{\tau}A \cup Int_{\tau}(X \setminus A);$ 7) $Fr_{\tau}[A]_{\tau} \subset Fr_{\tau}A;$ 8) $Fr_{\tau}Int_{\tau}A \subset Fr_{\tau}A;$ 9) $Fr_{\tau}A = [A]_{\tau} \setminus Int_{\tau}A;$ 10) A is τ -open if and only if $Fr_{\tau}A = [A]_{\tau} \setminus A;$ 11) A is τ -closed if and only if $Fr_{\tau}A = A \setminus Int_{\tau}A;$ 12) A is τ -open-closed if and only if $Fr_{\tau}A = \emptyset$.

Proof. 1) To prove property 1) we express the set $A \setminus Fr_{\tau}A$ as

 $A \backslash Fr_{\tau}A = A \backslash ([A]_{\tau} \cap [X \backslash A]_{\tau})$

by definition of the τ -boundary of a set. Then, by virtue of De Morgan's laws,

$$A \setminus Fr_{\tau}A = (A \setminus [A]_{\tau}) \cup (A \setminus [X \setminus A]_{\tau}).$$

Since $A \subset [A]_{\tau}$, then the difference $A \setminus [A]_{\tau}$ is empty, which means that $A \setminus Fr_{\tau}A = A \setminus [X \setminus A]_{\tau}$. By Proposition 4.5, $A \setminus Fr_{\tau}A = Int_{\tau}A$. Property 1) has been proven.

2) Using Proposition 4.22, we write the equality

$$A \cup Fr_{\tau}A = A \cup ([A]_{\tau} \cap [X \setminus A]_{\tau}).$$

Let us apply the law of distributivity of a union of sets to the second part of the equality and obtain

$$A \cup Fr_{\tau}A = A \cup ([A]_{\tau} \cap [X \setminus A]_{\tau}) = ([A]_{\tau} \cup A) \cap (A \cup [X \setminus A]_{\tau}),$$

i.e.,

$$A \cup Fr_{\tau}A = ([A]_{\tau} \cup A) \cap (A \cup [X \setminus A]_{\tau}).$$

Due to property 3) of Theorem 4.10 $A \subset [A]_{\tau}$ and $X \setminus A \subset [X \setminus A]_{\tau}$. Therefore, $[A]_{\tau} \cup A = [A]_{\tau}$ and $A \cup [X \setminus A]_{\tau} = X$. This means, $A \cup Fr_{\tau}A = [A]_{\tau} \cap X$ which in turn is equal to $[A]_{\tau}$. Property 2) has been proven.

3) Let us express the τ -boundary of the set $A \cup B$ in the following way:

$$Fr_{\tau}(A \cup B) = [A \cup B]_{\tau} \cap [X \setminus (A \cup B)]_{\tau}$$

By virtue of De Morgan's laws and Property 4) of Theorem 4.10, we obtain

$$[A \cup B]_{\tau} \cap [X \setminus (A \cup B)]_{\tau} = ([A]_{\tau} \cup [B]_{\tau}) \cap [(X \setminus A) \cap (X \setminus B)]_{\tau}$$

or

 $Fr_{\tau}(A \cup B) = ([A]_{\tau} \cup [B]_{\tau}) \cap [(X \setminus A) \cap (X \setminus B)]_{\tau}.$

According to property 3) of Theorem 4.10

$$([A]_{\tau} \cup [B]_{\tau}) \cap [(X \setminus A) \cap (X \setminus B)]_{\tau} \subset ([A]_{\tau} \cup [B]_{\tau}) \cap ([X \setminus A]_{\tau} \cap [X \setminus B]_{\tau}).$$

The set $([A]_{\tau} \cup [B]_{\tau}) \cap ([X \setminus A]_{\tau} \cap [X \setminus B]_{\tau})$, in turn, is equal to the set $([A]_{\tau} \cap [X \setminus A]_{\tau}) \cup ([B]_{\tau} \cap [X \setminus B]_{\tau})$, which by definition coincides with the set $Fr_{\tau}A \cup Fr_{\tau}B$, that is $Fr_{\tau}(A \cup B) \subset Fr_{\tau}A \cup Fr_{\tau}B$. Property 3) has been proven.

4) We have $Fr_{\tau}(A \cap B) = [A \cap B]_{\tau} \cap [X \setminus (A \cap B)]_{\tau}$. Using De Morgan's laws and property 4) of Theorem 4.10 we obtain

$$Fr_{\tau}(A \cap B) = [A \cap B]_{\tau} \cap [X \setminus (A \cap B)]_{\tau} = [A \cap B]_{\tau} \cap ([(X \setminus A)]_{\tau} \cup [(X \setminus B)]_{\tau})$$

Also,

$$[A \cap B]_{\tau} \cap ([(X \setminus A)]_{\tau} \cup [(X \setminus B)]_{\tau}) \subset ([A]_{\tau} \cap [B]_{\tau}) \cap ([X \setminus A]_{\tau} \cup [X \setminus B]_{\tau})$$

The set $([A]_{\tau} \cap [B]_{\tau}) \cap ([X \setminus A]_{\tau} \cup [X \setminus B]_{\tau})$, in turn, is equal to the set $([A]_{\tau} \cap [X \setminus A]_{\tau}) \cap ([B]_{\tau} \cap [X \setminus B]_{\tau})$, which by definition coincides with the set $Fr_{\tau}A \cap Fr_{\tau}B$, that is $Fr_{\tau}(A \cap B) \subset Fr_{\tau}A \cap Fr_{\tau}B$. Property 4) has been proven.

5) To prove property 5), we express $Fr_{\tau}(X \setminus A)$ as

$$Fr_{\tau}(X \setminus A) = [X \setminus A]_{\tau} \cap [X \setminus (X \setminus A)]_{\tau}$$

Then

$$Fr_{\tau}(X \setminus A) = [X \setminus A]_{\tau} \cap [X \setminus (X \setminus A)]_{\tau} = [X \setminus A]_{\tau} \cap [A]_{\tau} = Fr_{\tau}A$$

The property 5) has been proven.

6) By the above property 1) we have

$$\operatorname{Int}_{\tau} A \cup \operatorname{Fr}_{\tau} A \cup \operatorname{Int}_{\tau}(X \setminus A) = (A \setminus \operatorname{Fr}_{\tau} A) \cup \operatorname{Fr}_{\tau} A \cup ((X \setminus A) \setminus \operatorname{Fr}_{\tau}(X \setminus A))$$

By the above property 5) we have

$$(A \setminus Fr_{\tau}A) \cup Fr_{\tau}A \cup ((X \setminus A) \setminus Fr_{\tau}(X \setminus A)) = A \cup Fr_{\tau}A \cup (X \setminus A) = X.$$

Property 6) has been proven.

7) Let $x \in Fr_{\tau}[A]_{\tau}$. Then, as a consequence $x \in [[A]_{\tau}]_{\tau} \cap [[X \setminus A]_{\tau}]_{\tau}$. By virtue of Proposition 4.22 and the property 5) of Theorem 4.10

$$[[A]_{\tau}]_{\tau} \cap [[X \setminus A]_{\tau}]_{\tau} = [A]_{\tau} \cap [X \setminus A]_{\tau} = Fr_{\tau}A.$$

The last means that $x \in Fr_{\tau}A$ and thus, $Fr_{\tau}[A]_{\tau} \subset Fr_{\tau}A$. Property 7) has been proven.

8) We have

$$Fr_{\tau} \operatorname{Int}_{\tau} A = [\operatorname{Int}_{\tau} A]_{\tau} \cap [X \setminus \operatorname{Int}_{\tau} A]_{\tau}.$$

According to Proposition 4.5,

$$[\operatorname{Int}_{\tau} A]_{\tau} \cap [X \setminus \operatorname{Int}_{\tau} A]_{\tau} = [\operatorname{Int}_{\tau} A]_{\tau} \cap [[X \setminus A]_{\tau}]_{\tau}$$

By property 5) of Theorem 4.10,

$$[\operatorname{Int}_{\tau} A]_{\tau} \cap [[X \setminus A]_{\tau}]_{\tau} = [\operatorname{Int}_{\tau} A]_{\tau} \cap [X \setminus A]_{\tau}.$$

Since $Int_{\tau}A \subset A$, then

$$[\operatorname{Int}_{\tau} A]_{\tau} \cap [X \backslash A]_{\tau} \subset [A]_{\tau} \cap [X \backslash A]_{\tau},$$

that in turns $[A]_{\tau} \cap [X \setminus A]_{\tau} = Fr_{\tau}A$. Thus, $Fr_{\tau}Int_{\tau}A \subset Fr_{\tau}A$. Property 8) has been proven.

9) Let $x \in Fr_{\tau}A$. Then by Proposition 4.22 $x \in [A]_{\tau}$ and $x \in [X \setminus A]_{\tau}$ or, in other words, $x \in [A]_{\tau}$ and $x \notin X \setminus [X \setminus A]_{\tau}$. The last means that $x \in [A]_{\tau} \setminus (X \setminus [X \setminus A]_{\tau})$. According to Proposition 4.5 $\operatorname{Int}_{\tau}A = X \setminus [X \setminus A]_{\tau}$. Therefore, $x \in [A]_{\tau} \setminus \operatorname{Int}_{\tau}A$ and hence

$$Fr_{\tau}A \subset [A]_{\tau} \setminus \operatorname{Int}_{\tau}A.$$

Let's select an arbitrary element *x* from $[A]_{\tau} \setminus \text{Int}_{\tau}A$. Then by Proposition 4.5 $x \in [A]_{\tau} \setminus (X \setminus [X \setminus A]_{\tau})$. Therefore, $x \in [A]_{\tau}$ and $x \in [X \setminus A]_{\tau}$. Then $x \in Fr_{\tau}A$. Property 9) has been proven.

10) *Necessity:* Let *A* be a τ -open subset of *X*. Then $\operatorname{Int}_{\tau} A = A$. Since $Fr_{\tau} A = [A]_{\tau} \setminus \operatorname{Int}_{\tau} A$, then

$$Fr_{\tau}A = [A]_{\tau} \setminus A$$

Sufficiency: Let $A \subset X$ and $Fr_{\tau}A = [A]_{\tau} \setminus A$. Then, by property 9), $[A]_{\tau} \setminus A = [A]_{\tau} \setminus \operatorname{Int}_{\tau}A$ and $A = \operatorname{Int}_{\tau}A$. Hence, A is τ -open set. Property 10) has been proven.

11) *Necessity:* Let *A* be a τ -closed subset of *X*. Then $[A]_{\tau} = A$. Since $Fr_{\tau}A = [A]_{\tau} \setminus \operatorname{Int}_{\tau}A$, then

$$Fr_{\tau}A = A \setminus \operatorname{Int}_{\tau}A.$$

Sufficiency: Let $A \subset X$ and $Fr_{\tau}A = A \setminus Int_{\tau}A$. Then, by property 9), $[A]_{\tau} \setminus Int_{\tau}A = A \setminus Int_{\tau}A$ and $A = [A]_{\tau}$. Therefore, A is a τ -closed set. Property 11) has been proven.

12) *Necessity:* Let *A* be a τ -open-closed subset of *X*. Then $[A]_{\tau} = A$ and $\operatorname{Int}_{\tau} A = A$. Since $Fr_{\tau}A = [A]_{\tau} \setminus \operatorname{Int}_{\tau} A$, then $Fr_{\tau}A = \emptyset$.

Sufficiency: Let $A \subset X$ and $Fr_{\tau}A = \emptyset$. Then, by property 9), $[A]_{\tau} \setminus \operatorname{Int}_{\tau}A = \emptyset$ and $\operatorname{Int}_{\tau}A = [A]_{\tau}$. Therefore, A is τ -open-closed set. Property 12) has been proven. Finally, Theorem 4.23 is proved. \Box

Acknowledgements. The authors would like to thank the referee for the valuable comments and suggestions that improved the quality of the paper.

2636

References

- S. Afrooz, F. Azarpanah, N. Hasan Hajee, On e-spaces and rings of real valued e-continuous functions, Applied General Topology 24 (2) (2023), 433–448.
- [2] D.N. Georgiou, N.K. Mamadaliev, R.M. Zhuraev, A note on functional tightness and minitightness of space of the G-permutation degree, Commentationes Mathematicae Universitatis Carolinae 64 (1) (2023), 97–108.
- [3] R.B. Beshimov, D.N. Georgiou, R.M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Applied General Topology 22 (2) (2021), 447–459.
- [4] R.B. Beshimov, D.N. Georgiou, N.K. Mamadaliev, On τ-bounded spaces and hyperspaces, Filomat 36 (1) (2022), 187–193.
- [5] L.D.R. Kocinac, F.G. Mukhamadiev, A.K. Sadullaev, On the Space of G-Permutation Degree of Some Classes of Topological Spaces, Mathematics 11 (22) (2023), 4624.
- [6] L.D.R. Kocinac, F.G. Mukhamadiev, A.K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat 36 (20) (2022), 7059–7066.
- [7] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1) (1951), 152–172.
- [8] H. Wagner, Symmetric, cyclic, and permutation product of manifolds, Dissertationes Mathematicae, Warszawa, 1980, 47 p.
- [9] V.V. Fedorchuk, Covariant functors in a category of compacta, absolute retracts and *Q*-manifolds, Uspekhi Matematicheskiy Nauk 36 (1981), no. 3 (219), 177–195 (Russian).
- [10] V.V. Fedorchuk, V.V. Filippov. General Topology. Basic Constructions, Fizmatlit, Moscow, (2006), 332 p.
- [11] I. Juhasz, Cardinal functions in topology ten years later, Mathematical Center, Amsterdam, 1980.
- [12] O. Okunev, The minitightness of products, Topology and its Applications 208 (2016), 10–16.
- [13] A.V. Arhangel'skii, Functional tightness, *Q*-spaces, and τ -embeddings, Commentationes Mathematicae Universitatis Carolinae 24 (1) (1983), 105–119.
- [14] R. Engelking, General Topology, Sigma Ser. Pure Math., vol. 6, Verlag Helderman, 1989.