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Abstract. In this paper, the complete convergence and complete f -moment convergence for arrays of
rowwise m-negatively associated (m-NA, for short) random variables are studied, which generalize and
improve the corresponding ones of Hu et al. (2009) and Wang et al. (2023). The complete moment
convergence for arrays of rowwise m-NA random variables is also obtained as an auxiliary conclusion.

1. Introduction

It is known that the complete convergence plays a significant role in probability theory and mathematical
statistics. The concept of complete convergence was introduced by Hsu and Robbins (1947) as follows.
Definition 1.1. A sequence {Xn,n ≥ 1} of random variables converges completely to the constant c if for any ε > 0,

∞∑
n=1

P(|Xn − c| > ε) < ∞.

By the Borel-Cantelli lemma, this implies that Xn → c almost surely. Hence, the complete convergence
is stronger than almost sure convergence.

Chow (1988) introduced the following concept of complete moment convergence, which is much
stronger than complete convergence.
Definition 1.2. For a sequence {Xn,n ≥ 1} of random variables, if

∞∑
n=1

anE(b−1
n |Xn| − ε)r

+ < ∞
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for some r > 0 and any ε > 0, where x+ = max{x, 0}, {an,n ≥ 1} and {bn,n ≥ 1} are two sequences of positive
numbers, then {Xn,n ≥ 1} is said to exhibit complete r-th moment convergence.

Wu et al. (2019) put forward a more general concept of convergence, i.e., complete f -moment conver-
gence as follows.
Definition 1.3. Let {Sn,n ≥ 1} be a sequence of random variables, {cn,n ≥ 1} be a sequence of positive constants and
f : R+ → R+ is an increasing continuous function with f (0) = 0. We say that {Sn,n ≥ 1} converges f -moment
completely, if

∞∑
n=1

cnE f ({|Sn| − ε}+) < ∞ for all ε > 0,

where herein and after, a+ = max{0, a}.
Taking a special case f (t) = tr, t ≥ 0, the complete f -moment convergence degenerates to complete r-th

moment convergence. Wu et al. (2019) also proved that

∞∑
n=1

cnE f ({|Sn| − ε/2}+) ≥ δ
∞∑

n=1

cnP(|Sn| > ε),

where δ = f (ε/2) > 0. That is to say, the complete f -moment convergence is stronger than complete
convergence. Therefore, the study of complete f -moment convergence is of general interest in limit theory.

Let {kn,n ≥ 1} be a sequence of positive integers. Hu et al. (2009) established the following result on
complete convergence for m-negatively associated (m-NA, for short) random variables. The concept of
m-NA random variables will be given in Section 2.
Theorem 1.1. Let {Xnk, 1 ≤ k ≤ kn,n ≥ 1} be an array of rowwise m-NA random variables and {cn,n ≥ 1} be a
sequence of positive constants. Suppose that for any ε > 0 and some δ > 0, η ≥ 2,

∞∑
n=1

cn

kn∑
k=1

P(|Xnk| > ε) < ∞

and
∞∑

n=1

cn

 kn∑
k=1

E|Xnk|
2I(|Xnk| ≤ δ)


η

< ∞.

Then for any ε > 0,
∞∑

n=1

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ > ε
 < ∞.

Theorem 1.1 was later on generalized to several dependence structures. For examples, Wu et al. (2014)
extended it for extended negatively dependent random variables and improved η ≥ 2 to η ≥ 1; Shen et
al. (2016) extended it to complete moment convergence for negatively supper-additive dependent random
variables; Hu et al. (2015) obtained the desired result for partial sums of extended negatively dependent
random variables, which also improves the condition

∞∑
n=1

cn

 kn∑
k=1

E|Xnk|
2I(|Xnk| ≤ δ)


η

< ∞

of Theorem 1.1 to
∞∑

n=1

cn

 kn∑
k=1

E |XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

< ∞
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for some η > 0 and 0 < p ≤ 2; Wang et al. (2017) extended the results of Hu et al. (2015) for widely orthant
dependent random variables under the assumptions

∞∑
n=1

cn1(kn)
kn∑

k=1

P(|Xnk| > ε) < ∞

and
∞∑

n=1

cn1(kn)

 kn∑
k=1

E |XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

< ∞,

where 1(kn) is the dominating coefficient of widely orthant dependent random variables. For the defini-
tions of extended negatively dependent random variables, negatively supper-additive dependent random
variables and widely orthant dependent random variables, one can see in Liu (2009), Hu (2000), and Wang
et al. (2013), respectively.

Recently, Wang et al. (2023) investigated the complete f -moment convergence for m-NA random
variables based on Theorem 1.1, as follows.
Theorem 1.2. Let {Xnk, 1 ≤ k ≤ kn,n ≥ 1} be an array of rowwise m-NA random variables, {cn,n ≥ 1} be a sequence
of positive constants, f : R+ → R+ be an increasing function with f (0) = 0 and η ≥ 1 be a constant. Suppose that
the following conditions hold:

(1)
∞∑

n=1
cn

kn∑
k=1

E f (192m|Xnk|I(|Xnk| > ε)) < ∞ for any ε > 0;

(2) there exist constants 0 < p ≤ 2 and δ > 0 such that

∞∑
n=1

cn

 kn∑
k=1

EX2
nkI(|Xnk| ≤ δ)


2

< ∞;

(3)
kn∑

k=1
E|Xnk|I(|Xnk| >

δ
384m )→ 0, as n→∞.

(4) Let 1 : R+ → R+ be the inverse function for f (t), that is, 1( f (t)) = t, t ≥ 0 and s(t) = maxδ≤x≤1(t)
x

f (x) . Assume
that the constants η and δ and the function f : R+ → R+ satisfy the condition∫

∞

f (δ)
1−2(t)s(t) dt < ∞.

Then for all ε > 0,

∞∑
n=1

cnE f


max

1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ − ε

+

 < ∞.
We point out that the conditions of Theorem 1.2 are limited. Assumptions (2) and (4) can be improved

to much more general case. More details are given in Section 3. For this purpose, the current study
will further investigate the complete convergence and the complete f -moment convergence for arrays of
rowwise m-NA random variables, which extend and improve Theorem 1.1 and Theorem 1.2 under some
weaker conditions.

Throughout this paper, the symbol C represents a positive constant which may vary in different places.
Let I(A) be the indicator function of the set A. This work is organized as follows: Some preliminary concepts
and lemmas are provided in Section 2. Main results are stated in Section 3. The proofs of the main results
are presented in Section 4.
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2. Preliminaries

In this section, we recall some concepts of dependent random variables and give some lemmas which
will be used in proving our main results.

The concept of negatively associated (NA, for short) random variables was introduced by Joag-Dev and
Proschan (1983) as follows.
Definition 2.1. A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be NA if for every pair of disjoint subsets
A and B of {1, 2, · · ·,n} and any real coordinatewise nondecreasing functions f1 on RA and f2 on RB,

Cov( f1(Xi, i ∈ A), f2(X j, j ∈ B)) ≤ 0,

whenever the covariance above exists. An infinite family of random variables is NA if every finite subfamily is NA.
As pointed out and proved by Joag-Dev and Proschan (1983), a number of well known multivari-

ate distributions, such as multinomial, convolution of unlike multinomial, multivariate hypergeometric,
Dirichlet, permutation distribution, negatively correlated normal distribution, random sampling without
replacement, and joint distribution of ranks all possess the NA property.

As a general extension of NA random variables, the following concept of m-NA random variables was
raised by Hu et al. (2007).
Definition 2.2. Let m ≥ 1 be a fixed integer. A sequence {Xn,n ≥ 1} of random variables is said to be m-NA if for
any n ≥ 2 and any i1, i2, · · · , in such that |i j − ik| ≥ m for all 1 ≤ j , k ≤ n, we have that Xi1,Xi2, · · · ,Xin are NA.

In many real-world scenarios, the dependencies between random variables may not conform to strict
negative association. The m-NA framework provides a way to model such scenarios by allowing for limited
positive associations. On the other hand, verifying the m-NA condition may be easier than verifying the
NA condition, especially when dealing with large sets of random variables. Moreover, if we take m = 1,
then the m-NA structure will degenerate to NA. In summary, the m-NA framework offers a more flexible
and general approach to modeling negative dependence structures among random variables, making it
advantageous in certain situations compared to the traditional NA framework.

The following lemma is a basic property for m-NA random variables, which can be found in Shen et al.
(2015a).
Lemma 2.1. If {Xn,n ≥ 1} is a sequence of m-NA random variables and fn(·),n ≥ 1 are all nondecreasing (or
nonincreasing) functions, then { fn(Xn),n ≥ 1} is still m-NA.

The following exponential inequality for m-NA random variables plays a significant role in the proofs
of the main results, which was proved in Remark 2.1 of Wu et al. (2015).
Lemma 2.2. Let {Xn,n ≥ 1} be a sequence of m-NA random variables with zero means and finite second moments.
Denote Bn =:

∑n
k=1 EX2

k . Then for all x > 0, y > 0 and n ≥ m,

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

k=1

Xk

∣∣∣∣∣∣∣ ≥ x

 ≤ 2m
n∑

k=1

P(|Xk| > y) + 8m
(
1 +

3xy
2mBn

)− x
12my

.

3. Main results

We now present our main results as follows.
Theorem 3.1. Let {Xnk, 1 ≤ k ≤ kn,n ≥ 1} be an array of rowwise m-NA random variables and {cn,n ≥ 1} be a
sequence of positive constants. Suppose that the following two conditions hold:

(i)
∞∑

n=1
cn

kn∑
k=1

P(|Xnk| > ε) < ∞ for any ε > 0;

(ii) there exist η > 0, δ > 0 and 0 < p ≤ 2 such that

∞∑
n=1

cn

 kn∑
k=1

E |XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

< ∞.
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Then for any ε > 0,

∞∑
n=1

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ > ε
 < ∞. (1)

Remark 3.1. It is obvious that condition (ii) in Theorem 3.1 improves the corresponding assumption in
Theorem 1.1. Even when we take p = 2, we still have

∞∑
n=1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|2

η

≤ C
∞∑

n=1

cn

 kn∑
k=1

EX2
nkI(|Xnk| ≤ δ)


η

< ∞.

Moreover, η ≥ 2 in Theorem 1.1 is improved to η > 0. Hence, the result of Theorem 3.1 generalizes and
improves the corresponding one of Theorem 1.1.
Corollary 3.1. Let {Xnk, 1 ≤ k ≤ kn,n ≥ 1} be an array of rowwise m-NA random variables with zero means and
{cn,n ≥ 1} be a sequence of positive constants. Suppose that conditions (i) and (ii) of Theorem 3.1 hold. If there exists
a constant δ1 > 0 such that

∑kn
k=1 E|Xnk|I(|Xnk| > δ1)→ 0 as n→∞, then for any ε > 0,

∞∑
n=1

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣∣∣ > ε
 < ∞. (2)

Under some stronger conditions, we can obtain the complete f -moment convergence for arrays of
rowwise m-NA random variables as follows.
Theorem 3.2. Let {Xnk, 1 ≤ k ≤ kn,n ≥ 1} be an array of rowwise m-NA random variables, {cn,n ≥ 1} be a sequence
of positive constants, f : R+ → R+ be an increasing function with f (0) = 0 and η ≥ 1 be a constant. Suppose that
the following conditions hold:

(a)
∞∑

n=1
cn

kn∑
k=1

E f (96mη|Xnk|I(|Xnk| > ε)) < ∞ for any ε > 0;

(b) there exist constants 0 < p ≤ 2 and δ > 0 such that

∞∑
n=1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

< ∞;

(c)
kn∑

k=1
E|Xnk|I(|Xnk| >

δ
192mη )→ 0, as n→∞.

(d) Let 1 : R+ → R+ be the inverse function for f (t), that is, 1( f (t)) = t, t ≥ 0 and s(t) = maxδ≤x≤1(t)
x

f (x) . Assume
that the constants η and δ and the function f : R+ → R+ satisfy the condition∫

∞

f (δ)
1−η(t)s(t) dt < ∞.

Then for all ε > 0,

∞∑
n=1

cnE f


max

1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ − ε

+

 < ∞. (3)

Furthermore, if EXnk = 0 for each 1 ≤ k ≤ kn and n ≥ 1, then for all ε > 0,

∞∑
n=1

cnE f


max

1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣∣∣ − ε

+

 < ∞. (4)
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Remark 3.2. Taking η = 2, conditions (a), (c) and (d) in Theorem 3.2 equal to corresponding ones in Theorem
1.2. However, condition (b) is still weaker than (2) in Theorem 1.2. We give a simple example to show the
superiority of our result to that of Wang et al. (2023).
Example 3.1. Let p = 2, cn = 1, kn = n, Xk ∼ U[−δ, δ] and Xnk = (n2k)−1/4Xk for each 1 ≤ k ≤ n and n ≥ 1.
Then it is easy to check that

∞∑
n=1

cn

 kn∑
k=1

EX2
nkI(|Xnk| ≤ δ)


2

=
δ2

3

∞∑
n=1

 n∑
k=1

n−1k−1/2


2

= ∞.

That is to say, Theorem 1.2 is unavailable. However, the condition (b) in Theorem 3.2 hold true from

∞∑
n=1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|2

η

=
δ2

3

∞∑
n=1

 n∑
k=1

n−1k−1/2


η

< ∞

for all η > 2. Moreover, as pointed out in Wu et al. (2019), if the function f (x)/x is increasing, then the
assumption (d) can be written as: ∫

∞

δ

f (t)
t1+η dt < ∞.

Under this situation, Theorem 1.2 does not work if f (t) = tq for some q ≥ 2. However, Theorem 3.2 is also
valid. The aforementioned statements reveal that our result improves the corresponding one of Wang et al.
(2023).

Taking f (t) = tq, t ≥ 0, q > 0 in Theorem 3.2, we can obtain the following complete q-th moment
convergence for m-NA random variables.
Theorem 3.3. Let q > 0, {Xnk, 1 ≤ k ≤ kn,n ≥ 1} be an array of rowwise m-NA random variables and {cn,n ≥ 1} be
a sequence of positive constants. Suppose that the following conditions hold:

(1)
∞∑

n=1
cn

kn∑
k=1

E|Xnk|
qI(|Xnk| > ε) < ∞ f or any ε > 0;

(2) there exist constants η > max(1, q), 0 < p ≤ 2, and δ > 0 such that

∞∑
n=1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

< ∞;

(3)
kn∑

k=1
E|Xnk|I(|Xnk| >

δ
192mη )→ 0, as n→∞.

Then for all ε > 0,

∞∑
n=1

cnE

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ − ε


q

+

< ∞.

Furthermore, if EXnk = 0 for each 1 ≤ k ≤ kn and n ≥ 1, then for all ε > 0,

∞∑
n=1

cnE

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣∣∣ − ε


q

+

< ∞.

Remark 3.3. We point out that (3) and (4) in Theorem 3.2 also hold true under the conditions similar to
those in Theorem 3.3 if we take f (t) = tql(t), t ≥ 0, q > 0, where l(t) is any slowly varying function.
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4. Proofs of the main results

Proof of Theorem 3.1. Since ε > 0 is arbitrary, we may assume without loss of generality that ε
48mη < δ. The

proof will be conducted under the following three cases.
Case 1: 1 ≤ p ≤ 2, η ≥ 1.

Under this case, we denote N1 =

{
n :

kn∑
k=1

P(|Xnk| >
ε

4η ) < 1
}

. Noting that for n ∈ N − N1,
kn∑

k=1
P(|Xnk| >

ε
4η ) ≥ 1, so we can obtain by condition (i) that

∑
n∈N−N1

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ > ε


≤

∑
n∈N−N1

cn ≤
∑

n∈N−N1

cn

kn∑
k=1

P(|Xnk| >
ε

4η
)

≤

∞∑
n=1

cn

kn∑
k=1

P(|Xnk| >
ε

4η
) < ∞. (1)

Therefore, it suffices to consider the case n ∈ N1. Define for 1 ≤ k ≤ kn,

Ynk = −
ε

48mη
I(Xnk < −

ε
48mη

) + XnkI(|Xnk| ≤
ε

48mη
) +

ε
48mη

I(Xnk >
ε

48mη
),

Znk =
ε

48mη
I(Xnk < −

ε
48mη

) + XnkI(
ε

48mη
< |Xnk| ≤ δ) −

ε
48mη

I(Xnk >
ε

48mη
),

Unk = XnkI(|Xnk| > δ).

It is easy to obtain that

∑
n∈N1

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ > ε


=
∑
n∈N1

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Ynk − EYnk + Znk − EZnk +Unk)

∣∣∣∣∣∣∣ > ε


≤

∑
n∈N1

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Ynk − EYnk)

∣∣∣∣∣∣∣ > ε2
 +∑

n∈N1

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Znk − EZnk)

∣∣∣∣∣∣∣ > ε2


+
∑
n∈N1

cnP
(

max
1≤k≤kn

|Xnk| > δ

)
=: I1 + I2 + I3. (2)

On one hand, by Cr-inequality and Jensen’s inequality we have that

E|XnkI(|Xnk| ≤
ε

48mη
) − EXnkI(|Xnk| ≤

ε
48mη

)|p

= E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)

−XnkI(
ε

48mη
< |Xnk| ≤ δ) + EXnkI(

ε
48mη

< |Xnk| ≤ δ)|p

≤ 2p−1E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

+2p−1E|XnkI(
ε

48mη
< |Xnk| ≤ δ) − EXnkI(

ε
48mη

< |Xnk| ≤ δ)|p

≤ 2p−1E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p
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+22p−1E|Xnk|
pI(

ε
48mη

< |Xnk| ≤ δ)

≤ 2p−1E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

+22p−1δpP(|Xnk| >
ε

48mη
).

On the other hand, it follows from Lemma 2.1 that {Ynk, 1 ≤ k ≤ kn,n ≥ 1} is still an array of rowwise m-NA
random variables with |Ynk − EYnk| ≤

ε
24mη for all 1 ≤ k ≤ kn and n ≥ 1. Hence, applying Lemma 2.2 with

x = ε2 , y = ε
24mη and Bn =

∑kn
k=1 E(Ynk − EYnk)2, we get by the Cr-inequality and conditions (i) and (ii) that

I1 ≤ C
∑
n∈N1

cn

kn∑
k=1

P(|Ynk − EYnk| >
ε

24mη
)

+C
∑
n∈N1

cn

 kn∑
k=1

E(Ynk − EYnk)2


η

≤ C
∑
n∈N1

cn

 kn∑
k=1

E|Ynk − EYnk|
p


η

≤ C
∑
n∈N1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤
ε

48mη
) − EXnkI(|Xnk| ≤

ε
48mη

)|p

η

+C
∑
n∈N1

cn

 kn∑
k=1

P(|Xnk| >
ε

48mη
)


η

≤ C
∑
n∈N1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

+C
∑
n∈N1

cn

 kn∑
k=1

P(|Xnk| >
ε

48mη
)


η

≤ C
∞∑

n=1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

+C
∞∑

n=1

cn

kn∑
k=1

P(|Xnk| >
ε

48mη
) < ∞. (3)

For I2, we derive by Cr-inequality and condition (i) that

I2 ≤ C
∑
n∈N1

cnE

∣∣∣∣∣∣∣
kn∑

k=1

(Znk − EZnk)

∣∣∣∣∣∣∣ ≤ C
∑
n∈N1

cn

kn∑
k=1

E|Znk|

≤ C
∑
n∈N1

cn

kn∑
k=1

E|Xnk|I(
ε

48mη
< |Xnk| ≤ δ) + C

∑
n∈N1

cn

kn∑
k=1

P(|Xnk| >
ε

48mη
)

≤ C
∑
n∈N1

cn

kn∑
k=1

P(|Xnk| >
ε

48mη
)

≤ C
∞∑

n=1

cn1(kn)
kn∑

k=1

P(|Xnk| >
ε

48mη
) < ∞. (4)
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For I3, we can obtain by condition (i) that

I3 ≤

∑
n∈N1

cn

kn∑
k=1

P(|Xnk| > δ) ≤
∞∑

n=1

cn

kn∑
k=1

P(|Xnk| > δ) < ∞. (5)

Hence, the proof of Case 1 is completed by (1)-(5).
Case 2: 1 ≤ p ≤ 2, 0 < η < 1.

In this case we define N2 =

{
n :

kn∑
k=1

E |XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p < 1
}

. Noting that if n ∈N −N2,

kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p ≥ 1, so we have by condition (ii) that for any η > 0,

∑
n∈N−N2

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ > ε


≤

∑
n∈N−N2

cn ≤
∑

n∈N−N2

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

≤

∞∑
n=1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

< ∞.

It retains to consider the case n ∈ N2. Note that

∑
n∈N2

cn

kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

≤

∑
n∈N2

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

≤

∞∑
n=1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

< ∞.

Hence, by applying the result obtained in Case 1 with η = 1 and 1 ≤ p ≤ 2, we obtain the desired result
under Case 2.

Up to now, we have proved that (1) holds when 1 ≤ p ≤ 2 and η > 0. We now prove that (1) also holds
when 0 < p < 1 and η > 0.

Case 3: 0 < p < 1, η > 0.
Noting that E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)| ≤ 2δ, we can obtain

∞∑
n=1

cn

 kn∑
k=1

E |XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|


η

≤ (2δ)(1−p)η
∞∑

n=1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η

< ∞.

That is to say, the two conditions of Theorem 3.1 are satisfied with p = 1 and η > 0, which we have proved in
the former two cases. In other words, condition (ii) under Case 3 is a stronger assumption than that under
Cases 1 and 2, which of course can guarantee the validity of the result. Therefore, the proof of Theorem 3.1
is completed. □
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Proof of Corollary 3.1. It follows from
∑kn

k=1 E|Xnk|I(|Xnk| > δ1)→ 0 and EXnk = 0 for each 1 ≤ k ≤ kn, n ≥ 1
that there exists n0 ∈N such that for all n > n0,

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

EXnkI(|Xnk| ≤ δ1)

∣∣∣∣∣∣∣ = max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

EXnkI(|Xnk| > δ1)

∣∣∣∣∣∣∣
≤

kn∑
k=1

E|Xnk|I(|Xnk| > δ1) <
ε
4
. (6)

The rest of the proof will be considered under the following two cases.
Case 1: δ1 ≥ δ.

Let N3 =

{
n :

kn∑
k=1

P(|Xnk| > δ) < ε
4δ1

}
. For all n ∈ N − N3 we have

kn∑
k=1

P(|Xnk| > δ) ≥ ε
4δ1

and thus by

condition (i),∑
n∈N−N3

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣∣∣ > ε
 ≤

∑
n∈N−N3

cn ≤
4δ1

ε

∑
n∈N−N3

cn

kn∑
k=1

P(|Xnk| > δ)

≤
4δ1

ε

∞∑
n=1

cn

kn∑
k=1

P(|Xnk| > δ) < ∞. (7)

It follows by conditions (a) and (b) that the conclusion (1) of Theorem 3.1 holds. Now to obtain (2), it suffices
to show that for all n large enough with n ∈ N3,

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

EXnkI(|Xnk| ≤ δ)

∣∣∣∣∣∣∣ < ε2 .
For n > n0 and n ∈ N3, we obtain by (6) that

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

EXnkI(|Xnk| ≤ δ)

∣∣∣∣∣∣∣
≤ max

1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

EXnkI(|Xnk| ≤ δ1)

∣∣∣∣∣∣∣ +
kn∑

k=1

E|Xnk|I(δ < |Xnk| ≤ δ1)

≤
ε
4
+ δ1

kn∑
k=1

P(|Xnk| > δ)

≤
ε
4
+ δ1 ·

ε
4δ1

=
ε
2
,

which together with (1) obtains∑
n∈N3

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣∣∣ > ε


≤

∑
n∈N3,n≤n0

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣∣∣ > ε


+
∑

n∈N3,n>n0

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ + max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

EXnkI(|Xnk| ≤ δ)

∣∣∣∣∣∣∣ > ε
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≤ C +
∑

n∈N3,n>n0

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ > ε2
 < ∞. (8)

Hence we obtain the desired result by (7) and (8) for Case 1.
Case 2: δ1 < δ.

Let N4 =

{
n :

kn∑
k=1

P(|Xnk| > δ1) < ε
4δ

}
. Note that if n ∈ N − N4, we have

kn∑
k=1

P(|Xnk| > δ1) ≥ ε
4δ . Hence, by

condition (i) we have

∑
n∈N−N4

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣∣∣ > ε
 ≤

∑
n∈N−N4

cn ≤
4δ
ε

∑
n∈N−N4

cn

kn∑
k=1

P(|Xnk| > δ1)

≤
4δ
ε

∞∑
n=1

cn

kn∑
k=1

P(|Xnk| > δ1) < ∞. (9)

Similar to the proof of Case 1, we only need to show that for all sufficiently large n ∈ N4,

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

EXnkI(|Xnk| ≤ δ)

∣∣∣∣∣∣∣ < ε2 .
For n > n0 and n ∈ N4, we obtain

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

EXnkI(|Xnk| ≤ δ)

∣∣∣∣∣∣∣
≤ max

1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

EXnkI(|Xnk| ≤ δ1)

∣∣∣∣∣∣∣ +
kn∑

k=1

E|Xnk|I(δ1 < |Xnk| ≤ δ)

≤
ε
4
+ δ

kn∑
k=1

P(|Xnk| > δ1)

≤
ε
4
+ δ ·

ε
4δ

=
ε
2
.

Similar to the proof of (8), we also obtain that

∑
n∈N4

cnP

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

Xnk

∣∣∣∣∣∣∣ > ε
 < ∞. (10)

A combination of (9) and (10) gives (2) under Case 2. This completes the proof of the corollary. □
Proof of Theorem 3.2. Since function f is increasing, m ≥ 1 and η ≥ 1, it follows from condition (a) that

∞∑
n=1

cn

kn∑
k=1

E f (|Xnk|I(|Xnk| > ε)) < ∞ for any ε > 0.

Now we state that the conditions (i) and (ii) of Theorem 3.1 hold. For all ε > 0, it follows from Markov’s
inequality that

∞∑
n=1

cn

kn∑
k=1

P(|Xnk| > ε) ≤ C
∞∑

n=1

cn

kn∑
k=1

E f (|Xnk|I(|Xnk| > ε)) < ∞,
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which implies that condition (i) of Theorem 3.1 holds. Condition (ii) of Theorem 3.1 holds trivially by (b).
Thus all the conditions of Theorem 3.1 are satisfied.

Denote Sn = max1≤ j≤kn |
∑ j

k=1(Xnk − EXnkI(|Xnk| ≤ δ))|. It can be checked that

∞∑
n=1

cnE f ({Sn − ε}+) =

∞∑
n=1

cn

∫
∞

0
P(Sn > ε + 1(t))dt

=

∞∑
n=1

cn

∫ f (δ)

0
P(Sn > ε + 1(t))dt +

∞∑
n=1

cn

∫
∞

f (δ)
P(Sn > ε + 1(t))dt

=: J1 + J2. (11)

By Theorem 3.1, it follows that

J1 ≤ f (δ)
∞∑

n=1

cnP(Sn > ε) < ∞. (12)

Thus, to prove (3), we need to show J2 < ∞. Note that

J2 ≤

∞∑
n=1

cn

∫
∞

f (δ)
P

Sn > 1(t),
kn⋃

k=1

{|Xnk| > 1(t)}

 dt

+

∞∑
n=1

cn

∫
∞

f (δ)
P

Sn > 1(t),
kn⋂

k=1

{|Xnk| ≤ 1(t)}

 dt

≤

∞∑
n=1

cn

∫
∞

f (δ)
P

 kn⋃
k=1

{|Xnk| > 1(t)}

 dt

+

∞∑
n=1

cn

∫
∞

f (δ)
P

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(
XnkI(|Xnk| ≤ 1(t)) − EXnkI(|Xnk| ≤ δ)

)∣∣∣∣∣∣∣ > 1(t)
 dt

=: J3 + J4. (13)

It follows from condition (a) and Markov’s inequality that

J3 ≤

∞∑
n=1

cn

kn∑
k=1

∫
∞

f (δ)
P( f (|Xnk|) > t)dt ≤ C

∞∑
n=1

cn

kn∑
k=1

E f (|Xnk|I(|Xnk| > δ)) < ∞. (14)

Now we turn to estimate J4. For fixed n ≥ 1, 1 ≤ k ≤ kn and t ≥ f (δ), denote

ξnk = −1(t)I(Xnk < −1(t)) + XnkI(|Xnk| ≤ 1(t)) + 1(t)I(Xnk > 1(t)),
ηnk = −1(t)I(Xnk < −1(t)) + 1(t)I(Xnk > 1(t)).

It follows from Lemma 2.1 that {ξnk − Eξnk, 1 ≤ k ≤ kn,n ≥ 1} is still an array of m-NA random variables.
Note that

P

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(XnkI(|Xnk| ≤ 1(t)) − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ > 1(t)


≤ P

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(ξnk − Eξnk − ηnk + Eηnk)

∣∣∣∣∣∣∣ +
kn∑

k=1

E|Xnk|I(δ < |Xnk| ≤ 1(t)) > 1(t)

 .
(15)
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By assumption (c), we can obtain that

max
t≥ f (δ)

1
1(t)

kn∑
k=1

E|Xnk|I(δ < |Xnk| ≤ 1(t)) ≤ δ−1
kn∑

k=1

E|Xnk|I(|Xnk| > δ)→ 0, as n→∞.

Hence, for all n large enough,

kn∑
k=1

E|Xnk|I(δ < |Xnk| ≤ 1(t)) < 1(t)/2, t ≥ f (δ),

which together with (15) yields that for all n large enough,

P

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(XnkI(|Xnk| ≤ 1(t)) − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣∣∣ > 1(t)


≤ P

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(ξnk − Eξnk − ηnk + Eηnk)

∣∣∣∣∣∣∣ > 1(t)/2


≤ P

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(ηnk − Eηnk)

∣∣∣∣∣∣∣ > 1(t)/4
 + P

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(ξnk − Eξnk)

∣∣∣∣∣∣∣ > 1(t)/4
 .

Hence, we have

J4 ≤ C
∞∑

n=1

cn

∫
∞

f (δ)
P

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(ηnk − Eηnk)

∣∣∣∣∣∣∣ > 1(t)/4
 dt

+C
∞∑

n=1

cn

∫
∞

f (δ)
P

max
1≤ j≤kn

∣∣∣∣∣∣∣
j∑

k=1

(ξnk − Eξnk)

∣∣∣∣∣∣∣ > 1(t)/4
 dt

=: J5 + J6. (16)

Noting that |ηnk| = 1(t)I(|Xnk| > 1(t)), we obtain by Markov’s inequality and condition (a) that

J5 ≤ C
∞∑

n=1

cn

∫
∞

f (δ)

1
1(t)

kn∑
k=1

E|ηnk|dt

≤ C
∞∑

n=1

cn

kn∑
k=1

∫
∞

f (δ)
P(|Xnk| > 1(t))dt

≤ C
∞∑

n=1

cn

kn∑
k=1

E f (|Xnk|I(|Xnk| > δ)) < ∞. (17)

Hence it suffices to deal with J6. Noting that {ξnk − Eξnk, 1 ≤ k ≤ kn,n ≥ 1} is still an array of m-NA random
variables, we apply Lemma 2.2 with x = 1(t)/4 and y = 1(t)/(48mη), where η satisfies the assumption (d), to
obtain

J6 ≤ C
∞∑

n=1

cn

∫
∞

f (δ)
P
(

max
1≤k≤kn

|ξnk − Eξnk| >
1(t)

48mη

)
dt

+C
∞∑

n=1

cn

∫
∞

f (δ)

(
Bn

12(t)

)η
dt

=: J7 + J8, (18)
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where Bn =
∑kn

k=1 E(ξnk − Eξnk)2.

It follows from assumption (c) and Markov’s inequality that
kn∑

k=1
P(|Xnk| >

δ
192mη ) → 0 as n → ∞. Conse-

quently, for all n large enough,
kn∑

k=1
P(|Xnk| >

δ
192mη ) ≤ 1

384mη . Thus,

max
t≥ f (δ)

max
1≤k≤kn

1
1(t)
|Eξnk| ≤ max

t≥ f (δ)
max
1≤k≤kn

1
1(t)

E|ξnk|

≤ max
t≥ f (δ)

max
1≤k≤kn

[
1
1(t)

E|Xnk|I(|Xnk| ≤
δ

192mη
) +

1
1(t)

E|Xnk|I(
δ

192mη
< |Xnk| ≤ 1(t))

+P(|Xnk| > 1(t))]

≤ δ−1
·
δ

192mη
+ 2

kn∑
k=1

P(|Xnk| >
δ

192mη
)

≤
1

192mη
+ 2 ·

1
384mη

=
1

96mη
.

Hence by condition (a) we have

J7 ≤ C
∞∑

n=1

cn

∫
∞

f (δ)
P
(

max
1≤k≤kn

|ξnk| >
1(t)

96mη

)
dt

≤ C
∞∑

n=1

cn

∫
∞

f (δ)
P
(

max
1≤k≤kn

|Xnk| >
1(t)

96mη

)
dt (since |ξnk| ≤ |Xnk|)

≤ C
∞∑

n=1

cn

kn∑
k=1

∫
∞

f (δ)
P
(
|Xnk| >

1(t)
96mη

)
dt

≤ C
∞∑

n=1

cn

kn∑
k=1

E f (96mη|Xnk|I(|Xnk| > δ)) < ∞. (19)

By Cr-inequality and Markov’s inequality, we have

J8 = C
∞∑

n=1

cn

∫
∞

f (δ)
1−2η(t)Bηn dt

= C
∞∑

n=1

cn

∫
∞

f (δ)
1−2η(t)

 kn∑
k=1

E(ξnk − Eξnk)2


η

dt

≤ C
∞∑

n=1

cn

∫
∞

f (δ)
1−2η(t)

 kn∑
k=1

E(XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ))2


η

dt

+C
∞∑

n=1

cn

∫
∞

f (δ)
1−2η(t)

 kn∑
k=1

EX2
nkI(δ < |Xnk| ≤ 1(t))


η

dt

+C
∞∑

n=1

cn

∫
∞

f (δ)

 kn∑
k=1

P(|Xnk| > 1(t))


η

dt

=: J9 + J10 + J11. (20)

Noting that |XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)| ≤ 2δ, we obtain by assumptions (b) and (d) that

J9 ≤ C(2δ)(2−p)η
∞∑

n=1

cn

 kn∑
k=1

E|XnkI(|Xnk| ≤ δ) − EXnkI(|Xnk| ≤ δ)|p

η ∫

∞

f (δ)
1−2η(t) dt
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< ∞. (21)

For J10, it follows from condition (c) that for all n large enough,

kn∑
k=1

E|Xnk|I(δ < |Xnk| ≤ 1(t)) ≤
kn∑

k=1

E|Xnk|I(|Xnk| > δ) ≤
kn∑

k=1

E|Xnk|I(|Xnk| >
δ

192mη
) < 1,

which together with η ≥ 1 yields that kn∑
k=1

E|Xnk|I(δ < |Xnk| ≤ 1(t))


η

≤

kn∑
k=1

E|Xnk|I(δ < |Xnk| ≤ 1(t)).

Therefore, by conditions (a) and (d) we have

J10 ≤ C
∞∑

n=1

cn

∫
∞

f (δ)
1−2η(t)

1(t) kn∑
k=1

E|Xnk|I(δ < |Xnk| ≤ 1(t))


η

dt

≤ C
∞∑

n=1

cn

∫
∞

f (δ)
1−η(t)

 kn∑
k=1

E
|Xnk|I(δ < |Xnk| ≤ 1(t))

f (|Xnk|I(δ < |Xnk| ≤ 1(t)))
f (|Xnk|I(δ < |Xnk| ≤ 1(t)))

 dt

≤ C
∞∑

n=1

cn

∫
∞

f (δ)
1−η(t)s(t)

 kn∑
k=1

E f (|Xnk|I(δ < |Xnk| ≤ 1(t)))

 dt

≤ C
∞∑

n=1

cn

kn∑
k=1

E f (|Xnk|I(|Xnk| > δ))
∫
∞

f (δ)
1−η(t)s(t) dt < ∞. (22)

Finally, we will show that J11 < ∞. Noting that t ≥ f (δ), it follows from Markov’s inequality and
condition (c) that

kn∑
k=1

P(|Xnk| > 1(t)) ≤
kn∑

k=1

P(|Xnk| > δ) ≤ δ−1
kn∑

k=1

E|Xnk|I(|Xnk| > δ)→ 0, as n→∞,

which implies that for all n large enough,

kn∑
k=1

P(|Xnk| > 1(t)) < 1

and thus for all t ≥ f (δ),  kn∑
k=1

P(|Xnk| > 1(t))


η

≤

kn∑
k=1

P(|Xnk| > 1(t)).

Hence, we have by condition (a) that

I11 ≤ C
∞∑

n=1

cn

kn∑
k=1

∫
∞

f (δ)
P(|Xnk| > 1(t)) dt

≤ C
∞∑

n=1

cn

kn∑
k=1

E f (|Xnk|I(|Xnk| > δ)) < ∞. (23)

Therefore, by (11)-(23), (3) follows immediately. The proof of (4) is completely analogous to that of Corollary
3.1 and thus is omitted here. The proof of the theorem is completed. □
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Sankhyā A, 77(1), 1-29.
[5] Hu T.Z., 2000. Negatively superadditive dependence of random variables with applications. Chinese J. Appl. Probab. Statist., 16,

133-144.
[6] Hu Y.J., Ming R.X., Yang W.Q., 2007. Large deviations and moderate deviations for m-negatively associated random variables.

Acta Math. Sci., 2007, 27, 886-896.
[7] Joag-Dev K., Proschan F., 1983. Negative association of random variables with applications. Ann. Statist., 11, 286-295.
[8] Liu L., 2009. Precise large deviations for dependent random variables with heavy tails. Statist. Probab. Lett., 79, 1290-1298.
[9] Shen A.T., Zhang Y., Xiao B.Q., Volodin A., 2015a. Moment inequalities for m-negatively associated random variables and their

applications. Statist. Papers, 58, 911-928.
[10] Shen A.T., Zhang Y., Volodin A., 2015b. Applications of the Rosenthal-type inequality for negatively superadditive dependent

random variables. Metrika, 78(3), 295–311.
[11] Shen A.T., Xue M.Z., Volodin A., 2016. Complete moment convergence for arrays of rowwise NSD random variables. Stochastics,

88, 606-621.
[12] Wang K.Y., Wang Y.B., Gao Q.W., 2013. Uniform asymptotics for the finite-time ruin probability of a new dependent risk model

with a constant interest rate. Methodol. Comput. Appl. Probab., 15, 109-124.
[13] Wang M.M., Wang M., Wang X.J., Zhang F., 2023. Complete f -moment convergence for arrays of rowwise m-negatively associated

random variables and its statistical applications. Stoch. Models, 39(3), 632-661.
[14] Wang X.J., Wu Y., Rosalsky A., 2017. Complete convergence for arrays of rowwise widely orthant dependent random variables

and its applications. Stochastics, 89(8), 1228-1252.
[15] Wu Y., Wang X.J., Hu T.-C., Volodin A., 2019. Complete f -moment convergence for extended negatively dependent random

variables. RACSAM, 113, 333-351.
[16] Wu Y.F., Ordonez M.C., Volodin A., 2014. Complete convergence and complete moment convergence for arrays of rowwise END

random variables. Glas. Mat., 49(69), 449-468.
[17] Wu Y.F., Hu T.-C., Volodin A., 2015. Complete convergence and complete moment convergence for weighted sums of m-NA

random variables. J. Inequal. Appl., Article ID 200, DOI: 10.1186/s13660-015-0717-1.


