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Abstract. Let k and n be two positive integers. A graph G is said to be fractional k-extendable for 0 ≤ k ≤ n−2
2

if every k-matching M in G is contained in a fractional perfect matching G[Fh] of G such that h(e) = 1 for all
e ∈M, where h : E(G)→ [0, 1] be a function. Let e(G) denote the size of G and ρ(G) denote the spectral radius
of G. In this paper, we first provide a tight size condition to ensure that a connected graph is fractional
k-extendable. Then, we determine a lower bound on the spectral radius of a connected graph G to guarantee
that G is fractional k-extendable. Finally, we construct some extremal graphs to show that all the bounds
are sharp.

1. The first section

All graphs considered in this paper are simple, undirected and connected. Let G = (V(G),E(G)) denote
a graph, where V(G) denotes its vertex set and E(G) denotes its edge set. The order of G is the number
n = |V(G)| of its vertices and its size is the number e(G) = |E(G)| of its edges. A graph G is called trivial if
its order n = 1. For v ∈ V(G), the neighborhood of v in G, denoted by NG(v), is the set of vertices adjacent
to v in G. Then dG(v) = |NG(v)| is the degree of v in G. For any S ⊆ V(G), we denote by G[S] the subgraph
of G induced by S, and by G − S the subgraph formed from G by deleting the vertices in S and their
incident edges. Given two vertex-disjoint graphs G1 and G2, the union G1 ∪G2 is the graph with vertex set
V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2), and the join G1 ∨ G2 is obtained from G1 ∪ G2 by adding all the
edges joining a vertex of G1 to a vertex of G2. Let Kn denote the complete graph of order n.

Let a and b be two positive integers with a ≤ b. Let F be a spanning subgraph of G. We call F an
[a, b]-factor of G if a ≤ dF(v) ≤ b holds for any v ∈ V(G). If a = b = r, then an [a, b]-factor is called an r-factor.
A set M of edges in a graph is called a matching if no two edges of M share a vertex. A k-matching is a
matching of size k. If a matching covers all the vertices of a graph G, then it is called a perfect matching (or
1-factor) of G. Let G be a graph of order n with a perfect matching. Then G is said to be k-extendable for
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0 ≤ k ≤ n−2
2 if every k-matching in G can be extended to a perfect matching. In particular, G is 0-extendable

if and only if G contains a perfect matching.
Let h : E(G) → [0, 1] be a function. If a ≤

∑
e∈EG(v)

h(e) ≤ b holds for any v ∈ V(G), then the subgraph of G

with vertex set V(G) and edge set Fh, denoted by G[Fh], is called a fractional [a, b]-factor of G with indicator
function h, where EG(v) denotes the set of edges incident with v in G and Fh = {e ∈ E(G) : h(e) > 0}. If
a = b = r, then a fractional [a, b]-factor is called a fractional r-factor. A fractional 1-factor is also called a
fractional perfect matching. Let G be a graph of order n with a k-matching. Then G is said to be fractional
k-extendable for 0 ≤ k ≤ n−2

2 if every k-matching M in G is contained in a fractional perfect matching G[Fh]
of G such that h(e) = 1 for all e ∈M. We also say that M can be extended to a fractional perfect matching of
G. Especially, G is fractional 0-extendable if and only if G contains a fractional perfect matching.

The perfect matching and k-extendable graph attracted much attention. Tutte [26] derived a charac-
terization for a graph with a perfect matching. Anderson [2, 3] studied the connection between binding
number and a perfect matching in a graph and showed two binding number conditions for graphs to pos-
sess perfect matchings. Sumner [25] investigated the existence of perfect matchings in graphs. Niessen [19]
established a relationship between neighborhood union and a perfect matching in a graph. Enomoto [6]
gave a toughness condition for the existence of a perfect matching in a graph. Plummer [23] first introduced
the concept of k-extendable graph and provided some properties of k-extendable graphs. Up to now, much
attention has been paid on various graphic parameters of k-extendable graphs, such as connectivity [13, 21],
binding number [24], minimum degree [1], genus [22], independence number [17], distance-regular graph
[5]. Much effort has been devoted to finding sufficient conditions for the existence of [1, 2]-factors (see
[8, 11, 34, 38]) and [a, b]-factors (see [18, 27, 33, 35, 37]) in graphs.

The fractional perfect matching and fractional k-extendable graph also attracted much attention. Lovász
and Plummer [14] gave a necessary and sufficient condition for a graph to have a fractional perfect matching.
Liu and Zhang [10] presented a toughness condition for the existence of a fractional perfect matching in a
graph. Yang, Ma and Liu [28] established a connection between isolated toughness and a fractional perfect
matching in a graph. Ma and Liu [16] obtained a characterization of fractional k-extendable graphs and
gave some sufficient conditions for fractional k-extendable graphs. Zhu and Liu [39] provided a binding
number condition for fractional k-extendable graphs. Some results on fractional [a, b]-factors in graphs can
be found in [7, 15, 31, 32, 36].

For a graph G of order n, the adjacency matrix A(G) of G is the n × n matrix in which entry ai j is 1 or
0 according to whether vi and v j are adjacent or not. The eigenvalues of the adjacency matrix A(G) are
also called the eigenvalues of G. Clearly, A(G) is a real symmetric nonnegative matrix. Consequently, its
eigenvalues are real, which can be arranged in non-increasing order as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). Note
that the adjacency spectral radius (or spectral radius, for short) of G, denoted by ρ(G), is equal to λ1(G).

Recently, O [20] obtained a spectral radius condition to ensure that a connected graph contains a perfect
matching. By imposing the minimum degree of a graph as a parameter, Liu, Liu and Feng [12] extended
O’s result [20]. Zhang and Lin [30] showed a distance spectral condition to ensure the existence of a perfect
matching in a connected graph. Li, Miao and Zhang [9] claimed a relationship between spectral radius and
a fractional perfect matching in a connected graph.

Motivated by [16, 20] directly, it is natural and interesting to give some sufficient conditions to guarantee
that a graph is fractional k-extendable. Here, we focus on the sufficient conditions including structure graph
condition or spectral graph condition, which are shown in the following.

Theorem 1.1. Let k and n be two positive integers, and let G be a connected graph of order n with n ≥ 2k+3.
Assume that G satisfies

e(G) >


1
8 (n + 2k − 1)(3n − 2k − 1), i f n ∈ {2k + 3, 2k + 5, 2k + 7, 2k + 9, 2k + 11},
1
8 (n + 2k − 2)(3n − 2k), i f n ∈ {2k + 4, 2k + 6, 2k + 8, 2k + 10},(n−2

2
)
+ 2(2k + 1), i f n ≥ 2k + 12.

Then G is fractional k-extendable unless G = K2k ∨ (Kn−2k−1 ∪ K1).
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Theorem 1.2. Let k and n be two positive integers, and let G be a connected graph of order n with n ≥ 2k+3.
Assume that one of the following four conditions holds:

(i) ρ(G) > θ(k,n) for n = 2k + 10 or n ≥ 2k + 12 or (k,n) = (1, 2k + 11), where θ(k,n) is the largest root of
x3 + (4 − n)x2 + (1 − 4k − n)x + 2(2k + 1)(n − 2k − 4) = 0;

(ii) ρ(G) > k + 2 +
√

(k + 2)2 + 6(2k + 5) for k ≥ 2 and n = 2k + 11;

(iii) ρ(G) >
n+2k−3+

√
(n+2k−3)2+4(n−2k+1)(n+2k−1)

4 for n ∈ {2k + 3, 2k + 5, 2k + 7, 2k + 9};

(iv) ρ(G) >
n+2k−4+

√
(n+2k−4)2+4(n−2k+2)(n+2k−2)

4 for n ∈ {2k + 4, 2k + 6, 2k + 8}.
Then G is fractional k-extendable unless G = K2k ∨ (Kn−2k−1 ∪ K1).

The proofs of Theorems 1.1 and 1.2 will be provided in Sections 3 and 4, respectively.

2. Preliminary lemmas

In this section, we put forward some necessary preliminary lemmas, which are very important to the
proofs of our main results.

Ma and Liu [16] gave a necessary and sufficient condition for the existence of fractional k-extendable
graphs.

Lemma 2.1 ([16]). Let k ≥ 1 be an integer, and let G be a graph with a k-matching. Then G is fractional
k-extendable if and only if

i(G − S) ≤ |S| − 2k

holds for any S ⊆ V(G) such that G[S] contains a k-matching, where i(G− S) denotes the number of isolated
vertices in G − S.

Lemma 2.2 ([4]). Let G be a connected graph, and let H be a proper subgraph of G. Then ρ(G) > ρ(H).

Let M be a real symmetric matrix whose rows and columns are indexed by V = {1, 2, · · · ,n}. Suppose
that M can be written as

M =


M11 · · · M1s
...

. . .
...

Ms1 · · · Mss


in terms of partition π : V = V1 ∪V2 ∪ · · · ∪Vs , wherein Mi j is the submatrix (block) of M obtained by rows
in Vi and columns in V j. The average row sum of Mi j is denoted by qi j. Then matrix Mπ = (qi j) is said to be
the quotient matrix of M. If the row sum of every block Mi j is a constant, then the partition is equitable.

Lemma 2.3 ([29]). Let M be a real matrix with an equitable partition π, and let Mπ be the corresponding
quotient matrix. Then every eigenvalue of Mπ is an eigenvalue of M. Furthermore, if M is nonnegative,
then the largest eigenvalues of M and Mπ are equal.

3. The proof of Theorem 1.1

In this section, we verify Theorem 1.1, which poses a sufficient condition via the size of a connected
graph to ensure that the graph is fractional k-extendable.

Proof of Theorem 1.1. Suppose, to the contrary, that G , K2k∨(Kn−2k−1∪K1) and G is not fractional k-extendable.
Then by Lemma 2.1, there exists some nonempty subset S of V(G) such that G[S] contains a k-matching and
i(G − S) ≥ |S| − 2k + 1. Choose a connected graph G of order n such that its size is as large as possible. In
light of the choice of G, the induced subgraph G[S] and all connected components in G − S are complete
graphs. Furthermore, G = G[S] ∨ (G − S).

Note that there is at most one non-trivial connected component in G− S. Otherwise, we can construct a
new graph G′ by adding edges among all non-trivial connected components to obtain a bigger non-trivial
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connected component. Clearly, e(G) < e(G′), which contradicts the choice of G. We denote by m the number
of non-trivial connected components in G− S. Then m = 0 or 1. For convenience, let |S| = s and i(G− S) = i.
Then

i ≥ s − 2k + 1. (1)

The following proof will be divided into two cases by the value of m.
Case 1. m = 1.

In this case, we see G = Ks∨(Kn1∪ iK1), where n1 = n−s− i ≥ 2. We are to verify i = s−2k+1. Assume that
i ≥ s− 2k+ 2. Then we create a new graph G′′ derived from G by joining every vertex of Kn1 with one vertex
in iK1 by an edge. Then we possess e(G′′) = e(G)+n1 > e(G) and i(G′′−S) = i−1 ≥ (s−2k+2)−1 = s−2k+1,
which is a contradiction to the choice of G. Therefore, i ≤ s−2k+1. Together with (1), we derive i = s−2k+1.
And so n1 = n − s − i = n − 2s + 2k − 1 and G = Ks ∨ (Kn1 ∪ iK1) = Ks ∨ (Kn−2s+2k−1 ∪ (s − 2k + 1)K1).

We easily see s ≥ 2k + 1. Otherwise s = 2k and G = K2k ∨ (Kn−2k−1 ∪ K1), which is a contradiction to
G , K2k ∨ (Kn−2k−1∪K1). Note that G = Ks∨ (Kn−2s+2k−1∪ (s− 2k+ 1)K1), and so e(G) =

(n−s+2k−1
2

)
+ s(s− 2k+ 1).

Together with n = 2s − 2k + 1 + n1 ≥ 2s − 2k + 3 ≥ 2k + 5, we infer(
n − 2

2

)
+ 2(2k + 1) − e(G) =

(
n − 2

2

)
+ 2(2k + 1) −

(
n − s + 2k − 1

2

)
− s(s − 2k + 1)

=
(s − 2k − 1)(2n − 3s + 2k − 8)

2

≥
(s − 2k − 1)(2(2s − 2k + 3) − 3s + 2k − 8)

2

=
(s − 2k − 1)(s − 2k − 2)

2
≥0,

which yields that

e(G) ≤
(
n − 2

2

)
+ 2(2k + 1) (2)

for n ≥ 2k + 5. This is a contradiction for n ≥ 2k + 12.
As for n ∈ {2k + 5, 2k + 7, 2k + 9, 2k + 11}, we get

1
8

(n + 2k − 1)(3n − 2k − 1) −
(
n − 2

2

)
− 2(2k + 1) = −

(n − 2k − 3)(n − 2k − 13)
8

> 0.

Combining this with (2), we possess e(G) ≤
(n−2

2
)
+2(2k+1) < 1

8 (n+2k−1)(3n−2k−1), which is a contradiction.
As for n ∈ {2k + 6, 2k + 8, 2k + 10}, we obtain

1
8

(n + 2k − 2)(3n − 2k) −
(
n − 2

2

)
− 2(2k + 1) = −

(n − 2k − 4)(n − 2k − 10)
8

≥ 0.

Together with (2), we infer e(G) ≤
(n−2

2
)
+ 2(2k + 1) ≤ 1

8 (n + 2k − 2)(3n − 2k), which is a contradiction.
Case 2. m = 0.

In this case, we possess G = Ks∨ iK1. If i ≥ s−2k+3, we can construct a new graph G∗ by adding an edge
in V(iK1). Then one has i(G∗ −S) ≥ s− 2k+ 1. Combining this with e(G) < e(G∗), we derive a contradiction to
the choice of G. Hence, we deduce i ≤ s − 2k + 2. Together with (1), we only need to consider i = s − 2k + 1
and i = s − 2k + 2.
Subcase 2.1. i = s − 2k + 1.
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For i = s− 2k+ 1, we possess n = s+ i = 2s− 2k+ 1, G = Ks ∨ (s− 2k+ 1)K1 and e(G) =
(s

2
)
+ s(s− 2k+ 1). If

s = 2k, then n = 2k + 1, which contradicts n ≥ 2k + 3. Next, we consider s ≥ 2k + 1. By a direct computation,
we have(

n − 2
2

)
+ 2(2k + 1) − e(G) =

(
2s − 2k − 1

2

)
+ 2(2k + 1) −

(
s
2

)
− s(s − 2k + 1)

=
(s − 2k − 1)(s − 2k − 6)

2
≥0

for s ≥ 2k + 6, which yields that

e(G) ≤
(
n − 2

2

)
+ 2(2k + 1)

for s ≥ 2k + 6. This is a contradiction for n ≥ 2k + 13.
Note that n = 2s − 2k + 1 is odd. By a simple computation, we derive

e(G) =
(
s
2

)
+ s(s − 2k + 1) =

1
2

(3s2
− 4ks + s) =

1
8

(n + 2k − 1)(3n − 2k − 1),

which leads to a contradiction when n ∈ {2k + 3, 2k + 5, 2k + 7, 2k + 9, 2k + 11}.
Subcase 2.2. i = s − 2k + 2.

For i = s− 2k + 2, we obtain n = s+ i = 2s− 2k + 2, G = Ks ∨ (s− 2k + 2)K1 and e(G) =
(s

2
)
+ s(s− 2k + 2). If

s = 2k, then n = 2k + 2, which is a contradiction to n ≥ 2k + 3. In what follows, we deal with s ≥ 2k + 1. By a
simple computation, we derive(

n − 2
2

)
+ 2(2k + 1) − e(G) =

(
2s − 2k

2

)
+ 2(2k + 1) −

(
s
2

)
− s(s − 2k + 2)

=
(s − 2k − 1)(s − 2k − 4)

2
≥0

for s ≥ 2k + 4. Thus, we deduce

e(G) ≤
(
n − 2

2

)
+ 2(2k + 1)

for s ≥ 2k + 4. This is a contradiction for n ≥ 2k + 12.
Recall that n = 2s − 2k + 2 is even. By a direct computation, we possess

e(G) =
(
s
2

)
+ s(s − 2k + 2) =

1
2

(3s2
− 4ks + 3s) =

1
8

(n + 2k − 2)(3n − 2k),

which leads to a contradiction when n ∈ {2k+ 4, 2k+ 6, 2k+ 8, 2k+ 10}. This completes the proof of Theorem
1.1. □

4. The proof of Theorem 1.2

In this section, we prove Theorem 1.2, which puts forward an adjacency spectral radius condition for a
connected graph to be fractional k-extendable.

Proof of Theorem 1.2. Let φ(x) = x3 + (4− n)x2 + (1− 4k− n)x+ 2(2k+ 1)(n− 2k− 4) and let θ(k,n) be the largest
root of φ(x) = 0. Suppose to the contrary that G , K2k ∨ (Kn−2k−1 ∪ K1) and G is not fractional k-extendable.
In view of Lemma 2.1, there exists some nonempty subset S of V(G) such that G[S] contains a k-matching



S. Zhou et al. / Filomat 39:8 (2025), 2711–2724 2716

and i(G − S) ≥ |S| − 2k + 1. Choose such a connected graph G of order n so that its spectral radius is as
large as possible. Together with Lemma 2.2 and the choice of G, the induced subgraph G[S] and every
connected component of G − S are complete graphs, respectively. Furthermore, G = G[S] ∨ (G − S). We
easily see that there exists at most one non-trivial connected component in G − S. Otherwise, we can add
edges among all non-trivial connected components to get a non-trivial connected component of larger size.
Then Lemma 2.2 deduces a contradiction to the choice of G. We denote by m the number of non-trivial
connected components in G − S. Then m = 0 or 1. For convenience, let |S| = s and i(G − S) = i. Then

i ≥ s − 2k + 1. (3)

The following proof will be divided into two cases by the value of m.

Case 1. m = 1.
In this case, we possess G = Ks∨ (Kn1∪ iK1), where n1 = n−s− i ≥ 2. We are to claim i = s−2k+1. Assume

that i ≥ s − 2k + 2. Then we create a new graph G′ formed from G by joining every vertex of Kn1 with one
vertex in iK1 by an edge. Then i(G′−S) = i− 1 ≥ (s− 2k+ 2)− 1 = s− 2k+ 1 and G is a proper subgraph of G′.
According to Lemma 2.2, we infer ρ(G) < ρ(G′), which is a contradiction to the choice of G. Consequently,
i ≤ s − 2k + 1. Combining this with (3), we deduce i = s − 2k + 1. And so n1 = n − s − i = n − 2s + 2k − 1 and
G = Ks ∨ (Kn1 ∪ iK1) = Ks ∨ (Kn−2s+2k−1 ∪ (s − 2k + 1)K1).

If s = 2k, then we have G = K2k∨ (Kn−2k−1∪K1), which leads to a contradiction to G , K2k∨ (Kn−2k−1∪K1).
Hence, we infer s ≥ 2k + 1.

Consider the partition V(G) = V(Ks) ∪ V(Kn−2s+2k−1) ∪ V((s − 2k + 1)K1). The corresponding quotient
matrix of A(G) is equal to

B1 =

 s − 1 n − 2s + 2k − 1 s − 2k + 1
s n − 2s + 2k − 2 0
s 0 0

 .
Then the characteristic polynomial of the matrix B1 equals

f1(x) =x3 + (s − 2k + 3 − n)x2 + (2ks − s2
− 2k + 2 − n)x + s(s − 2k + 1)(n − 2s + 2k − 2).

Note that the partition V(G) = V(Ks)∪V(Kn−2s+2k−1)∪V((s−2k+1)K1) is equitable. Then in terms of Lemma
2.3, the largest root, say ρ1, of f1(x) = 0 equals the spectral radius of G. Thus, we have f1(ρ1) = 0 and
ρ(G) = ρ1.

Note that Ks ∨ (n − s)K1 is a proper subgraph of G. According to Lemma 2.2, we deduce

ρ1 = ρ(G) > ρ(Ks ∨ (n − s)K1). (4)

Consider the partition V(Ks ∨ (n − s)K1) = V(Ks) ∪ V((n − s)K1). The corresponding quotient matrix of
A(Ks ∨ (n − s)K1) equals

B2 =

(
s − 1 n − s

s 0

)
.

Its characteristic polynomial is

f2(x) = x2
− (s − 1)x − s(n − s).

It is easy to see that the partition V(Ks ∨ (n− s)K1) = V(Ks)∪V((n− s)K1) is equitable. In light of Lemma 2.3,
the largest root, say ρ2, of f2(x) = 0 equals the spectral radius of Ks ∨ (n − s)K1. Thus, we obtain

ρ(Ks ∨ (n − s)K1) = ρ2 =
s − 1 +

√
(s − 1)2 + 4s(n − s)

2
. (5)
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It follows from (4) and (5) that

ρ1 >
s − 1 +

√
(s − 1)2 + 4s(n − s)

2
. (6)

In what follows, we aim to show φ(ρ1) < 0. Bear in mind that f1(ρ1) = 0. By plugging the value ρ1 into
x of φ(x) − f1(x), we derive

φ(ρ1) =φ(ρ1) − f1(ρ1)

=(s − 2k − 1)(−ρ2
1 + (s + 1)ρ1 + 2s2

− sn − 2ks + 6s − 2n + 4k + 8)
=(s − 2k − 1)11(ρ1), (7)

where 11(ρ1) = −ρ2
1 + (s + 1)ρ1 + 2s2

− sn − 2ks + 6s − 2n + 4k + 8. According to (6), s ≥ 2k + 1 and
n = 2s − 2k + 1 + n1 ≥ 2s − 2k + 3, we possess

s + 1
2
<

s − 1 +
√

(s − 1)2 + 4s(n − s)
2

< ρ1.

Consequently, we deduce

11(ρ1) <11

 s − 1 +
√

(s − 1)2 + 4s(n − s)
2


= − (2s + 2)n + 3s2

− (2k − 7)s + 4k + 7 +
√

(s − 1)2 + 4s(n − s). (8)

Claim 1. If s ≥ 2k+3 and n ≥ 2s−2k+3, or s = 2k+2 and n ≥ 2s−2k+4, then (2s+2)n−3s2+(2k−7)s−4k−7 >√
(s − 1)2 + 4s(n − s).

Proof. By a simple calculation, we derive

((2s + 2)n − 3s2 + (2k − 7)s − 4k − 7)2
− ((s − 1)2 + 4s(n − s))

=(2s + 2)2n2
− (12s3 + (40 − 8k)s2 + (60 + 8k)s + 16k + 28)n

+ 9s4 + 3(14 − 4k)s3 + (4k2
− 4k + 94)s2

+ (−16k2 + 28k + 100)s + 16k2 + 56k + 48
:=h1(n), (9)

where h1(n) = (2s+ 2)2n2
− (12s3 + (40− 8k)s2 + (60+ 8k)s+ 16k+ 28)n+ 9s4 + 3(14− 4k)s3 + (4k2

− 4k+ 94)s2 +
(−16k2 + 28k + 100)s + 16k2 + 56k + 48. For s ≥ 2k + 3 and n ≥ 2s − 2k + 3 ≥ 2k + 9, we deduce

12s3 + (40 − 8k)s2 + (60 + 8k)s + 16k + 28
2(2s + 2)2 < 2s − 2k + 3 ≤ n.

Consequently, we obtain

h1(n) ≥h1(2s − 2k + 3)

=s4 + (6 − 4k)s3 + (4k2
− 28k + 2)s2 + (32k2

− 36k − 16)s + 64k2 + 16k
:=l1(s). (10)

Let l1(x) = x4 + (6 − 4k)x3 + (4k2
− 28k + 2)x2 + (32k2

− 36k − 16)x + 64k2 + 16k be a real function in x with
x ∈ [2k + 1,+∞). The derivative function of l1(x) is

l′1(x) = 4x3 + 3(6 − 4k)x2 + 2(4k2
− 28k + 2)x + 32k2

− 36k − 16.
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Furthermore, we possess
l′′1 (x) = 12x2 + 6(6 − 4k)x + 2(4k2

− 28k + 2).

Note that

−
6(6 − 4k)

24
=

2k − 3
2
< 2k + 1 < s.

Then l′′1 (x) is increasing in the interval [2k+ 1,+∞). Thus l′′1 (x) ≥ l′′1 (2k+ 1) = 8k2 + 40k+ 52 > 0, which yields
that l′1(x) is increasing in the interval [2k + 1,+∞) and so l′1(x) ≥ l′1(2k + 1) = 10 > 0. Thus, we infer that l1(x)
is increasing in the interval [2k + 1,+∞). Combining this with s ≥ 2k + 3, we have

l1(s) ≥ l1(2k + 3) = 12k2 + 80k + 213 > 0.

Together with (9) and (10), we infer ((2s + 2)n − 3s2 + (2k − 7)s − 4k − 7)2 > (s − 1)2 + 4s(n − s), that is,
(2s + 2)n − 3s2 + (2k − 7)s − 4k − 7 >

√
(s − 1)2 + 4s(n − s).

For s = 2k + 2 and n ≥ 2s − 2k + 4 = 2k + 8, we infer

12s3 + (40 − 8k)s2 + (60 + 8k)s + 16k + 28
2(2s + 2)2 < 2s − 2k + 4 ≤ n.

Thus, we derive

h1(n) ≥h1(2s − 2k + 4)

=s4 + (10 − 4k)s3 + (4k2
− 36k + 22)s2 + (32k2

− 76k − 4)s + 64k2
− 16k

=(2k + 2)4 + (10 − 4k)(2k + 2)3 + (4k2
− 36k + 22)(2k + 2)2

+ (32k2
− 76k − 4)(2k + 2) + 64k2

− 16k

=32k2 + 128k + 176
>0.

Combining this with (9), we get (2s+ 2)n− 3s2 + (2k− 7)s− 4k− 7 >
√

(s − 1)2 + 4s(n − s). This completes the
proof of Claim 1. □

It follows from (7), (8), s ≥ 2k + 1 and Claim 1 that

φ(ρ1) = (s − 2k − 1)11(ρ1) ≤ 0,

which gives ρ(G) = ρ1 ≤ θ(k,n) when n ≥ 2k + 5 and n , 2k + 7, which contradicts ρ(G) > θ(k,n) for
n = 2k + 10 or n ≥ 2k + 12 or (k,n) = (1, 2k + 11).

As for k ≥ 2 and n = 2k+11, one hasφ(x) = x3
−(2k+7)x2

−(6k+10)x+14(2k+1) andφ′(x) = 3x2
−2(2k+7)x−

6k−10. By a direct computation, we deriveφ(k+2+
√

(k + 2)2 + 6(2k + 5)) = −60+8
√

(k + 2)2 + 6(2k + 5) > 0
and φ′(k + 2 +

√
(k + 2)2 + 6(2k + 5)) = 2k2 + 32k + 76 + 2(k − 1)

√
(k + 2)2 + 6(2k + 5) > 0, and so ρ(G) = ρ1 ≤

θ(k,n) < k+2+
√

(k + 2)2 + 6(2k + 5), which is a contradiction to ρ(G) > k+2+
√

(k + 2)2 + 6(2k + 5) for k ≥ 2
and n = 2k + 11.

As for n ∈ {2k+3, 2k+5, 2k+7, 2k+9}, one hasφ(x) = x3+(4−n)x2+(1−4k−n)x+2(2k+1)(n−2k−4) andφ′(x) =

3x2 + 2(4 − n)x + 1 − 4k − n. By a direct computation, we can deduce φ
(

n+2k−3+
√

(n+2k−3)2+4(n−2k+1)(n+2k−1)
4

)
> 0

and φ′
(

n+2k−3+
√

(n+2k−3)2+4(n−2k+1)(n+2k−1)
4

)
> 0, and so ρ(G) = ρ1 ≤ θ(k,n) <

n+2k−3+
√

(n+2k−3)2+4(n−2k+1)(n+2k−1)
4 ,

which is a contradiction to ρ(G) >
n+2k−3+

√
(n+2k−3)2+4(n−2k+1)(n+2k−1)

4 for n ∈ {2k + 3, 2k + 5, 2k + 7, 2k + 9}.
As for n ∈ {2k+4, 2k+6, 2k+8}, one hasφ(x) = x3+ (4−n)x2+ (1−4k−n)x+2(2k+1)(n−2k−4) andφ′(x) =

3x2 + 2(4 − n)x + 1 − 4k − n. By a direct computation, we can deduce φ
(

n+2k−4+
√

(n+2k−4)2+4(n−2k+2)(n+2k−2)
4

)
> 0
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and φ′
(

n+2k−4+
√

(n+2k−4)2+4(n−2k+2)(n+2k−2)
4

)
> 0, and so ρ(G) = ρ1 ≤ θ(k,n) <

n+2k−4+
√

(n+2k−4)2+4(n−2k+2)(n+2k−2)
4 ,

which is a contradiction to ρ(G) >
n+2k−4+

√
(n+2k−4)2+4(n−2k+2)(n+2k−2)

4 for n ∈ {2k + 4, 2k + 6, 2k + 8}.

Case 2. m = 0.
In this case, we get G = Ks ∨ iK1. If i ≥ s − 2k + 3, we can create a new graph G′′ by adding an edge in

V(iK1). Then one has i(G′′ −S) ≥ s− 2k+ 1 and G is a proper subgraph of G′′. Combining these with Lemma
2.2, we obtain ρ(G) < ρ(G′′), we get a contradiction to the choice of G. Consequently, we infer i ≤ s− 2k+ 2.
Combining this with (3), we possess i = s − 2k + 1 or i = s − 2k + 2.

Subcase 2.1. i = s − 2k + 1.
Obviously, n = s + i = 2s − 2k + 1 and G = Ks ∨ (s − 2k + 1)K1 = Ks ∨ (n − s)K1. If s = 2k, then n = 2k + 1,

which is a contradiction to n ≥ 2k + 3. Hence, we infer s ≥ 2k + 1.
If (s,n) ∈ {(2k + 1, 2k + 3), (2k + 2, 2k + 5), (2k + 3, 2k + 7), (2k + 4, 2k + 9)}, then it follows from (5) and

n = 2s − 2k + 1 that

ρ(G) =ρ2 =
s − 1 +

√
(s − 1)2 + 4s(n − s)

2

=
n + 2k − 3 +

√
(n + 2k − 3)2 + 4(n − 2k + 1)(n + 2k − 1)

4
,

which is a contradiction. If k ≥ 2 and s = 2k+5, then n = 2k+11 and ρ(G) = ρ2 = k+2+
√

(k + 2)2 + 6(2k + 5),
a contradiction. Next, we consider s ≥ 2k + 6, or k = 1 and s = 2k + 5. Note that f2(ρ2) = 0. By plugging the
value ρ2 into x of φ(x) − x f2(x), we get

φ(ρ2) =φ(ρ2) − ρ2 f2(ρ2)

= − (n − s − 3)ρ2
2 + ((s − 1)n − s2

− 4k + 1)ρ2 + 2(2k + 1)(n − 2k − 4)

= − (n − s − 3)

 s − 1 +
√

(s − 1)2 + 4s(n − s)
2

2

+ ((s − 1)n − s2
− 4k + 1)

 s − 1 +
√

(s − 1)2 + 4s(n − s)
2


+ 2(2k + 1)(n − 2k − 4)

= − (s − 2k − 2)

 s − 1 +
√

5s2 − (8k − 2)s + 1
2

2

+ (s2
− 2ks − s − 2k)

 s − 1 +
√

5s2 − (8k − 2)s + 1
2


+ 2(2k + 1)(2s − 4k − 3)

= − s3 + (4k + 2)s2
− (4k2

− 4k − 4)s − (2k + 1)(8k + 5)

+ (s − 2k − 1)
√

5s2 − (8k − 2)s + 1

=(s − 2k − 1)(−s2 + (2k + 1)s + 8k + 5 +
√

5s2 − (8k − 2)s + 1). (11)

Claim 2. If s ≥ 2k + 6, or (k, s) = (1, 2k + 5), then s2
− (2k + 1)s − 8k − 5 >

√
5s2 − (8k − 2)s + 1.

Proof. By a direct calculation, we derive

(s2
−(2k + 1)s − 8k − 5)2

− (5s2
− (8k − 2)s + 1)

=s4
− 2(2k + 1)s3 + (4k2

− 12k − 14)s2 + (32k2 + 44k + 8)s + (8k + 4)(8k + 6)
:=12(s). (12)
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Let 12(x) = x4
− 2(2k + 1)x3 + (4k2

− 12k − 14)x2 + (32k2 + 44k + 8)x + (8k + 4)(8k + 6) be a real function in x
with x ∈ [2k + 6,+∞). The derivative function of 12(x) is

1′2(x) = 4x3
− 6(2k + 1)x2 + 2(4k2

− 12k − 14)x + 32k2 + 44k + 8

and

1′′2 (x) = 12x2
− 12(2k + 1)x + 2(4k2

− 12k − 14).

Note that

−
−12(2k + 1)

24
=

2k + 1
2
< 2k + 6 ≤ x.

Consequently, 1′′2 (x) is increasing in the interval [2k + 6,+∞). Thus 1′′2 (x) ≥ 1′′2 (2k + 6) = 8k2 + 96k + 332 > 0,
and so 1′2(x) is increasing in the interval [2k+ 6,+∞). Then we have 1′2(x) ≥ 1′2(2k+ 6) = 8k2 + 132k+ 488 > 0,
which yields that 12(x) is increasing in the interval [2k+ 6,+∞). Combining this with s ≥ 2k+ 6, we possess

12(s) ≥ 12(2k + 6) = 24k + 432 > 0.

Together with (12), we deduce

s2
− (2k + 1)s − 8k − 5 >

√
5s2 − (8k − 2)s + 1.

For (k, s) = (1, 2k + 5), then n = 2k + 11 and 12(2k + 5) = −4k2
− 64k + 89 = 21 > 0. Thus, we infer

s2
− (2k + 1)s − 8k − 5 >

√
5s2 − (8k − 2)s + 1.

This completes the proof of Claim 2. □

According to (11) and Claim 2, we possess φ(ρ2) < 0 for s ≥ 2k + 6 or (k, s) = (1, 2k + 5), and so
ρ(G) = ρ2 < θ(k,n), a contradiction.

Subcase 2.2. i = s − 2k + 2.
Clearly, n = s + i = 2s − 2k + 2 and G = Ks ∨ (s − 2k + 2)K1 = Ks ∨ (n − s)K1. If s = 2k, then n = 2k + 2,

which is a contradiction to n ≥ 2k + 3. Therefore, we deduce s ≥ 2k + 1.
If (s,n) ∈ {(2k + 1, 2k + 4), (2k + 2, 2k + 6), (2k + 3, 2k + 8)}, then it follows from (5) and n = 2s − 2k + 2 that

ρ(G) =ρ2 =
s − 1 +

√
(s − 1)2 + 4s(n − s)

2

=
n + 2k − 4 +

√
(n + 2k − 4)2 + 4(n − 2k + 2)(n + 2k − 2)

4
,

which is a contradiction. In what follows, we consider s ≥ 2k + 4. Note that f2(ρ2) = 0. By plugging the
value ρ2 into x of φ(x) − x f2(x), we possess

φ(ρ2) =φ(ρ2) − ρ2 f2(ρ2)

= − (n − s − 3)ρ2
2 + ((s − 1)n − s2

− 4k + 1)ρ2 + 2(2k + 1)(n − 2k − 4). (13)
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By virtue of (5), (13) and n = 2s − 2k + 2, we derive

φ(ρ2) = − (n − s − 3)ρ2
2 + ((s − 1)n − s2

− 4k + 1)ρ2 + 2(2k + 1)(n − 2k − 4)

= − (n − s − 3)

 s − 1 +
√

(s − 1)2 + 4s(n − s)
2

2

+ ((s − 1)n − s2
− 4k + 1)

 s − 1 +
√

(s − 1)2 + 4s(n − s)
2


+ 2(2k + 1)(n − 2k − 4)

= − (s − 2k − 1)

 s − 1 +
√

5s2 − (8k − 6)s + 1
2

2

+ (s2
− 2ks − 2k − 1)

 s − 1 +
√

5s2 − (8k − 6)s + 1
2


+ 2(2k + 1)(2s − 4k − 2)

=(s − 2k − 1)(−s2 + (2k − 1)s + 8k + 3 +
√

5s2 − (8k − 6)s + 1). (14)

Claim 3. If s ≥ 2k + 4, then s2
− (2k − 1)s − 8k − 3 >

√
5s2 − (8k − 6)s + 1.

Proof. By a direct computation, we have

(s2
−(2k − 1)s − 8k − 3)2

− (5s2
− (8k − 6)s + 1)

=s4
− (4k − 2)s3 + (4k2

− 20k − 10)s2 + (32k2 + 4k − 12)s + 64k2 + 48k + 8
:=13(s). (15)

Let 13(x) = x4
− (4k − 2)x3 + (4k2

− 20k − 10)x2 + (32k2 + 4k − 12)x + 64k2 + 48k + 8 be a real function in x with
x ∈ [2k + 4,+∞). We may obtain the derivative function of 13(x) as

1′3(x) = 4x3
− 3(4k − 2)x2 + 2(4k2

− 20k − 10)x + 32k2 + 4k − 12.

Furthermore, we possess
1′′3 (x) = 12x2

− 6(4k − 2)x + 2(4k2
− 20k − 10).

Note that

−
−6(4k − 2)

24
=

2k − 1
2
< 2k + 4 ≤ x.

Then 1′′3 (x) is increasing in the interval [2k + 4,+∞). Thus 1′′3 (x) ≥ 1′′3 (2k + 4) = 8k2 + 80k + 220 > 0, and so
1′3(x) is increasing in the interval [2k+ 4,+∞). Hence, we infer 1′3(x) ≥ 1′3(2k+ 4) = 8k2 + 92k+ 260 > 0, which
implies that 13(x) is increasing in the interval [2k + 4,+∞). Combining this with s ≥ 2k + 4, we have

13(s) ≥ 13(2k + 4) = 8k + 184 > 0.

Together with (15) and s ≥ 2k + 4, we deduce

s2
− (2k − 1)s − 8k − 3 >

√
5s2 − (8k − 6)s + 1.

This completes the proof of Claim 3. □
In terms of (14) and Claim 3, we deduce φ(ρ2) < 0 for s ≥ 2k + 4, and so ρ(G) = ρ2 < θ(k,n), a

contradiction. This completes the proof of Theorem 1.2. □
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5. Extremal graphs

In this section, we claim that the bounds established in Theorems 1.1 and 1.2 are best possible, respec-
tively.

Theorem 5.1. Let k and n be two positive integers.
(i) For n ∈ {2k+ 3, 2k+ 5, 2k+ 7, 2k+ 9, 2k+ 11}, we possess e

(
K n+2k−1

2
∨

n−2k+1
2 K1

)
= 1

8 (n+ 2k− 1)(3n− 2k− 1)

and the graph K n+2k−1
2
∨

n−2k+1
2 K1 is not fractional k-extendable.

(ii) For n ∈ {2k+ 4, 2k+ 6, 2k+ 8, 2k+ 10}, we possess e
(
K n+2k−2

2
∨

n−2k+2
2 K1

)
= 1

8 (n+ 2k− 2)(3n− 2k) and the

graph K n+2k−2
2
∨

n−2k+2
2 K1 is not fractional k-extendable.

(iii) For n ≥ 2k+12, we possess e(K2k+1∨(Kn−2k−3∪2K1)) =
(n−2

2
)
+2(2k+1) and the graph K2k+1∨(Kn−2k−3∪2K1)

is not fractional k-extendable.

Proof. It is straightforward to check the sizes of the graphs K n+2k−1
2
∨

n−2k+1
2 K1, K n+2k−2

2
∨

n−2k+2
2 K1 and K2k+1 ∨

(Kn−2k−3 ∪ 2K1), respectively.
(i) For the graph K n+2k−1

2
∨

n−2k+1
2 K1, set S = V

(
K n+2k−1

2

)
, then |S| = n+2k−1

2 and i
(
K n+2k−1

2
∨

n−2k+1
2 K1 − S

)
=

n−2k+1
2 = n+2k−1

2 − 2k + 1 = |S| − 2k + 1 > |S| − 2k. In terms of Lemma 2.1, the graph K n+2k−1
2
∨

n−2k+1
2 K1 is not

fractional k-extendable.
(ii) For the graph K n+2k−2

2
∨

n−2k+2
2 K1, set S = V

(
K n+2k−2

2

)
, then |S| = n+2k−2

2 and i
(
K n+2k−2

2
∨

n−2k+2
2 K1 − S

)
=

n−2k+2
2 = n+2k−2

2 − 2k + 2 = |S| − 2k + 2 > |S| − 2k. By virtue of Lemma 2.1, the graph K n+2k−2
2
∨

n−2k+2
2 K1 is not

fractional k-extendable.
(iii) For the graph K2k+1∨(Kn−2k−3∪2K1), set S = V(K2k+1), then |S| = 2k+1 and i(K2k+1∨(Kn−2k−3∪2K1)−S) =

2 = 2k + 1 − 2k + 1 = |S| − 2k + 1 > |S| − 2k. According to Lemma 2.1, the graph K2k+1 ∨ (Kn−2k−3 ∪ 2K1) is not
fractional k-extendable. □

Theorem 5.2. Let k and n be two positive integers, and let θ(k,n) be the largest root of x3 + (4 − n)x2 + (1 −
4k − n)x + 2(2k + 1)(n − 2k − 4) = 0.

(i) For n = 2k+ 10 or n ≥ 2k+ 12 or (k,n) = (1, 2k+ 11), we possess ρ(K2k+1 ∨ (Kn−2k−3 ∪ 2K1)) = θ(k,n) and
the graph K2k+1 ∨ (Kn−2k−3 ∪ 2K1) is not fractional k-extendable.

(ii) For k ≥ 2 and n = 2k + 11, we possess ρ(K2k+5 ∨ 6K1) = k + 2 +
√

(k + 2)2 + 6(2k + 5) and the graph
K2k+5 ∨ 6K1 is not fractional k-extendable.

(iii) For n ∈ {2k + 3, 2k + 5, 2k + 7, 2k + 9}, we possess

ρ
(
K n+2k−1

2
∨

n − 2k + 1
2

K1

)
=

n + 2k − 3 +
√

(n + 2k − 3)2 + 4(n − 2k + 1)(n + 2k − 1)
4

and the graph K n+2k−1
2
∨

n−2k+1
2 K1 is not fractional k-extendable.

(iv) For n ∈ {2k + 4, 2k + 6, 2k + 8}, we possess

ρ
(
K n+2k−2

2
∨

n − 2k + 2
2

K1

)
=

n + 2k − 4 +
√

(n + 2k − 4)2 + 4(n − 2k + 2)(n + 2k − 2)
4

and the graph K n+2k−2
2
∨

n−2k+2
2 K1 is not fractional k-extendable.

Proof. (i) Consider the partition V(K2k+1∨(Kn−2k−3∪2K1)) = V(K2k+1)∪V(Kn−2k−3)∪V(2K1). The corresponding
quotient matrix of A(K2k+1 ∨ (Kn−2k−3 ∪ 2K1)) equals

B1 =

 2k n − 2k − 3 2
2k + 1 n − 2k − 4 0
2k + 1 0 0

 .
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Then the characteristic polynomial of the matrix B1 is x3 + (4− n)x2 + (1− 4k− n)x+ 2(2k+ 1)(n− 2k− 4). By
virtue of Lemma 2.3, the largest root θ(k,n) of x3 + (4 − n)x2 + (1 − 4k − n)x + 2(2k + 1)(n − 2k − 4) = 0 equals
ρ(K2k+1 ∨ (Kn−2k−3 ∪ 2K1)). That is, ρ(K2k+1 ∨ (Kn−2k−3 ∪ 2K1)) = θ(k,n). Set S = V(K2k+1). Then |S| = 2k + 1
and i(K2k+1 ∨ (Kn−2k−3 ∪ 2K1) − S) = 2 > 1 = (2k + 1) − 2k = |S| − 2k. According to Lemma 2.1, the graph
K2k+1 ∨ (Kn−2k−3 ∪ 2K1) is not fractional k-extendable.

(ii) Consider the partition V(K2k+5 ∨ 6K1) = V(K2k+5) ∪ V(6K1). The corresponding quotient matrix of
A(K2k+5 ∨ 6K1) equals

B2 =

(
2k + 4 6
2k + 5 0

)
.

Then the characteristic polynomial of the matrix B2 is x2
− (2k+ 4)x− 6(2k+ 5). Using Lemma 2.3, the largest

root of x2
−(2k+4)x−6(2k+5) = 0 equals ρ(K2k+5∨6K1). Namely, ρ(K2k+5∨6K1) = k+2+

√
(k + 2)2 + 6(2k + 5).

Set S = V(K2k+5). Then |S| = 2k + 5 and i(K2k+5 ∨ 6K1 − S) = 6 > 5 = (2k + 5) − 2k = |S| − 2k. It follows from
Lemma 2.1 that the graph K2k+5 ∨ 6K1 is not fractional k-extendable.

(iii) Consider the partition V
(
K n+2k−1

2
∨

n−2k+1
2 K1

)
= V

(
K n+2k−1

2

)
∪ V

(
n−2k+1

2 K1

)
. The corresponding quotient

matrix of A
(
K n+2k−1

2
∨

n−2k+1
2 K1

)
equals

B3 =

(
n+2k−3

2
n−2k+1

2
n+2k−1

2 0

)
.

Then the characteristic polynomial of the matrix B3 is x2
−

n+2k−3
2 x − (n−2k+1)(n+2k−1)

4 . From Lemma 2.3, the

largest root of x2
−

n+2k−3
2 x − (n−2k+1)(n+2k−1)

4 = 0 equals ρ
(
K n+2k−1

2
∨

n−2k+1
2 K1

)
. That is, ρ

(
K n+2k−1

2
∨

n−2k+1
2 K1

)
=

n+2k−3+
√

(n+2k−3)2+4(n−2k+1)(n+2k−1)
4 . Let S = V

(
K n+2k−1

2

)
. Then |S| = n+2k−1

2 and i
(
K n+2k−1

2
∨

n−2k+1
2 K1 − S

)
= n−2k+1

2 >
n−2k−1

2 = n+2k−1
2 −2k = |S|−2k. In light of Lemma 2.1, the graph K n+2k−1

2
∨

n−2k+1
2 K1 is not fractional k-extendable.

(iv) Consider the partition V
(
K n+2k−2

2
∨

n−2k+2
2 K1

)
= V

(
K n+2k−2

2

)
∪ V

(
n−2k+2

2 K1

)
. The corresponding quotient

matrix of A
(
K n+2k−2

2
∨

n−2k+2
2 K1

)
equals

B4 =

(
n+2k−4

2
n−2k+2

2
n+2k−2

2 0

)
.

Then the characteristic polynomial of the matrix B3 is x2
−

n+2k−4
2 x− (n−2k+2)(n+2k−2)

4 . According to Lemma 2.3,

the largest root of x2
−

n+2k−4
2 x− (n−2k+2)(n+2k−2)

4 = 0 equals ρ
(
K n+2k−2

2
∨

n−2k+2
2 K1

)
. Namely, ρ

(
K n+2k−2

2
∨

n−2k+2
2 K1

)
=

n+2k−4+
√

(n+2k−4)2+4(n−2k+2)(n+2k−2)
4 . Let S = V

(
K n+2k−2

2

)
. Then |S| = n+2k−2

2 and i
(
K n+2k−2

2
∨

n−2k+2
2 K1 − S

)
= n−2k+2

2 >
n−2k−2

2 = n+2k−2
2 − 2k = |S| − 2k. By Lemma 2.1, the graph K n+2k−2

2
∨

n−2k+2
2 K1 is not fractional k-extendable. □

6. Conclusions

In this paper, we establish tight lower bounds on the size and the spectral radius of G to ensure that G is
fractional k-extendable, respectively. Furthermore, all the corresponding extremal graphs are characterized
completely. On the other hand, from the proofs of Theorems 1.1 and 1.2 we easily see that the extremal
graph under every condition is unique.

There are still some other interesting problems to be considered along the above line. For example, if
we focus on the graph G with minimum degree δ, how to establish tight lower bounds on the size and the
spectral radius of G to guarantee that G is fractional k-extendable, respectively. Similarly, if we focus on the
graph G with minimum degree δ, how to establish some other spectral conditions to guarantee that G is
fractional k-extendable, respectively. We will do them in the near future.
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